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Abstract

This SpecC language reference manual (LRM), version 2.0, defines the syntax and the

semantics of the SpecC language 2.0. This document is based on the SpecC LRM version

1.0, dated March 6, 2001. It has been modified and extended according to the results of

the work done by the SpecC language specification working group (LS-WG) of the SpecC

Technology Open Consortium (STOC).

The SpecC language is defined as extension of the ANSI-C programming language.

This document describes the syntax and semantics of the SpecC constructs that were added

to the ANSI-C language.

For each SpecC construct, its purpose, its syntax, and its semantics are defined. In addi-

tion, each SpecC construct is illustrated by an example. The SpecC execution semantics are

formally defined by use of a time interval formalism and an abstract simulation algorithm.

In the appendix, the complete SpecC grammar is included by use of an extended

Backus-Naur form (EBNF), and the contents of the SpecC standard library are defined.
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Chapter 1

Introduction

The SpecC language is a formal notation intended for the specification and design of digital

embedded systems, including hardware and software portions. Built on top of the ANSI-C

programming language, the SpecC language supports concepts essential for embedded sys-

tems design, including behavioral and structural hierarchy, concurrency, communication,

synchronization, state transitions, exception handling, and timing.

This document defines the syntax and the semantics of the SpecC language, version 2.0.

This version 2.0 is based on the SpecC LRM version 1.0 [7]. It incorporates the results of

the language specification working group (LS-WG) established by the SpecC Technology

Open Consortium (STOC).

Since the SpecC language is a true superset of the ANSI-C programming language, this

document only covers the language constructs not found in ANSI-C. For detailed informa-

tion about the syntax and semantics of ANSI-C, please refer to the ISO Standard ISO/IEC

9899 [1].

Chapter 2 defines the foundation, the types, the classes, the statements, and other con-

structs of the SpecC language. Chapter 3 then defines the execution semantics of the SpecC

language by use of a formal notation called time interval formalism. In addition, an abstract

simulation algorithm for SpecC program execution is given.

In Appendix A, the complete grammar of the SpecC language is included. Finally,

Appendix B defines the contents of the SpecC standard library.

3



4 CHAPTER 1. INTRODUCTION

1.1 Brief history of the SpecC language

The first version of the SpecC language was developed in 1997 at the University of

California, Irvine (UCI) [4]. While many concepts supported by the SpecC language

were new at that time, some concepts were based on previous research, for example, the

SpecCharts[2, 3] language.

In the following years, research on system design with the SpecC language was intensi-

fied at UCI and early tools including a SpecC compiler and a simulator were implemented.

Highlights of this research have been published in the first book on SpecC, ”SpecC: Speci-

fication Language and Methodology” [5], in 1999.

At the same time, the SpecC language gained world-wide acceptance in industry, reach-

ing a major milestone in the SpecC history, the foundation of the SpecC Technology Open

Consortium (STOC) in 1999 [10]. STOC was founded with the goal of promoting the

SpecC idea by standardizing the SpecC language and establishing design guidelines, indus-

try collaboration and interoperability among design tools, based on SpecC.

Since the foundation of STOC, a second book on SpecC, entitled ”System Design: A

Practical Guide with SpecC” [8], was published and the SpecC technology advanced fur-

ther, driven by industrial and academic work in general, and by the formation of two STOC

working groups in particular, namely the case study (CS-WG) and language specification

working groups (LS-WG). As a result of the latter, the SpecC language was refined and

extended, leading to its second generation, SpecC 2.0.

This document defines the version 2.0 of the SpecC language standard approved by

STOC.

1.2 Contributors

This document is the result of the work of the language specification working group (LS-

WG) of STOC. The authors wish to thank all active members of this working group for

their fruitful discussions, their valuable contributions, and helpful suggestions.

At the time of approval of SpecC 2.0, the SpecC LS-WG consists of the following

members, listed in alphabetical order:

Yamada Akihiko, Dai Araki, Przemyslaw Bakowski, Ken-ichi Chiboshi, Rainer Doe-
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mer, Takashi Eda, Hans Eveking, Masahiro Fujita, Hiroshi Fukutomi, Daniel Gajski,

Rajesh Gupta, Tedd Hadley, Roger Hale, Alan Hu, Masato Igarashi, Masaki Ito,

Steven Johnson, Yamashiro Kenji, Tsuneo Kinoshita, Srivas Mandayam, George Milne,

Hiroshi Nakamura, Mike Olivarez, Alex Orailoglu, Sreeranga Rajan, Yoshisato Sakai,

Thanyapat Sakunkonchak, Komatsu Satoshi, Yamaguchi Suguru, Tanimoto Tadaaki,

Ishii Tadatoshi, Hiroaki Takada, Iitsuka Takayoshi, Shinsuke Tamura, Shibashita Tetsu,

Hiroyuki Tomiyama, Nakamura Toshihiko, Eugenio Villar, Wayne Wolf, Kodama Yuetsu.
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Chapter 2

SpecC Language

2.1 Foundation

The SpecC language is based on the ANSI-C programming language as defined in ISO

Standard ISO/IEC 9899 [1].

Unless specified otherwise in this document, the syntax and semantic rules specified for

ANSI-C are also valid for SpecC. Also, the SpecC constructs described in this document are

designed as straightforward extensions, to which the usual ANSI-C semantics are applied,

whenever possible.

2.1.1 Array assignment

In contrast to ANSI-C, the SpecC language allows the assignment of variables of array type.

Syntactically, such array assignment is specified in the same manner as basic variables are

assigned.

The assignment of a whole array is equivalent to the assignment of every element in the

source array to the element with the same index (or indices in case of multi-dimensional

arrays) in the target array.

For array assignments, the target and source arrays must have the same type and the

same dimensions. As the result of an array assignment, the target array will have the same

contents as the source array.

The result type of an array assignment operation isvoid. This is in contrast to standard

7
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assignment operations where the result type is given by the type of the left argument. As a

consequence, an array assignment operation may not be used as a subexpression in another

expression (but only as an expression statement).

Example:

1 int a[10],
2 b[10];
3 double c[3][3],
4 d[3][3],
5 e[3][3];
6

7 void f( void )
8 f
9 a = b; // array assignment

10 c = d; // array assignment
11 c[2] = d[1]; // sub �array assignment
12 // c = (d = e); // illegal!
13 g

2.1.2 Variable initialization

In contrast to ANSI-C, the SpecC language initializes every variable that is statically de-

clared in the SpecC description. Unless astatic variable has an explicit initializer specified

by the user, the variable is implicitly initialized with zero (while it would be uninitialized

in ANSI-C).

Variables defined in global scope without storage class specification are considered

static, as are variables defined in class scope.

Example:

1 int i = 0, // explicitly initialized to 0
2 i2; // implicitly initialized to 0
3 char c; // implicitly initialized to ’ n000’
4 float f; // implicitly initialized to 0.0f
5 void �p; // implicitly initialized to 0 (NULL)
6 long l[2]; // implicitly initialized to f0l,0l g
7

8 void fct( void )
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9 f
10 int x; // uninitialized
11 static int y; // initialized to 0
12

13 // ...
14 g
15

16 behavior B
17 f
18 bool b; // initialized to false
19 double d; // initialized to 0.0
20

21 void main( void )
22 f
23 // ...
24 g
25 g;
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2.2 SpecC types

2.2.1 Boolean type

Purpose: Explicit representation of Boolean values

Synopsis:

basic type name =
...
j bool
...

constant =
...
j false
j true
...

Semantics:

(a) A Boolean value, of typebool, has one of two values:true or false.

(b) A Boolean value can be used to hold the result of logical and relational operations

(e. g. !, &&, <, >, ==, etc.).

(c) If converted (implicitly or explicitly) to an integer type,true becomes 1 andfalse

becomes 0.

(d) A Boolean type cannot besignedor unsigned.

Example:

1 bool f( bool b1, int a)
2 f
3 bool b2;
4

5 if (b1 == true )
6 f b2 = b1 j j ( a > 0);
7 g



2.2. SPECC TYPES 11

8 else
9 f b2 = !b1;

10 g
11 return (b2);
12 g

Notes:

i. The typebool in SpecC is equivalent to the typebool in C++.
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2.2.2 Long long type

Purpose: Representation of very large integer values

Synopsis:

decinteger ll fdecinteger g[lL][lL]
octinteger ll foctinteger g[lL][lL]
hexinteger ll fhexinteger g[lL][lL]
decinteger ull fdecinteger g([uU][lL][lL] j[lL][lL][uU])
octinteger ull foctinteger g([uU][lL][lL] j[lL][lL][uU])
hexinteger ull fhexinteger g([uU][lL][lL] j[lL][lL][uU])

basic type name =
int
j long
j ...
j signed
j unsigned
...

basic type specifier =
basic type name
j basic type specifier basic type name
...

constant =
...
j integer

Semantics:

(a) An integer literal of typesigned long long intis specified with a suffixll , where the

suffix is case-insensitive.

(b) An integer literal of typeunsigned long long intis specified with a suffixull or llu,

where the suffix is case-insensitive.

(c) Thelong long int type is an integral data type for very large values. The number of

bits of the representation is equal to or higher than the number of bits of the repre-

sentation of thelong int data type.
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(d) Thelong long int type can besignedor unsigned.

(e) The usual type promotion and type conversion rules apply.

Example:

1 bool Boolean; // 1 bit
2 // [false=0, true=1]
3 char Character; // 8 bit, signed
4 // [ �128, 127]
5 unsigned char UCharacter; // 8 bit, unsigned
6 // [0, 255]
7 short Short; // 16 bit, signed
8 // [ �32768, 32767]
9 unsigned short UShort; // 16 bit, unsigned

10 // [0, 65535]
11 int Integer; // 32 bit, signed
12 // [ �2147483648, 2147483647]
13 unsigned int UInteger; // 32 bit, unsigned
14 // [0, 4294967295]
15 long Long; // 32 bit, signed
16 // [ �2147483648, 2147483647]
17 unsigned long ULong; // 32 bit, unsigned
18 // [0, 4294967295]
19 long long LongLong; // 64 bit, signed
20 // [ �9223372036854775808,
21 // 9223372036854775807]
22 unsigned long long ULongLong; // 64 bit, unsigned
23 // [0, 18446744073709551615]

Notes:

i. The example shows the standard integral types of the SpecC language and their typi-

cal storage sizes and value ranges.
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2.2.3 Bit vector type

Purpose: Representation of bit vectors of arbitrary length

Synopsis:

bindigit [01]
binary fbindigit g+
bitvector fbinary g[bB]
bitvector u fbinary g([uU][bB] j[bB][uU])

basic type name =
...
j signed
j unsigned
...
j bit ’[’ constant expression ’:’ constant expression ’]’
j bit ’[’ constant expression ’]’
...

constant =
...
j bitvector
j bitvector u
...

postfix expression =
...
j postfix expression ’[’ comma expression ’]’
j postfix expression ’[’ constant expression ’:’

constant expression ’]’

concat expression =
cast expression
j concat expression ’@’ cast expression

Semantics:

(a) A bit vectorbit [l : r] represents an integral data type of arbitrary bit length. The length

of a bit vector is determined by its left and right bounds, as follows:length(bv) =

abs(le f t(bv)� right(bv)+1).
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(b) In arithmetic operations, the bit indicated by the left bound represents the most-

significant bit (MSB), whereas the bit indicated by the right bound represents the

least-significant bit (LSB). Except for the bit slice and bit access operations (see

below), a bit vector is always normalized to the bounds[length�1 : 0] before any

operation is performed with it. Also, the result type of a bit vector operation is al-

ways normalized to[length�1 : 0], wherelengthis determined by the operand with

the greatest bit vector length.

(c) As a short-cut, the typebit [length] is equivalent tobit [l : r], wherel = length�1 and

r = 0.

(d) The left and right bounds,l andr, of a bit vector are specified at the time of declara-

tion and must be constant expressions which can be evaluated to constants at compile

time. The same applies to thelengthspecifier for the short declaration.

(e) A bit vector is eithersignedor unsigned.

(f) A bit vector can be used as any other integral type in expressions and the usual

conversion and promotion rules apply. (For example, typeint is equivalent to type

bit [sizeo f(int)�8�1 : 0].)

(g) Implicit promotion from (unsigned) int , (unsigned) long, or (unsigned) long long

to bit vector is performed when necessary. Hereby, the resulting bit vector length

is determined from the number of bits of the source type (which is implementation

dependent).

(h) Automatic conversion, such assigned/unsignedextension or truncation, is supported

for bit vectors as with any other integral type.

(i) Bit vector constants are noted as a sequence of zeros and ones immediately followed

by a suffixb or ub indicating thesignedor unsignedbit vector type, respectively.

The suffix is case-insensitive.

(j) In addition to the standard C operations, a concatenation operation, noted as @, and a

slicing operation, noted as[lb : rb], are available in SpecC (see lines 11 and 13 in the
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example). Both operations can be applied to bit vectors as well as to any other integral

type (which will then be implicitly converted to a bit vector of suitable length).

(k) The binary operator @, applied to two bit vectorsa (left argument) andb (right

argument), results in the concatenation ofa andb. The result type is a bit vector with

bounds[length(a)+ length(b)�1 : 0].

(l) The unary postfix operator[lb : rb], applied to a bit vectora, results in a bit slice ofa

where the left-most bit is specified by indexlb and the right-most bit is specified by

indexrb. lb andrb must be constant expressions which can be evaluated to constants

at compile time. The result type is a bit vector with bounds[abs(lb� rb)+1 : 0].

(m) The unary bit access operator[b] (similar to the array access operator) is available as

a short-hand for accessing a single bit[b : b] of a bit vector. The result type of this

operation isunsigned bit[0 : 0].

Example:

1 typedef bit [3:0] nibble type;
2 nibble type a;
3 unsigned bit [15:0] c;
4

5 void f(nibble type b, bit [16:1] d)
6 f
7 a = 1101B; // bitvector assignment
8 c = 1110001111100011ub;
9 c[7:4] = a; // bitslice assignment

10

11 b = c[2:5]; // bitvector slicing
12 c[0] = c[16]; // single bit access
13 d = a @ b @ c[0:15]; // bitvector concatenation
14 b += 42 + a � 12; // arithmetic operations
15 d = ˜(b j 10101010B); // logic operations
16 g

Notes:

i. A bit vector can be thought of as a parameterized type whose bounds are defined with

the name of the type.
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ii. Bit vector bounds and bounds of bit vector slices are required to be constants at

compile time. As a result, the length of any bitvector expression is always known at

compile time. This enables an efficient implementation of bit vectors.

iii. Note that the index of the bit access operator isnot required to be a constant. A single

bit access always yields the bounds[0 : 0], so there is no need for a constant index.

iv. Since bit vectors are fully integrated into the integral data types, there is typically no

need for explicit type casting in any operations involving bitvectors. Thus, bit vectors

may be used just as integers.

v. Note that, depending on the given bounds, bit slicing can reverse the order of the bits

in the result.

vi. Special port mapping rules apply to ports of bitvector type, see Section 2.3.5.
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2.2.4 Long double type

Purpose: Representation of high-precision floating point values

Synopsis:

digit [0 �9]
integer fdigit g+
exponent [eE][+ �]? finteger g
fraction finteger g
float1 finteger g"." ffraction g?( fexponent g)?
float2 "." ffraction g( fexponent g)?
float3 finteger gfexponent g
floating ffloat1 gjf float2 gjf float3 g
float f ffloating g[fF]
float l ffloating g[lL]

basic type name =
...
j long
j double
...

basic type specifier =
basic type name
j basic type specifier basic type name
...

constant =
...
j floating
...

Semantics:

(a) A floating point literal can be attached the suffixl, specifying it as typelong double.

The suffix is case-insensitive.

(b) Thelong doubledata type is a floating point type with a high-precision representa-

tion. Its precision is equal to or higher than the precision of thedoubledata type.

(c) The usual promotion and conversion rules apply.
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Example:

1 float Float; // 32 bit
2 double Double; // 64 bit
3 long double LongDouble; // 96 bit

Notes:

i. The example shows the standard floating point types of the SpecC language and their

typical storage sizes.

ii. The typelong double in SpecC is equivalent to the typelong double in C++.
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2.2.5 Event type

Purpose: Basic mechanism for synchronization and exception handling

Synopsis:

basic type name =
...
j event

wait statement =
wait paren event list ’;’
j wait paren and event list ’;’

notify statement =
notify paren event list ’;’
j notifyone paren event list ’;’

exception =
trap paren event list compound statement
j interrupt paren event list compound statement

paren event list =
event list
j ’(’ event list ’)’

event list =
event identifier
j event list ’,’ event identifier
j event list ’ jj’ event identifier

paren and event list =
and event list
j ’(’ and event list ’)’

and event list =
event identifier ’&&’ event identifier
j and event list ’&&’ event identifier

clock specifier =
event list
j ...

sensitivity list opt =
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<nothing >

j event list

Semantics:

(a) Theevent type is a special type that enables SpecC to support exception handling

and synchronization of concurrently executing behaviors.

(b) The event type must not be combined with any other type, type modifier or type

qualifier. It must not be used as a member of any composite or aggregate type.

(c) An event doesnot have a value. Therefore, an event must not be used in any expres-

sion.

(d) Events can only be used with thewait, notify andnotifyone statements (see the ex-

ample and Section 2.4.6), with thetry -trap -interrupt statement (see Section 2.4.7),

with the buffered type (see Section 2.2.7), or with thefsmd statement (see Sec-

tion 2.4.5).

Example:

1 int d;
2 event e;
3

4 void send( int x)
5 f
6 d = x;
7 notify e;
8 g
9

10 int receive( void )
11 f
12 wait e;
13 return (d);
14 g

Notes:
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i. The example shows a very primitive communication scheme synchronized by the use

of an evente.

ii. Since aneventdoes not have any value, it cannot transport any message. If a message

needs to be sent together with anevent, asignal (see Section 2.2.6) orchannel (see

Section 2.3.2) is probably the better choice for modeling the communication.
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2.2.6 Signal type

Purpose: Representation of busses and wires

Synopsis:

default declaring list =
...
j signal class declaration qualifier list identifier declarator

initializer opt
j signal class type qualifier list identifier declarator

initializer opt

declaring list =
...
j signal class declaration specifier declarator initializer opt
j signal class type specifier declarator initializer opt

port declaration =
port direction signal class opt parameter declaration
j ...

signal class opt =
<nothing >

j signal class

signal class =
signal
j ...

event identifier =
identifier
j edge selector identifier
j identifier edge selector

edge selector =
rising
j falling

Semantics:

(a) Thesignal type class defines an implicit composite type for the representation of

wires or busses between concurrent behaviors.
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(b) Thesignal type class can be specified for ordinary or composite types. It must not be

specified for anevent type or abuffered type class.

(c) Thesignal type class must not be used as a member of any composite or aggregate

type.

(d) A variable ofsignal type is implicitly composed of an event, a current and a new

value.

(e) A signal can be used wherever an event is expected. In this case, the event of the

signal is accessed implicitly.

(f) An event carried by a signal can be filtered by use of either therising or falling

operator. Arising or falling operator must not be applied to a pure event.

(g) The rising operator filters out all events that do not represent a rising edge of the

signal. A rising edge of the signal is defined as the signal value changing from a zero

(current) value to a non-zero (new) value.

(h) The falling operator filters out all events that do not represent a falling edge of the

signal. A falling edge of the signal is defined as the signal value changing from a

non-zero (current) value to a zero (new) value.

(i) The rising or falling operator must only be used with read accesses to the event of a

signal. These operators must not be used with thenotify or notifyone statements.

(j) A signal can be used in an expression. For every read access, implicitly the current

value of the signal is read. For every write access, implicitly the new value of the

signal is written.

(k) The event of a signal is implicitly notified with every write access to the signal.

(l) At the time the event of a signal is delivered, the current value of the signal is updated

with the new value.

Example:
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1 behavior B1( in signal bit [16] a,
2 in signal bit [16] b,
3 out signal bit [16] c)
4 f
5 void main( void )
6 f
7 while ( true )
8 f
9 wait a, b;

10 c = a + b;
11 g
12 g
13 g;
14

15 behavior B2( in signal bit [1] CLK,
16 in signal bit [16] a,
17 in signal bit [16] b,
18 out signal bit [16] c)
19 f
20 void main( void )
21 f
22 while ( true )
23 f
24 wait CLK rising ;
25 c = a + b;
26 g
27 g
28 g;

Notes:

i. A variable of type classsignalcan be viewed as a composite variable which contains

an event, a current value and a new value. Whenever the signal is used in place of an

event, such as with thewait or notify statements, the event of the signal is accessed.

On the other hand, if the signal is accessed in any expression, the current value is

used for read access, and the new value is used for write access.

ii. Any assignment to a signal will write to the new value and also notify the event of

the signal. Then, the new value will be copied to the current value at the time the

notified event is delivered. Thus, the signal will be updated (with a slight delay) and
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any behaviors waiting for the update of the signal will be notified about the arrival of

a new value.

iii. A signal can also be viewed as abuffered variable with a built-in clock event (and

no reset condition).

iv. Since a signal can be used whenever an event is expected, a signal can also be used

with thewait andnotify statements (see the example and Section 2.4.6), or with the

try -trap -interrupt statement (see Section 2.4.7). In these cases, therising or falling

operators can be used conveniently to react only to the rising or falling edges of the

signal.

v. The example shows two behaviorsB1 and B2 which add the values given at their

input portsa andb and write the result to their output portc. B1 is modeled as a

combinatorial component. It reacts immediately to any change of the input values.

B2, on the other hand, is modeled as a sequential component. It recomputes its output

only at the rising edge of theCLK input port.
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2.2.7 Buffered type

Purpose: Representation of clocked storage components

Synopsis:

default declaring list =
...
j signal class declaration qualifier list identifier declarator

initializer opt
j signal class type qualifier list identifier declarator

initializer opt

declaring list =
...
j signal class declaration specifier declarator initializer opt
j signal class type specifier declarator initializer opt

port declaration =
port direction signal class opt parameter declaration
j ...

signal class opt =
<nothing >

j signal class

signal class =
...
j buffered
j buffered ’[’ clock specifier ’]’
j buffered ’[’ clock specifier ’;’ reset signal opt ’]’

clock specifier =
event list
j constant
j ’(’ time ’)’

event list =
event identifier
j event list ’,’ event identifier
j event list ’ jj’ event identifier

event identifier =
identifier
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j edge selector identifier
j identifier edge selector

edge selector =
rising
j falling

time =
constant expression

reset signal opt =
<nothing >

j identifier
j ’!’ identifier

Semantics:

(a) Thebuffered type class defines an implicit composite type for the representation of

clocked storage components such as registers, register files, or memories.

(b) Thebuffered type class can be specified for ordinary or composite types. It must not

be specified for aneventtype or asignal type class.

(c) Thebuffered type class must not be used as a member of any composite or aggregate

type.

(d) A variable ofbuffered type is implicitly composed of a current and a new value.

(e) A buffered variable can be used in an expression. For every read access, implicitly

the current value of the buffered variable is read. For every write access, implicitly

the new value of the buffered variable is written.

(f) The clock specifier of a buffered variable determines the internal or external clock

that updates the variable. An external clock is specified by an explicit event list. An

internal clock is specified by a time period given as a constant or constant expression.

The internal clock is an implicit periodic task that notifies update events in a periodic

fashion, where the periodic delay is given by the specified time period.

(g) At the time a clock event (internal or external) is received at the buffered variable, its

current value is updated with the new value, unless a reset signal is asserted.
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(h) If specified, the reset signal of the buffered variable defines an asynchronous reset

of the variable. At any time it is asserted, the asynchronous reset signal resets the

buffered variable to its initial value. The initial value is determined by the specified

initializer for the variable. If no initializer is specified, the initial value defaults to

zero.

(i) The asynchronous reset signal must be specified as a variable ofsignal type class.

Optionally, the reset signal may be negated, which is specified by the !-operator.

(j) An asynchronous reset is asserted whenever the value of the specified reset signal be-

comes non-zero. For a negated reset signal, an asynchronous reset is asserted when-

ever the value of the specified reset signal becomes zero.

(k) As long as an asynchronous reset signal is asserted for a buffered variable, the vari-

able will contain its initial value. No value update will take place.

Example:

1 signal unsigned bit [1] CLK = 0,
2 RST = 1;
3 buffered [CLK rising ; !RST] bit [16] Reg1 = 10,
4 Reg2 = 20;
5

6 void Swap( void )
7 f
8 Reg1 = Reg2;
9 Reg2 = Reg1;

10 wait CLK rising ;
11 g
12

13 void Reset( void )
14 f
15 RST = 0;
16 waitfor 10;
17 RST = 1;
18 g

Notes:
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i. A variable of type classbuffered can be viewed as a composite variable which con-

tains a current value and a new value. Whenever the buffered variable is accessed in

any expression, the current value is used for read access, and the new value is used

for write access.

ii. Any assignment to a buffered variable will write to the new value. The new value will

be copied to the current value at the time a clock event is notified. In other words, the

buffered variable will be updated with a delay of one clock cycle.

iii. An asynchronous reset signal can be specified to reset the buffered variable to its

initial value. As soon and as long as the specified reset signal is asserted, the buffered

variable will have its initial value.

iv. The example shows two buffered variablesReg1andReg2which represent registers

driven by the rising edge of a clock. Also, the registers have an asynchronous reset

condition which is active low.

v. The functionSwapin the example demonstrates how the contents of the registers can

be exchanged at a clock event.

vi. The functionResetasserts the reset signal for the registers for a period of 10 time

units, resetting the registers to their initial values of 10 and 20.



2.2. SPECC TYPES 31

2.2.8 Time type

Purpose: Representation of time

Synopsis:

waitfor statement =
waitfor time ’;’

constraint =
range ’(’ any name ’;’ any name ’;’ time opt ’;’ time opt ’)’ ’;’

clock specifier =
...
j constant
j ’(’ time ’)’

time opt =
<nothing >

j time

time =
constant expression

Semantics:

(a) The time type represents the type of time. Time is not an explicit type. It is an

implementation dependent integral type (for example,unsigned long long int).

(b) The time type is used with thewaitfor statement (see Section 2.4.8), with therange

statement in thedo-timing statement (see Section 2.4.9), and as a possible clock spec-

ifier in thebuffered type (see Section 2.2.7) andfsmd statement (see Section 2.4.5).

Example:

1 event SystemClock;
2 const long long CycleTime = 10; // 10ns = 100MHz
3

4 void ClockDriver( void )
5 f
6 while ( true )
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7 f notify SystemClock;
8 waitfor (CycleTime);
9 g

10 g

Notes:

i. Note that the physical unit of the time type is not defined by the SpecC language.

Instead, users should follow a general convention to use the same time unit (such as

nano seconds) in all designs and tools in order to simplify integration and interoper-

ability.
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2.3 SpecC classes

2.3.1 Behavior class

Purpose: Representation of active objects; container for computation

Synopsis:

behavior declaration =
behavior specifier port list opt implements interface opt ’;’

behavior definition =
behavior specifier port list opt implements interface opt

’ f’ internal definition list opt ’ g’ ’;’

behavior specifier =
behavior identifier

implements interface opt =
<nothing >

j implements interface list

interface list =
interface name
j interface list ’,’ interface name

primary expression =
...
j this

Semantics:

(a) A behavior is a class for encapsulation of computation.

(b) A behavior declaration is a class declaration that consists of an optional set of ports

and an optional set of implemented interfaces.

(c) A behavior is compatible with another behavior if and only if the number and the

types of the behavior ports and the lists of implemented interfaces match.
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(d) A behavior definition contains a behavior body which consists of an optional set

of local variable declarations and/or definitions, an optional set of behavior and/or

channel instantiations, an optional set of method declarations and/or definitions, and

a mandatorymainmethod declaration or definition.

(e) Through its ports, a behavior can communicate with other behaviors or channels.

This is described in detail in Section 2.3.4.

(f) If specified, theimplementskeyword declares the list of interfaces (see Section 2.3.3)

that are implemented by the behavior. All the methods of all the listed interfaces

must be implemented as methods in the behavior body. Only these methods, and

the mandatorymain method, can be called from outside the behavior (via suitable

interfaces). All other methods are private to the behavior.

(g) A behavior definition (a behavior with a body) requires that all listed implemented

interfaces are previously fully defined (not only declared).

(h) A behavior that implements an interface can refer back to itself by use of thethis

keyword. this can only be used within the scope of the behavior body. The type of

this is the behavior type.this can be passed as an argument to a function or method.

In this case, the type of the argument whichthis is assigned to, must be an interface

type implemented by the behavior.

(i) A behavior can instantiate other behaviors or channels. This is described in detail in

Section 2.3.5.

(j) The main method of a behavior is called whenever an instantiated behavior is exe-

cuted. The completion of themainmethod determines the completion of the execu-

tion of the behavior.

(k) As a short cut, themain method of a behavior can be called by a statement that

consists of only a behavior instance name. For a behavior instanceb, the statement

b; is equivalent to the statementb.main();.

(l) A SpecC program starts with the execution of themainmethod of theMain behavior.
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Example:

1 behavior B ( in int p1, out int p2)
2 f
3 int a, b;
4

5 int f( int x)
6 f
7 return (x � x);
8 g
9

10 void main( void )
11 f
12 a = p1; // read data from input port
13 b = f(a); // compute
14 p2 = b; // output result to output port
15 g
16 g;

Notes:

i. The example shows a simple leaf behaviorB. For typical composite behaviors, please

refer to Sections 2.4.1 to 2.4.7.

ii. Local variables and methods, such asa, b, and f in the example, can be used to

describe the functionality of a behavior. The actual functionality of the behavior is

determined by the execution of itsmainmethod.

iii. Declarations of behaviors are sufficient to determine compatibility of the behaviors.

The behavior body is not needed for this. This is important for reuse of IP and ”plug-

and-play”.

iv. In contrast to members ofstruct or union definitions, the members of a behavior

cannot be accessed from the outside, unless through the implemented interfaces. Note

also that only the behavior methods can be made accessable through interfaces, not

the variables.

v. A behavior is called a composite behavior if it contains instantiations of other behav-

iors. Otherwise, it is called a leaf behavior.
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vi. Please note that, althoughmainandMain are recognized by the SpecC compiler as

names denoting the start of the program and start of a behavior, these names are not

keywords of the SpecC language.

vii. The behaviorMain usually is a composite behavior containing the test bench of the

design as well as the instantiation of the actual design under test.

viii. Implemented interfaces are rarely used with behaviors. However, they are useful for

communication schemes that involve call-backs. For example, in a call-back commu-

nication, a connected channel implementing a communication protocol can call-back

methods provided by the behavior that is calling the channel. In order to enable the

channel to call-back the behavior, the channel needs to have a ”pointer” to the be-

havior. This pointer is passed to the communication method in the channel as an

argument of interface type. This argument is supplied by the behavior implementing

the call-back by use of thethis keyword.

ix. Note that the type ofthis is a class in SpecC, not a pointer to a class as in C++.
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2.3.2 Channel class

Purpose: Representation of passive objects; container for communication

Synopsis:

channel declaration =
channel specifier port list opt implements interface opt ’;’

channel definition =
channel specifier port list opt implements interface opt

’ f’ internal definition list opt ’ g’ ’;’

channel specifier =
channel identifier

implements interface opt =
<nothing >

j implements interface list

interface list =
interface name
j interface list ’,’ interface name

Semantics:

(a) A channel is a class for encapsulation of communication.

(b) A channel declaration is a class declaration that consists of an optional set of ports

and an optional set of implemented interfaces.

(c) A channel is compatible with another channel if and only if the number and the types

of the channel ports and the lists of implemented interfaces match.

(d) A channel definition contains a channel body which consists of an optional set of local

variable declarations and/or definitions, an optional set of behavior and/or channel

instantiations, and an optional set of method declarations and/or definitions.

(e) Through its ports, a channel can communicate with other behaviors or channels. This

is described in detail in Section 2.3.4.
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(f) If specified, theimplementskeyword declares the list of interfaces (see Section 2.3.3)

that are implemented by the channel. All the methods of all the listed interfaces must

be implemented as methods in the channel body. Only these methods can be called

from outside the channel (via suitable interfaces). All other methods are private to

the channel.

(g) A channel definition (a channel with a body) requires that all listed implemented

interfaces are previously fully defined (not only declared).

(h) A channel that implements an interface can refer back to itself by use of thethis

keyword. this can only be used within the scope of the channel body. The type of

this is the channel type.this can be passed as an argument to a function or method.

In this case, the type of the argument whichthis is assigned to, must be an interface

type implemented by the channel.

(i) A channel can instantiate other behaviors or channels. This is described in detail in

Section 2.3.5.

(j) For each instance of a channel, the channel methods are mutually exclusive in their

execution. Implicitly, each channel instance has a mutex associated with it that the

calling thread acquires before and releases after the execution of any method of the

channel instance. Further, all mutexes a thread has acquired from any channel in-

stances are implicitly released before and re-acquired after the execution of anywait

andwaitfor statements.

Example:

1 interface I
2 f
3 void send( int );
4 int receive( void );
5 g;
6

7 channel C implements I
8 f
9 int d;

10
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11 void send( int x)
12 f
13 d = x;
14 g
15

16 int receive( void )
17 f
18 return (d);
19 g
20 g;

Notes:

i. The example shows the definition of an interfaceI that specifiessendand receive

methods. A channelC implements the interfaceI by providing a (very simple) imple-

mentation of thesendandreceivemethods by use of an encapsulated integer variable

d.

ii. In terms of communication, the methods of a channel specify the communication

protocol, whereas the variables of a channel resemble the communication media.

iii. A channel is called a hierarchical channel if it contains instantiations of other chan-

nels. Otherwise, it is called a leaf channel. A channel is called a wrapper if it instan-

tiates one or more behaviors.

iv. Declarations of channels are sufficient to determine compatibility of the channels.

The channel body is not needed. This is important for reuse of IP and ”plug-and-

play”.

v. In contrast to members ofstruct or union definitions, the members of a channel

cannot be accessed from the outside, unless through the implemented interfaces. Note

also that only the channel methods can be made accessable through interfaces, not the

variables.

vi. For hierarchical communication schemes that involve call-backs, a lower level chan-

nel can call-back methods provided by a higher-level channel that called the lower-

level channel. Here, the higher-level channel passes a handle to himself as an ar-

gument to the lower-level channel by use of thethis keyword. Then, the lower-level
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channel can in turn call-back methods implemented by the higher-level channel. Note

that this can only be passed as an argument if the argument is of an interface type

that is implemented bythis channel.

vii. Note that the type ofthis is a class in SpecC, not a pointer to a class as in C++.

viii. Note that for safe communication among concurrent threads, the access to the com-

munication variables encapsulated in channels must typically be protected such that

no two methods access the same variables at the same time. This protection is guar-

anteed by the mutex that is implicitly associated with each channel instance. In other

words, the required protection of the shared resources in channels is automatically

built-in with each channel instance.

ix. Whenever a thread is about to execute a method provided by a channel instance, the

thread has to acquire the mutex of the channel instance first, in order to ensure that no

other thread is executing any code from the same channel instance. After acquiring

the mutex, the thread can execute the channel method. When done, the thread must

release the mutex again in order to allow other threads to use the same channel.

x. Furthermore, releasing the channel mutex before await or waitfor statement is im-

portant in order to ensure a deadlock-free execution. Otherwise, a thread may be

waiting for notification by another thread which is blocked because it cannot acquire

the mutex owned by the waiting thread.

xi. Note that acquiring and releasing of channel mutexes is implicit. That is, it is handled

automatically by the simulator or refinement tools. There is no need for the user to

worry about this.

xii. Note that the implicit mutex in a channel instance is not necessarily required to be

present in an implementation. For example, in a non-preemptive simulation algorithm

that always executes only one thread at a time, no conflict in running two threads in

the methods of a channel instance is possible. Thus, no explicit mutex is required in

this case.

xiii. Note that the mutual exclusion in executing methods of channel instances does not

imply that the methods are executed in non-preemptive (atomic) manner. That is, a
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thread executing a channel method is not guaranteed to be not interrupted by other

threads. However, it will not be interrupted by any thread that is executing any

method of the same channel instance, unless, of course, it is waiting for an event

(at await statement) or waiting for simulation time increase (at awaitfor statement).
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2.3.3 Interface class

Purpose: Representation of interfaces between behaviors and channels; container for in-

terface method declarations

Synopsis:

interface declaration =
interface specifier ’;’

interface definition =
interface specifier ’ f’ internal declaration list opt ’ g’ ’;’

interface specifier =
interface identifier

internal declaration list opt =
<nothing >

j internal declaration
j internal declaration list internal declaration

internal declaration =
declaration
j note definition

Semantics:

(a) An interface is a class that contains declarations of methods which are implemented

in channels or behaviors. Via an interface, a class can call methods provided by

another class thatimplementsthe interface.

(b) An interface declaration consists of the keywordinterface followed by its name.

(c) An interface definition contains an interface body which consists of an optional set

of method declarations. No variable declarations or definitions, no behavior or chan-

nel instantiations, and no method definitions must be contained in the scope of an

interface body.

(d) An interface is a type that may be used for behavior or channel ports, or for function

or method arguments. An interface cannot be instantiated.
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(e) A port of interface type must be mapped onto a behavior or channel instance (see

Section 2.3.5) thatimplementsthe interface.

(f) An argument of interface type must be initialized bythis within the scope of a behav-

ior (see Section 2.3.1) or channel (see Section 2.3.2) thatimplementsthe interface.

(g) A port or argument of interface type can be used to call a method declared by the

interface. The actual method definition called by such an interface call is determined

by the mapping of the interface port or argument.

Example:

1 interface I
2 f
3 void send( int x);
4 int receive( void );
5 g;
6

7 channel C implements I;
8

9 behavior B1(I i)
10 f
11 void main( void )
12 f
13 i.send(42);
14 g
15 g;
16

17 behavior B2
18 f
19 C c;
20 B1 b(c);
21

22 void main( void )
23 f
24 b.main();
25 g
26 g;

Notes:
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i. Interfaces provide a flexible way of communication between behaviors and channels.

By use of interfaces, both behaviors and channels become easily interchangeable with

compatible components (”plug-and-play”).

ii. Typically, there are many channels (or behaviors) which implement an interface. Be-

cause each channel (or behavior) is required to provide an implementation for all

methods declared in the interface, any one of these channels (or behaviors) may be

used in a mapping of a port of the interface type. Thus, the implementation of the

interface methods (typically a communication protocol) can be easily exchanged, just

by mapping the interface port to a compatible channel (or behavior) instance.

iii. The example shows aninterface I which declares asendand areceivemethod as

a simple communication protocol. The channelC implements the interfaceI (even

though the actual implementation in the channel body is not shown), so it may be

used as a mapping for the interface.

iv. BehaviorB1 in the example has a porti of the interface typeI. Via this port,B1 can

call the methods provided byI, as is shown in line 13 where thesendmethod is called.

v. BehaviorB2 shows an instancec of the channelC in line 19. Then in line 20, a

behaviorb of typeB1 is instantiated and its port is mapped onto the channelc. Note

that the port is of interface typeI, which is implemented by the channelC.
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2.3.4 Ports

Purpose: Representation of communication ports

Synopsis:

port list opt =
<nothing >

j ’(’ ’)’
j ’(’ port list ’)’

port list =
port declaration
j port list ’,’ port declaration

port declaration =
port direction signal class opt parameter declaration
j interface parameter

port direction =
<nothing >

j in
j out
j inout

interface parameter =
interface name
j interface name identifier

Semantics:

(a) Behavior and channel classes have a list of ports through which they communicate.

These ports are defined with the declaration of the behavior or channel they are at-

tached to (similar as function parameters are defined with a function declaration).

(b) A port can be one of two types: standard or interface type.

(c) A standard type port is of any SpecC type. In addition, a port direction may be

specified as a port type modifier which restricts the way the port can be accessed and

connected.
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(d) The port direction can bein, out, or inout. If unspecified, the port direction defaults

to inout.

(e) An in port allows only read access from within the class scope, and only write access

from the outside.

(f) An out port allows only write access from within the class scope, and only read

access from the outside.

(g) An inout port may be accessed bidirectionally.

(h) For a port of event or signal type, read access is performed by await, trap , or inter-

rupt statement on the event, or when used as clock specifier, sensitivity list or reset

condition with thefsmd statement orbuffered data type. Write access is performed

by anotify or notifyone statement on the port.

(i) An interface type port allows to call the methods provided by the interface class. An

interface type port must not have any port direction.

Example:

1 behavior B( in int p1, out int p2, in event clk);
2

3 interface I;
4

5 channel C( inout bool f) implements I;

Notes:

i. The example shows a behaviorB with an input portp1, an output portp2, and a clock

input portclk.

ii. The channelC has a bidirectional portf.
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2.3.5 Class instantiation and port mapping

Purpose: Structural hierarchy and connectivity of behaviors and channels

Synopsis:

instance declaring list =
behavior or channel instance declarator
j instance declaring list ’,’ instance declarator

behavior or channel =
behavior name
j channel name

instance declarator =
identifier port mapping list opt

port mapping list opt =
<nothing >

j ’(’ port mapping list ’)’

port mapping list =
port mapping opt
j port mapping list ’,’ port mapping opt

port mapping opt =
<nothing >

j port mapping

port mapping =
bit slice
j port mapping ’@’ bit slice

bit slice =
constant
j ’(’ constant expression ’)’
j identifier
j identifier ’[’ constant expression ’:’ constant expression ’]’
j identifier ’[’ constant expression ’]’

Semantics:
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(a) Structural hierarchy is described by child behaviors and/or child channels instantiated

as components inside compound behaviors and channels.

(b) Connectivity is described by the mapping of the ports of child behaviors and/or child

channels.

(c) At class instantiation, a port mapping list defines the mapping for each port of the

class. The number of ports must match the number of mappings in the port mapping

list. If there are no ports, then no port mapping list must be specified.

(d) A port mapping maps a port of the instantiated class onto a constant, variable, port or

instance of suitable type, or is left open.

(e) A constant port mapping is only allowed for ports with port directionin. Unless a

constant literal is specified directly, a constant expression in parenthesis is evaluated

to a constant at compile time. The type of the constant must be convertable to the

port type.

(f) An open port mapping is only allowed for ports with port directionout.

(g) For a port mapping to a variable, the variable type must match the type of the port.

The port direction is not considered part of the port type in this matching.

(h) For a port mapping to a port of the parent class, the types (without port direction) of

both ports must match. For the port direction, an instance port with directionin can

only be mapped onto a class port with directionin or inout. An instance port with

directionout can only be mapped onto a class port with directionout or inout. An

instance port with directioninout can only be mapped onto a class port with direction

inout.

(i) For a port mapping to an instance, the port must be of interface type and the class of

the instance must implement the interface.

(j) A port of bit vector type can be mapped onto a list of concatenated bit slices. In

this case, the mapping rules listed above apply accordingly for each single bit of the

bitvector.
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(k) Concatenation and bit slicing must not be used for port mappings of non-bitvector

type.

Example:

1 interface I f g;
2 channel C ( inout bool f) implements I;
3 behavior B1 ( in int p1, out bit [7:0] p2, in event clk);
4 behavior B2 (I i, out event clk);
5 behavior Adder8( in bit [8] a, in bit [8] b, in bit [1] carry in,
6 out bit [8] sum, out bit [1] carry out);
7

8 behavior B ( bit [7:0] bus1, bit [15:0] bus2)
9 f

10 bool b;
11 int i;
12 event e;
13 bit [8] a;
14

15 C c (b);
16 B1 b1(i, bus1, e);
17 B2 b2(c, e);
18 Adder8 a8(a, // mapping onto variable
19 bus1, // mapping onto port
20 0b, // mapping onto constant
21 bus2[7:0], // mapping onto bit slice
22 ); // open mapping
23

24 void main( void )
25 f
26 b1.main();
27 b2.main();
28 a8.main();
29 g
30 g;

Notes:

i. The example shows four class instantiations. In line 15, an instancec of channelC is

instantiated. Its only port of typebool is mapped onto the Boolean variableb.
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ii. In line 16, a behaviorb1 of typeB1 is instantiated. Its input portp1 is mapped onto

the variablei, whereas the output portp2 is mapped onto the class portbus1. Finally,

the clock portclk is mapped onto the evente.

iii. In line 17, an instanceb2 is defined as aB2 type behavior. Its ports are mapped onto

the channelc and evente.

iv. In line 18, an addera8 is instantiated. The left input is mapped onto variablea,

whereas the right input is mapped onto portbus1(line 19). In line 20, the carry input

is connected to zero (hardwired to GND). The output is mapped onto the lower bits

of bus2in line 21. Finally in line 22, the carry output is left open (i.e. it is unused).

v. Note that the rules for mapping instance ports onto class ports ensure that a class port

can only be accessed in its specified direction.
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2.4 SpecC statements

2.4.1 Sequential execution

Purpose: Representation of sequential control flow

Synopsis:

compound statement =
’ f’ ’ g’
j ’ f’ declaration list ’ g’
j ’ f’ statement list ’ g’
j ’ f’ declaration list statement list ’ g’

statement list =
statement
j statement list statement
j statement list note definition

statement =
labeled statement
j compound statement
j expression statement
j selection statement
j iteration statement
j jump statement
j spec c statement

spec c statement =
concurrent statement
j fsm statement
j fsmd statement
j exception statement
j timing statement
j wait statement
j waitfor statement
j notify statement

Semantics:

(a) Sequential execution and control flow is represented by the same statements as in
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ANSI-C. In particular, the following statements can be used:if -then-else, switch-

case-default, for , while, do-while, goto, break, continue, return .

(b) Sequential execution can be organized hierarchically by use of function calls, and by

calls to non-private methods of behavior and channel instances.

Example:

1 behavior B;
2

3 behavior B seq( void )
4 f
5 B b1, b2, b3;
6

7 void main( void )
8 f
9 b1.main();

10 b2.main();
11 b3.main();
12 g
13 g;

Notes:

i. The example shows the trivial case of sequential, unconditional execution of three

child behaviors,b1, b2 andb3.

ii. Note that a short cut notation for calling behavior instances exists (see Section 2.3.1).

With the short notation, the three statements in lines 9 through 11 of the example can

be reduced tob1; b2; b3.
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2.4.2 Concurrent execution

Purpose: Representation of concurrency

Synopsis:

concurrent statement =
par compound statement
...

compound statement =
’ f’ ’ g’
j ’ f’ declaration list ’ g’
j ’ f’ statement list ’ g’
j ’ f’ declaration list statement list ’ g’

statement list =
statement
j statement list statement
...

Semantics:

(a) Thepar statement specifies concurrent execution.

(b) Every statement in the compound statement block following thepar keyword forms

a new thread of control that is executed concurrently.

(c) The execution of the concurrent threads is defined by the time interval formalism

described in Section 3.3.

(d) An abstract simulation algorithm for the semantics of concurrency is specified in

Section 3.6. This algorithm represents one valid implementation of concurrency.

Other valid implementations may exist.

(e) The execution of thepar statement completes when each thread of control has fin-

ished its execution.

(f) The statements in the compound statement block after thepar keyword are restricted

to calls tomainmethods of behaviors. No other statement type is allowed.
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Example:

1 behavior B;
2

3 behavior B par( void )
4 f
5 B b1, b2, b3;
6

7 void main( void )
8 f
9 par f b1.main();

10 b2.main();
11 b3.main();
12 g
13 g
14 g;

Notes:

i. Concurrent threads may be executed truly in parallel, or portion-wise sequentially,

where the order and size of the portions is undefined. No assumptions about the

order of execution, the use of preemptive or non-preemptive execution, or any atomic

execution must be made. These are undefined for the SpecC language.

ii. A sequential simulator may choose any order of execution for the concurrent threads,

including interleaved (preemptive) execution.

iii. For simulation, typically a dynamic scheduler decides the order and interleaving of

the execution of the concurrent threads. That is, the scheduler always executes only

one thread at a time and decides when to suspend and when to resume a thread de-

pending on simulation time advance, synchronization points, and/or time outs.

iv. Note that, because the execution of concurrent theads is essentially undefined, explicit

synchronization (see Section 2.4.6) and explicit mutual exclusion (see Section 2.3.2)

are necessary in order to make concurrent threads cooperate safely.

v. The example shows the concurrent execution of three child behaviorsb1, b2 andb3.

The compound behaviorB par finishes whenb1, b2 and b3 have completed their

execution.
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vi. Note that a short cut notation for calling behavior instances exists (see Section 2.3.1).

With the short notation, thepar statement in the example can be reduced toparfb1;

b2; b3g.
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2.4.3 Pipelined execution

Purpose: Explicit representation of pipelining

Synopsis:

storage class =
...
j piped
j storage class piped

concurrent statement =
...
j pipe compound statement
j pipe ’(’ comma expression opt ’;’ comma expression opt

’;’ comma expression opt ’)’ compound statement

compound statement =
’ f’ ’ g’
j ’ f’ declaration list ’ g’
j ’ f’ statement list ’ g’
j ’ f’ declaration list statement list ’ g’

statement list =
statement
j statement list statement
...

Semantics:

(a) Thepipe statement specifies execution in pipelined manner, a special form of con-

current execution.

(b) Every statement in the compound statement block following thepipe keyword rep-

resents a pipeline stage. Each pipeline stage forms a new thread of control that is

executed concurrently.

(c) The execution of the concurrent threads is defined by the time interval formalism

described in Section 3.3.



2.4. SPECC STATEMENTS 57

(d) An abstract simulation algorithm for the semantics of concurrency is specified in

Section 3.6. This algorithm represents one valid implementation of concurrency.

Other valid implementations may exist.

(e) The optional set of arguments to thepipe statement specifies the number of pipeline

iterations. The first argument expression serves as an initializer and is evaluated

once at the beginning of the pipeline execution. The second expression represents

the iteration condition which is evaluated at the beginning of each pipeline iteration.

While the iteration condition evaluates totrue, the pipeline executes the pipeline

stages, otherwise the pipeline is flushed and thepipe statement terminates. The third

expression is evaluated once after each iteration.

(f) If no arguments are specified for thepipe statement, the first and third arguments

default to empty expressions, and the iteration condition defaults totrue.

(g) Thepipe statement executes theN pipeline stages in three phases. In the first phase,

the pipeline is filled and, in then-th iteration, only the firstn pipeline stages are exe-

cuted concurrently, wheren�N. Then, in the second phase, allN pipeline stages are

executed concurrently in each iteration. As soon as the iteration condition evaluates

to falseduring the first or second phase, the third phase flushes the pipeline by exe-

cutingn�1 more iterations. In them-th last iteration, only them last pipeline stages

are executed concurrently. After the pipeline has been flushed, thepipe statement

terminates.

(h) Unless aborted through an exception (see Section 2.4.7), thepipe statement executes

each pipeline stage for the same number of times.

(i) The statements in the compound statement block after thepipe keyword are restricted

to calls tomainmethods of behaviors. No other statement type is allowed.

(j) Variables used by pipeline stages, which are declared in a non-global scope visible

from a pipe statement, can be declared of storage classpiped. A piped variable

represents a buffer between pipeline stages that operates in first-in-first-out (FIFO)

order.
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(k) Write accesses topiped variables store data in the first stage of the FIFO buffer.

Read accesses read data from the last stage of the FIFO buffer. If a port of a behavior

instance that represents a pipeline stage is mapped onto apiped variable, the port

must be of directionin or out.

(l) The piped storage class can be specified multiple times with a variable declaration.

The numbern of piped keywords specifies the numbern+1 of stages in the FIFO

buffer.

(m) Variables withpiped storage class, that are in visible scope from apipe statement,

are synchronized with thepipe statement. After each iteration of the pipeline, the

data stored inpiped variables is shifted by one stage in the FIFO.

Example:

1 behavior B( in int p1, out int p2);
2

3 behavior B pipe( in int a, out int b)
4 f
5 int x;
6 piped int y;
7 B b1(a, x),
8 b2(x, y),
9 b3(y, b);

10

11 void main( void )
12 f int i;
13 pipe (i=0;i <10;i++)
14 f b1.main();
15 b2.main();
16 b3.main();
17 g
18 g
19 g;

Notes:

i. The arguments of thepipe statement are basically the same as the arguments of the

for statement. Also, the execution of apipe statement basically resembles the exe-

cution of afor loop, except that the loop body is organized concurrently in pipeline
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fashion. Note also that, if the arguments of thepipe statement are unspecified, the

pipe statement acts as an endless loop (it does not terminate), the same way as the

for statement without arguments.

ii. The threads in apipe statement represent pipeline stages and are executed in

pipelined fashion. Basically, each pipeline stage runs concurrently to the others, but

works on different sets of data. Here,piped variables can be used as buffers between

the pipeline stages that are automatically updated with every iteration.

iii. The example shows a pipeline behaviorB pipeconsisting of three stages represented

by the behavior instancesb1, b2 andb3. In the first iteration, onlyb1 is executed.

Whenb1finishes, the second iteration starts andb1andb2are executed concurrently.

In the third iteration, afterb1 andb2 have completed,b3 is executed in parallel with

b1 andb2. Every following iteration executes the same way as the third iteration,

until the iteration conditioni<10 becomes false. Then,b2 andb3 are executed con-

currently one more time, and finally onlyb3 is executed once.

iv. In the example,x is a standard variable connectingb1 (pipeline stage 1) withb2

(stage 2). This variable is notpiped, in other words, every access from stage 1 is

immediately visible in stage 2. On the other hand, variabley connectingb2andb3 is

piped. Data computed by behaviorb2 and stored iny is available for processing by

b3 in the next pipeline iteration whenb2 already produces new data.

v. Note that a short cut notation for calling behavior instances exists (see Section 2.3.1).

With the short notation, thepipe statement in the example can be reduced topipe(i =

0;i < 10;i ++)fb1; b2; b3g.
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2.4.4 Abstract finite state machine execution

Purpose: Explicit representation of abstract finite state machines

Synopsis:

fsm statement =
fsm ’ f’ ’ g’
j fsm ’ f’ transition list ’ g’

transition list =
transition
j transition list transition

transition =
state ’:’
j state ’:’ cond branch list
j state ’:’ ’ f’ ’ g’
j state ’:’ ’ f’ cond branch list ’ g’

state =
identifier
j identifier compound statement

cond branch list =
cond branch
j cond branch list cond branch

cond branch =
if ’(’ comma expression ’)’ goto identifier ’;’
j goto identifier ’;’
j if ’(’ comma expression ’)’ break ’;’
j break ’;’

Semantics:

(a) Finite state machine (FSM) execution is a special form of sequential execution which

allows the explicit specification of states, state transitions and hierarchy.

(b) Thefsm statement consists of a list of states and a list of state transitions from each

state. The states are represented by either local compound statements or behavior

instances.
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(c) A local state in the FSM is specified by a compound statement block placed between

the state label and the colon that separates the state from its transitions to the next

state.

(d) If a state is specified locally by a compound statement block, then no behavior must

be instantiated within the visible scope of thefsm statement where the instance name

matches the name of the state.

(e) A non-local state in the FSM is specified by a behavior that is instantiated within the

visible scope of thefsm statement where the instance name matches the name of the

state.

(f) If a state is specified non-locally by a behavior instantiated within the visible scope

of the fsm statement where the instance name matches the name of the state, then

no compound statement must be specified between the state label and the colon that

separates the state from its transitions to the next state.

(g) A state transition is a triplehcurrent state;condition;next statei. Thecurrent state

and thenext stateare specified in the form of labels and denote local states or behav-

ior instances of the same name. At the time of a transition, theconditionis evaluated

to determine whether the transition is taken, or not.

(h) Each state must be listed exactly once in the transition list as acurrent state.

(i) The transitionconditionis optional. If unspecified, theconditiondefaults totrue.

(j) The next stateis specified as a label denoting a state of thefsm, or as abreak state-

ment. Thebreak statement terminates the execution of thefsm statement.

(k) The execution of afsm statement starts with the execution of the state that is listed

first in the transition list.

(l) A non-local state in thefsm is executed by an implicit call of themain method of

the behavior instance denoted by thecurrent statelabel. The execution of the state

terminates with the completion of themainmethod.
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(m) A local state in thefsm is executed by the execution of the statements in the local

compound statement block. The execution of the state terminates with the completion

of the compound statement.

(n) After a state is executed, the transitions listed with the state determine the next state

to be executed. For this, theconditionsof the transitions are evaluated in the specified

order and the firstconditionthat evaluates totrue determines the next state, which is

then immediately executed.

(o) If none of the conditions evaluates totrue, the next state defaults to the following

state listed in thefsm. After the last state of thefsm, the next state defaults to the

termination of thefsm statement.

Example:

1 behavior B;
2

3 behavior B fsm( in int a, in int b)
4 f
5 B b1, b2, b3;
6

7 void main( void )
8 f
9 fsm f b1: f if (b < 0) break ;

10 if (b >= 0) goto b2;
11 g
12 b2: f if (a > 0) goto b1;
13 goto b3;
14 g
15 b3: f break ;
16 g
17 g
18 g
19 g;

Notes:

i. Note that both, abstract Mealy-type (sensitive to the current state and the current in-

put) and abstract Moore-type (sensitive only to the current state) finite state machines,

can be modeled with thefsm statement.
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ii. Note that hierarchical FSMs can be specified by use of localfsm statements in the

states of the parent FSM.

iii. Note that in contrast to thefsmd statement, thefsm statement represents an abstract

FSM whose states can be hierarchical. Also, thefsm statement transitions to the next

state immediately on the completion of the current state, whereas thefsmd statement

transitions to the next state on the event of a specified clock.

iv. Note that the transition section of thefsm statement does not allow arbitrary state-

ments. The SpecC grammar limits the state transitions to well-defined triples.

v. The default transitions of thefsm statement are similar to the default control flow

within aswitch statement wherecasestatements are not terminated by abreak state-

ment.

vi. The example shows a behaviorB fsm that models a finite state machine with three

statesb1, b2 andb3. All the states are defined non-locally by behavior instances.
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2.4.5 Finite state machine with datapath

Purpose: Explicit representation of a finite state machine with datapath (FSMD)

Synopsis:

fsmd statement =
fsmd ’(’ fsmd head ’)’ fsmd body

fsmd head =
clock specifier
j clock specifier ’;’ sensitivity list opt
j clock specifier ’;’ sensitivity list opt ’;’ reset signal opt

clock specifier =
event list
j constant
j ’(’ time ’)’

sensitivity list opt =
<nothing >

j event list

reset signal opt =
<nothing >

j identifier
j ’!’ identifier

event list =
event identifier
j event list ’,’ event identifier
j event list ’ jj’ event identifier

event identifier =
identifier
j edge selector identifier
j identifier edge selector

edge selector =
rising
j falling

time =
constant expression
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fsmd body =
’ f’ ’ g’
j ’ f’ declaration list ’ g’
j ’ f’ reset state ’ g’
j ’ f’ declaration list reset state ’ g’
j ’ f’ default action ’ g’
j ’ f’ declaration list default action ’ g’
j ’ f’ reset state default action ’ g’
j ’ f’ declaration list reset state default action ’ g’
j ’ f’ fsmd state list ’ g’
j ’ f’ declaration list fsmd state list ’ g’
j ’ f’ reset state fsmd state list ’ g’
j ’ f’ declaration list reset state fsmd state list ’ g’
j ’ f’ default action fsmd state list ’ g’
j ’ f’ declaration list default action fsmd state list ’ g’
j ’ f’ reset state default action fsmd state list ’ g’
j ’ f’ declaration list reset state default action fsmd state list ’ g’

reset state =
if ’(’ comma expression ’)’ action

default action =
action

fsmd state list =
fsmd state
j fsmd state list fsmd state

fsmd state =
identifier or typedef name ’:’ action

action =
’ f’ ’ g’
j ’ f’ declaration list ’ g’
j ’ f’ rtl statement list ’ g’
j ’ f’ declaration list rtl statement list ’ g’

rtl statement list =
rtl statement
j rtl statement list rtl statement
j rtl statement list note definition

rtl statement =
rtl labeled statement
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j rtl compound statement
j expression statement
j rtl selection statement
j rtl jump statement

rtl labeled statement =
case constant expression ’:’ rtl statement
j default ’:’ rtl statement

rtl compound statement =
’ f’ ’ g’
j ’ f’ declaration list ’ g’
j ’ f’ rtl statement list ’ g’
j ’ f’ declaration list rtl statement list ’ g’

rtl selection statement =
if ’(’ comma expression ’)’ rtl statement
j if ’(’ comma expression ’)’ rtl statement else rtl statement
j switch ’(’ comma expression ’)’ rtl statement

rtl jump statement =
goto identifier or typedef name ’;’
j break ’;’

Semantics:

(a) The fsmd statement explicitly represents a finite state machine with datapath

(FSMD).

(b) The fsmd statement consists of a header and a body. Thefsmd header defines the

clock, sensitivity and asynchronous reset signal of the FSMD. Thefsmd body defines

the states and state transitions of the FSMD.

(c) The clock of the FSMD is defined with the clock specifier. The clock specifier de-

termines the internal or external clock that triggers the state transitions of the FSMD.

An external clock is specified by an explicit event list. An internal clock is specified

by a time period given as a constant or constant expression. The internal clock is

an implicit periodic task that notifies clock events in a periodic fashion, where the

periodic delay is given by the specified time period.
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(d) At the time a clock event (internal or external) is received by the FSMD, a state

transition takes place and the current state is updated to the next state. Also, the

actions associated with the new current state are executed, unless a synchronous or

asynchronous reset is asserted.

(e) If specified, the sensitivity list of thefsmd statement defines additional events upon

which the actions associated with the current state are executed again, unless a syn-

chronous or asynchronous reset is asserted. No state transition takes place for events

in the sensitivity list, unless clock events occur at the same time.

(f) If specified, the reset signal of thefsmd statement defines an asynchronous reset of

the FSMD. At any time it is asserted, the asynchronous reset signal resets the current

state of the FSMD to the initial state. The initial state of the FSMD is the first regular

state listed in thefsmd body.

(g) The asynchronous reset signal must be specified as a variable ofsignal type class.

Optionally, the reset signal may be negated, which is specified by the !-operator.

(h) An asynchronous reset is asserted whenever the value of the specified reset signal be-

comes non-zero. For a negated reset signal, an asynchronous reset is asserted when-

ever the value of the specified reset signal becomes zero.

(i) As long as an asynchronous reset signal is asserted, the FSMD will stay in its initial

state. No state transition will take place.

(j) The fsmd body consists of an optional declaration list, an optional reset state, an

optional default action block, and an optional list of FSMD states.

(k) If specified, the declaration list in thefsmd body defines variables representing the

wires, busses, registers, etc. of the FSMD.

(l) If specified, the reset state in thefsmd body defines a synchronous reset of the FSMD.

A synchronous reset of the FSMD is asserted if the reset condition specified at theif

statement evaluates totrue at the occurence of a clock event. In this case, only the

action block of the reset state is executed. No default actions and no regular state are

executed.
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(m) If specified, the default action block in thefsmd body defines default actions that are

executed before every regular state.

(n) The list of regular states in thefsmd body defines the states of the FSMD. Each

FSMD state must be labeled with a unique name and must be listed exactly once in

the state list.

(o) The actions associated with each FSMD state are limited to valid register transfers

or state transitions. Register transfers are specified by conditional or unconditional

assignment expressions.

(p) State transitions are specified by conditional or unconditionalgoto or break state-

ments. Agotostatement specifies the transition to the next state in the FSMD, where

the specified label must match a state label defined in thefsmd statement. Abreak

statement terminates the execution of thefsmd statement.

(q) If no state transition is executed in a state, the next state defaults to the current state.

Example:

1 behavior B( in signal bit [ 1] CLK,
2 in signal bit [ 1] RST,
3 in signal bit [32] a,
4 in signal bit [32] b,
5 out signal bit [32] s)
6 f
7 void main( void )
8 f
9 fsmd (CLK falling )

10 f
11 buffered [CLK falling ] bit [32] sum, tmp;
12

13 if (RST) f sum = 0;
14 goto S1;
15 g
16 f s = sum;
17 g
18 S1 : f tmp = a � b;
19 goto S2;
20 g
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21 S2 : f sum += tmp;
22 goto S1;
23 g
24 g
25 g
26 g;

Notes:

i. The specification of thefsmd statement is based on the RTL semantics draft standard

as defined by Accellera [6].

ii. Note that in contrast to thefsm statement, thefsmd statement represents a controller

at the register transfer level (RTL) which is driving a data path. The FSMD states

contain the register transfers performed by the datapath. Also, thefsmd statement

transitions to the next state on the event of a specified clock, whereas thefsm state-

ment transitions immediately upon the completion of the current state.

iii. The fsmd statement can be understood as a loop where in each iteration a specified set

of statements, called a state, is executed. Each loop iteration is called a clock cycle.

Each cycle basically starts with an implicitwait statement on an external clock event

or with an implicitwaitfor statement representing an internal clock, as indicated by

the clock specifier.

iv. Note that an external FSMD clock may be specified as a simple event (i.e.event

CLK;) or as a signal (i.e.signal bit[1] CLK;). The former reflects an abstract clock,

whereas the latter models a very specific clock with explicit hi (1) and lo (0) phases.

Moreover, by specifying a list of events and/or signals for the clock specifier, the

FSMD may be driven by multiple clocks.

v. Note that both Mealy-type (sensitive to the current state and the current input) and

Moore-type (sensitive only to the current state) finite state machines can be modeled

with the fsmd statement. Both types are easily identified by the existence or non-

existence of the sensitivity list. If a sensitivity list is specified, thefsmd represents a

Mealy machine, otherwise a Moore machine.
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vi. Note that the clock specifier and the reset signal of thefsmd statement are specified

the same way as the clock specifier and the asynchronous reset signal of abuffered

variable (see Section 2.2.7). In fact, the implicit state register of the FSMD can be

seen as a buffered variable for which the clock specifier and reset signal are taken

from thefsmd header.

vii. The fsmd body starts with a list of declarations of local variables. These variables

represent registers and wires inside the FSMD, or simply uninterpreted variables, as

defined by the Accellera RTL semantics (see [6]).

viii. The optional reset state in thefsmdbody represents a synchronous reset of the FSMD.

The specified reset condition is checked at the beginning of every clock cycle. If it

evaluates totrue, a reset cycle is executed.

ix. The optional set of default actions will be executed first in every state, but take effect

only if the assignments are not overwritten within the same clock cycle. This can be

used to assign default values to registers and ports so that these assignments don’t

have to be repeated in every state when the registers and ports are not used. On the

other hand, in those states that actually do use the registers and ports, the default

assignments can be easily overwritten by specific assignments.

x. As with the fsm statement, the states in thefsmd statement are identified by state

labels and transitions among these states are specified as conditional or unconditional

goto statements. Also, for exiting the FSMD, abreak statement is used. However, if

no state transition is executed, the next state defaults to the current state in thefsmd

statement (whereas it defaults to the following state in thefsm statement).

xi. Note that the body of thefsmd statement does not allow arbitrary statements. The

SpecC grammar limits the actions and state transitions to well-defined register trans-

fers. In particular, the state actions may include expression statements, such as as-

signments and function calls, selection statements, such asif andswitch statements,

and state transitions by use ofgoto andbreak. However, loop statements, such as

for , while anddo loops, behavioral hierarchy, such aspar, pipe andfsm statements,

exceptions, such astry , interrupt and trap , timing statements, such asdo-timing



2.4. SPECC STATEMENTS 71

and waitfor , and synchronization, such aswait, notify and notifyone, arenot al-

lowed in any state because these do not represent valid register transfers according to

the semantics of a FSMD.

xii. Note that a large FSMD can be specified by use of multiplefsmd statements which

are executed sequentially, possibly under control of a top-levelfsm statement.

xiii. The example shows a behaviorB modeling a simple finite state machine with data

path by use of thefsmd statement. The component has a clock input portCLK, a

reset input portRST, two data input portsa andb, and a data output ports.

xiv. The FSMD in the example is a synchronous component, executing a new state with

every falling edge of the clock signalCLK. It also has a synchronous reset which is

activated if the reset portRSTis set to hi.

xv. Internally, the example FSMD uses two registerssumandtmpwhich are clocked the

same way as the FSMD.

xvi. In stateS1, the FSMD computes the product of its input portsa andb and stores the

result in registertmp. Next in stateS2, the value oftmp is accumulated in the register

sum.

xvii. Note that the default assignment in line 16 in every state makes the value stored in

registersumavailable at the output ports. Thus, the componentB acts as a multiply-

accumulator (MAC) unit which takes two clock cycles for each computation.
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2.4.6 Synchronization

Purpose: Representation of synchronization

Synopsis:

wait statement =
wait paren event list ’;’
j wait paren and event list ’;’

notify statement =
notify paren event list ’;’
j notifyone paren event list ’;’

paren event list =
event list
j ’(’ event list ’)’

event list =
event identifier
j event list ’,’ event identifier
j event list ’ jj’ event identifier

paren and event list =
and event list
j ’(’ and event list ’)’

and event list =
event identifier ’&&’ event identifier
j and event list ’&&’ event identifier

event identifier =
identifier
j edge selector identifier
j identifier edge selector

edge selector =
rising
j falling

Semantics:

(a) Synchronization of concurrent threads of execution is specified by thewait, notify
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andnotifyone statements which operate by the use of events (see Section 2.2.5) or

signals (see Section 2.2.6).

(b) The semantics of synchronization of concurrent threads are defined by use of the time

interval formalism described in Section 3.5.

(c) An abstract simulation algorithm for the synchronization semantics is specified in

Section 3.6. This algorithm represents one valid implementation of the synchroniza-

tion semantics. Other valid implementations may exist.

(d) The wait statement, where a single event is specified as an argument or a list of

events separated by comma or logical-or (jj) is specified as argument, suspends the

current thread from execution until at least one of the events specified as arguments

is notified. Then, the thread becomes active again and resumes its execution.

(e) Thewait statement, where a list of events separated by logical-and (&&) is specified

as argument, suspends the current thread from execution until all of the events spec-

ified as arguments are notified, regardless of the order of the notification. Then, the

thread becomes active again and resumes its execution.

(f) The notify statement triggers the events specified as arguments so that all threads,

which are currently waiting on any of these events, are notified. If there is no thread

waiting or sensitive to the notified events at the time of the execution of thenotify

statement, then the statement has no effect.

(g) Thenotifyone statement triggers the events specified as arguments so that at most one

thread, which is currently waiting on any of these events, is notified. The thread is

non-deterministically chosen. If there is no thread waiting or sensitive to the notified

events at the time of the execution of thenotifyone statement, then the statement has

no effect.

Example:

1 #include <stdio.h >

2

3 behavior A( out int x, out event e)
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4 f
5 void main( void )
6 f
7 x = 42;
8 notify e;
9 g

10 g;
11

12 behavior B( in int x, in event e)
13 f
14 void main( void )
15 f
16 wait (e);
17 printf("%d", x);
18 g
19 g;
20

21 behavior Main
22 f
23 int x;
24 event e;
25 A a(x, e);
26 B b(x, e);
27

28 int main( void )
29 f par f a.main();
30 b.main();
31 g
32 return (0);
33 g
34 g;

Notes:

i. The wait statement operates with eitheror or and semantics. If the events specified

for the wait statement are separated by comma or logical-or (jj), thenor semantics

are used and the notification of only one of the events is sufficient to resume the exe-

cution. On the other hand, if the events specified for thewait statement are separated

by logical-and (&&), thenand semantics are used and all of the events must be no-

tified in order to resume the execution. In the latter case, it does not matter in which

order the events are received.
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ii. Note that thewait statement withandsemantics is equivalent to a set of parallelwait

statements where eachwait statement is waiting for a single event. The execution

resumes only if all events have been notified.

iii. The SpecC standard channel library described in Appendix B.2 contains many stan-

dard synchronization channels that can be used conveniently and safely. It is recom-

mended to use these standard channels whenever possible instead of the primitives

wait, notify , andnotifyone.

iv. Note that, when resuming execution from await statement due to a notified event,

thewait statement provides no information to determine which of the specified events

was actually notified. If such information is required, it must be supplied explicitly by

the event generator, for example, by setting a specific value in an additional variable,

or by using asignal (which includes a value) instead of the event (that does not carry

any value).

v. Notified events can be thought of as being collected until no active behavior is avail-

able any more for execution. Then, the set of notified events is delivered to the waiting

threads, activating those threads that are waiting on any of them. As a result, theno-

tify andnotifyone statements are guaranteed to reach all threads that are currently

waiting for the event, including active threads that will be waiting for the event as

their immediate next state.

vi. The example shows two parallel executing behaviorsA andB, whereA sends data

via x to B. To make sure thatB reads the value ofx only afterA has produced it,B is

waiting for the evente to be notified byA.

vii. Note that, regardless of the execution order of thepar statement, the example will

correctly transfer the data fromA to B and then terminate. The synchronization se-

mantics ensure that the event notified byA is not lost.

viii. Note also that the synchronization semantics even allow for a thread to wake up itself.

For example, a thread executing the statement sequencenotify e; wait e; will receive

the notified event himself and can continue its execution after thewait statement.
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2.4.7 Exception handling

Purpose: Representation of exception handling

Synopsis:

exception statement =
try compound statement exception list opt

exception list opt =
<nothing >

j exception list

exception list =
exception
j exception list exception

exception =
trap paren event list compound statement
j interrupt paren event list compound statement

paren event list =
event list
j ’(’ event list ’)’

event list =
event identifier
j event list ’,’ event identifier
j event list ’ jj’ event identifier

event identifier =
identifier
j edge selector identifier
j identifier edge selector

edge selector =
rising
j falling

Semantics:

(a) Thetry -trap -interrupt statement represents two types of exception handling in the

regular control flow (specified bytry ), namely abortion (specified bytrap ) and in-
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terrupt (specified byinterrupt ). Exception handling operates by use of events (see

Section 2.2.5) or signals (see Section 2.2.6).

(b) The execution of thetry -trap -interrupt statement starts with the execution of the

compound statement block specified after thetry keyword. It terminates with the

completion of the execution of thetry block, or with the completion of the execution

of a trap handler.

(c) Thetry keyword enables exception handling for the execution of the compound state-

ment block following thetry keyword. Within atry block, a thread (and all its chil-

dren) is sensitive to all events specified with thetrap andinterrupt handlers.

(d) When one or more events to which a thread is sensitive is notified, the execution of

the thread (and all its children) is immediately suspended and a correspondingtrap

or interrupt handler is executed. The point of execution where a thread is suspended

due to an exception is chosen non-deterministically.

(e) Within a try -trap -interrupt statement, theinterrupt and trap handlers are priori-

tized in the order they are specified. Only the first specified exception, that matches

any of the notified events, is executed.

(f) For hierarchically composedtry -trap -interrupt statements, the outer (higher level)

exception handlers take priority over the inner (lower level) exception handlers.

(g) An interrupt handler is executed upon notification of one or more events specified

as arguments to theinterrupt keyword. After the execution of the compound state-

ment block corresponding to theinterrupt handler, the suspended thread (and all its

children) of thetry block resumes its execution.

(h) A trap handler is executed upon notification of one or more events specified as ar-

guments to thetrap keyword. After the execution of the compound statement block

corresponding to thetrap handler, the execution of thetry -trap -interrupt statement

completes. The execution of the suspended thread (and all its children) of thetry

block is aborted.
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(i) The statements in the compound statement blocks after thetry , trap and interrupt

keywords are restricted to at most one call to amainmethod of a behavior. No other

statement type is allowed.

Example:

1 behavior B;
2

3 behavior B except( in event e1, in event e2)
4 f
5 B b1, b2, b3;
6

7 void main( void )
8 f
9 try f b1.main(); g

10 interrupt (e1) f b2.main(); g
11 trap (e2) f b3.main(); g
12 g
13 g;

Notes:

i. In a behavior sensitive to exceptions, interrupts and/or traps can occur at any time and

at any place in the code. The point where the exception handler is called is chosen

in non-deterministic manner. Note that this non-determinism in exception handling

goes well along with the non-determinism in the concurrent execution semantics.

ii. Note that events are never stored or queued. Thus, an event targeted at await state-

ment of a thread that is currently interrupted or trapped, will not reach the suspended

wait statement. Also, an event triggering an exception handler with high priority will

not reach any exception handler with lower priority. In other words, in a hierarchy of

exception handlers, any set of simultaneously notified events will cause at most one

exception (the one with the highest priority) to be serviced.

iii. Note that sensitivity to exception events only applies to thetry block, not to any of

the exception handlers. In other words, exception handlers cannot be interrupted or

aborted by themselves or by other exception handlers specified with the sametry -

trap -interrupt statement.
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iv. The example shows a behaviorB exceptdemonstrating exception handling. When-

ever evente1 is notified during the execution of behaviorb1, the execution ofb1will

be suspended and behaviorb2 is started. Then, whenb2 finishes, the execution of

behaviorb1 is resumed right from the point where it was interrupted.

v. When an evente2 occurs in the example during the execution of behaviorb1, the

execution ofb1 is aborted and the abortion handlerb3 is started. Then, whenb3 is

completed, the execution ofB exceptcompletes as well.

vi. Note that a short cut notation for calling behavior instances exists (see Section 2.3.1).

With the short notation, thetry -trap -interrupt statement in the example can be re-

duced totry fb1;g interrupt (e1)fb2;g trap (e2)fb3;g.

vii. An abstract system reset can be modeled by atry -trap statement enclosed in an

infinite loop.
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2.4.8 Execution time

Purpose: Representation of execution time

Synopsis:

waitfor statement =
waitfor time ’;’

time =
constant expression

Semantics:

(a) Thewaitfor statement represents the concept of execution time in a SpecC program.

(b) The execution of thewaitfor statement with respect to other concurrent threads is

defined by the time interval formalism described in Section 3.4.

(c) An abstract simulation algorithm for the semantics ofwaitfor is described in Sec-

tion 3.6. This algorithm represents one valid implementation of execution time. Other

valid implementations may exist.

(d) Thewaitfor statement suspends the current thread from execution for the specified

amount of time. After the specified amount of time has passed, the thread can resume

its execution.

(e) The argument specified for thewaitfor statement must be of type time, or must be

implicitly convertable to type time (see Section 2.2.8).

(f) The expression specified as argument for thewaitfor statement is evaluated at the

time thewaitfor statement is reached.

(g) The evaluation of the argument of thewaitfor statement must result in a non-negative

value.

(h) If, during the execution of awaitfor statement, a thread is interrupted (see Sec-

tion 2.4.7), then the total amount of execution time spent for the execution of the
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interrupt handler is added to the amount of time specified as argument to thewait-

for statement.

Example:

1 behavior B ( out int i, out event e)
2 f
3 void main( void )
4 f
5 i = 0;
6 waitfor 10;
7

8 i = 1;
9 notify e;

10 waitfor 10;
11

12 // ...
13 g
14 g;

Notes:

i. Execution time is logical time, in contrast to real time.

ii. Sometimes execution time is also referred to as simulation time or execution delay.

iii. The waitfor statement is the only statement in SpecC whose execution results in an

increase of (simulation) time.

iv. Thewaitfor statement and thewait statement are the only non-composite statements

in SpecC whose execution time can be greate than zero. All other statements execute

in zero time.

v. Since time spent for the execution of interrupts is added to the amount specified in

the argument, the execution of awaitfor statement takes at least the amount of time

specified in the argument, or longer.
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2.4.9 Timing constraints

Purpose: Representation of timing constraints

Synopsis:

timing statement =
do compound statement timing ’ f’ constraint list opt ’ g’

compound statement =
’ f’ ’ g’
j ’ f’ declaration list ’ g’
j ’ f’ statement list ’ g’
j ’ f’ declaration list statement list ’ g’

statement list =
statement
j statement list statement
...

statement =
labeled statement
...

labeled statement =
identifier or typedef name ’:’ statement
...

constraint list opt =
<nothing >

j constraint list

constraint list =
constraint
j constraint list constraint

constraint =
range ’(’ any name ’;’ any name ’;’ time opt ’;’ time opt ’)’ ’;’

time opt =
<nothing >

j time

time =
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constant expression

Semantics:

(a) Thedo-timing statement specifies timing constraints on the execution of statements

in a compound statement block.

(b) Thedo-timing statement consists of a compound statement block containing a set of

labeled statements, and a set ofrange statements.

(c) A range statement specifies a timing constraint between a pair of labeled statements

denoted by the two labels specified as the first and second argument. The labels used

for a range statements must be defined within the compound statement block of the

do-timing statement where therange statement is specified.

(d) Therange statement specifies the timing constraint by a minimum (third argument)

and maximum (forth argument) amount of time to be spent from the start of the

execution of the statement denoted by the first label to the start of the execution of

the statement denoted by the second label.

(e) The minimum and maximum times are specified as optional constant expressions of

type time. If specified, these values must be evaluatable to constants at compile time.

(f) If left unspecified, the minimum time value defaults to negative infinity (�∞), the

maximum time value defaults to positive infinity (+∞).

(g) The execution semantics of the compound statement block within ado-timing state-

ment are the same as for any other compound statement block.

(h) For simulation, therange statements specified with ado-timing statement can be

used for timing validation at runtime. The way, a simulator performs this constraint

validation, is implementation dependent.

Example:
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1 channel C (
2 inout bit [16] ABus,
3 inout bit [ 8] DBus,
4 out bit [ 1] RMode,
5 out bit [ 1] WMode)
6 f
7 bit [8] ReadByte( bit [16] Address)
8 f
9 bit [7:0] MyData;

10

11 do f t1: f ABus = Address;
12 waitfor (2);
13 g
14 t2: f RMode = 1; WMode = 0;
15 waitfor (12);
16 g
17 t3: f waitfor (5);
18 g
19 t4: f MyData = DBus;
20 waitfor (5);
21 g
22 t5: f ABus = 0;
23 waitfor (2);
24 g
25 t6: f RMode = 0; WMode = 0;
26 waitfor (10);
27 g
28 t7: f
29 g
30 g
31 timing
32 f range (t1; t2; 0; );
33 range (t1; t3; 10; 20);
34 range (t2; t3; 10; 20);
35 range (t3; t4; 0; );
36 range (t4; t5; 0; );
37 range (t5; t7; 10; 20);
38 range (t6; t7; 5; 10);
39 g
40 return (MyData);
41 g
42 g;

Notes:
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i. The semantics of a statementrange(l1, l2, min, max)is that the statement labeledl1

is to be executed at leastmin time units before, but not more thanmaxtime units later

than the statement labeledl2.

ii. Thedo-timing statement specifies constraints for the implementation (e.g. synthesis)

of the design model. These constraints can also be used for timing validation during

simulation of the model.

iii. For example, timing constraint validation can be performed as follows. During the

execution of the compound statement block, the simulation runtime system collects

time stamps at the execution of each timing label. The time stamps are then validated

by comparison with the specifiedrangeconstraints and any violation of the specified

timings is reported to the user in form of a warning or error message.

iv. Typically, it is best if the way a simulator implements timing validation can be con-

trolled by the user. The SpecC reference compiler and simulator, for example, imple-

mentrange statements by calling a functionscc range checkfor eachrange state-

ment. By default, the functionscc range check is provided automatically by the

simulator and will, if the constraints are not met, abort the simulation with a suitable

error message. However, the functionscc range checkcan also be defined by the

user, in which case he is fully in control of timing validation.

v. The example shows the specification of a read protocol for a static RAM. The timing

constraints specified with the protocol are listed in form ofrange statements. In the

compound statement block, one valid instance of implementation of the protocol is

shown by thewaitfor statements which specify the execution time of each action in

the protocol.
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2.5 Other SpecC constructs

2.5.1 Libraries

Purpose: Representation and handling of design libraries

Synopsis:

import definition =
import string literal list ’;’

string literal list =
string
j string literal list string

Semantics:

(a) Theimport declaration specifies the inclusion of an external design file into the cur-

rent design.

(b) The string argument of theimport declaration denotes the name of the design to be

included.

(c) The search for the denoted design file in the file system is implementation dependent.

(d) An imported design must be a valid SpecC program in itself. In particular, an im-

ported design cannot rely on declarations specified in the importing design.

(e) The format of an imported design file is implementation dependent.

(f) The declarations and definitions contained in an imported design are incorporated

into the current design as if they were specified in the current design itself. The usual

rules for redeclaration and redefinition of symbols apply.

(g) Theimport declaration can be hierarchical. An imported design can in turn contain

other imported designs.

(h) Theimport declaration can be used multiple times for the same design. In this case,

only the firstimport declaration is effective, all following ones are ignored.
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Example:

1 #include <sim.sh >

2 #include <stdio.h >

3

4 import "i send";
5 import "i receive";
6 import "c handshake";
7

8 import "c semaphore";

Notes:

i. In contrast to the#includeconstruct inherited from the C language, theimport dec-

laration automatically avoids multiple inclusions of the same file. There is no need to

use#ifdef’s around a library file to avoid unwanted redefinitions.

ii. The import declaration is visible to the SpecC compiler and any tool. In particular,

it is not eliminated by the C preprocessor as the#includeconstruct is. Thus,import

can be used by tools for code structuring purposes.

iii. The search for an import file typically involves appending a file suffix and searching

along a defined import path for the file name.

iv. The file format of import files typically includes plain SpecC source code and pre-

compiled binary files.
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2.5.2 Persistent annotation

Purpose: Persistent annotation at specific objects

Synopsis:

any declaration =
...
j note definition

any definition =
...
j note definition

note definition =
note any name ’=’ annotation ’;’
j note any name ’.’ any name ’=’ annotation ’;’

annotation =
constant expression
j ’ f’ ’ g’
j ’ f’ annotation list ’ g’

annotation list =
annotation
j annotation list ’,’ annotation

any name =
identifier
j typedef name
j behavior name
j channel name
j interface name

Semantics:

(a) Thenote definition attaches a persistent annotation globally to the design, or locally

to a specified symbol, label, or user-defined type.

(b) The annotation consists of a key and a value. The key is the name of the annotation

and identifies the annotation at its object. It is an error to define multiple annotations

with the same key at the same object.
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(c) The annotation value is either a single or composite constant. Each constant can be of

any constant type or be a constant expression. For the latter, the constant expression

is evaluated to a constant at compile time.

(d) Annotation keys have their own name space. There is no name conflict possible with

the name spaces of symbols, labels or named user-defined types.

(e) In the first form, without an object specifier, the annotation is attached to the current

scope. Valid scopes are the global scope, the class scope, the function or method

scope, or the scope of a user-defined type.

(f) In the second form, with an object specifier, the annotation is attached to the named

object. The object specifier preceeds the annotation key, separated by a dot.

(g) The annotated object is searched by its name in the following order. First, if the

annotation is defined in function or method scope, the name is searched in the list of

defined labels. If not found, the name is searched among the symbols defined in the

current local scope, then among the named user-defined types in the current scope,

and finally among any symbols in visible scope. The annotation is attached to the

first match. It is an error if no match is found.

Example:

1 / � C style comment, not persistent �/
2 // C++ style comment, not persistent
3

4 note Author = "Rainer Doemer";
5 note Date = ff 2002, 05, 15 g, f 10, 47, 49 gg;
6 note DateString = "Wed May 15 10:47:49 PDT 2002";
7

8 const int x = 42;
9 struct S f int a, b; float f; g;

10

11 note x.Size = sizeof (x);
12 note S.Bits = sizeof ( struct S) � 8;
13

14 behavior B( in int a, out int b)
15 f
16 note Version = 1.1;
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17

18 void main( void )
19 f
20 l1: b = 2 � a;
21 waitfor (10);
22 l2: b = 3 � a;
23

24 note NumOps = 3;
25 note l1.OpID = 1;
26 note l2.OpID = 3;
27 g
28 g;
29 note B.Area = f 123.45, 67.89 g;

Notes:

i. Derived from the C language, the SpecC language allows comments in the source

code to annotate the design description. In particular, SpecC supports the same com-

ment styles as C++, namely comments enclosed in/* and */ delimiters as well as

comments after// up to the end of the line (see lines 1 and 2 in the example above).

ii. Code comments are not persistent. This means, they will be eliminated in the prepro-

cessing step by the C preprocessor. Thus, comments are not visible to the compiler

or any tools and therefore cannot be used to store information beyond the language

specification.

Persistent annotations specified by thenotedefinition do not have this problem. They

are visible to the compiler and tools and therefore can be conveniently use for storing

additional information that is not included in the SpecC code.

iii. As described above, persistent annotations can be attached to the current scope. This

way, global annotations (lines 4, 5 and 6 in the example), annotations at classes (line

16), annotations at methods (line 24), and annotations at user-defined types can be

defined.

iv. Alternatively, the object to be annotated can be named explicitly. In the example, this

style is used to define the annotations at variablex (line 11), structureS(line 12), and

labelsl1 andl2 (lines 25 and 26).
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v. Annotation values may be plain or composite. This is similar to variable initializers

which also can be plain or composite. In the example, the annotationDateStringis a

plain string constant, whereas the annotationDateconsists of a pair of lists denoting

the date (year, month, day) and time (hour, minute, second) separately.
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Chapter 3

SpecC Execution Semantics

The execution semantics of the SpecC language are defined by use of a time interval for-

malism [9] which is described in Section 3.1 through Section 3.5. For completeness, an

abstract simulation algorithm for the SpecC execution semantics is given in Section 3.6.

3.1 Time interval formalism

For each statements in a SpecC program, a time intervalhTstart(s);Tend(s)i is defined,

whereTstart(s) andTend(s) denote the start and end times, respectively, of the execution of

the statements. For any time interval, the conditionTstart(s)< Tend(s) holds.

The execution timeTexec of a statements is given by the length of the time interval,

Texec(s) = Tend(s)�Tstart(s). The execution time of any statement is always positive.

With the exception of thewait andwaitfor statements, the execution time of any state-

ment is an infinitesimal (very close to zero) number in terms of simulation time. Only the

wait andwaitfor statements, and composite statements that includewait and/orwaitfor

statements as sub-statements, can have an execution time greater than one simulation time

unit.

93
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3.2 Sequential execution

Sequential execution of statements is defined by ordered time intervals that do not overlap.

Formally, for any sequence of statementshs1;s2; : : :sni, the following condition holds:

8i 2 f1;2; : : : ;n�1g : Tend(si)� Tstart(si+1)

For a sequentially composed statement, such as a function call or a call to a method

of a behavior or channel, the composite time interval includes all time intervals of the

sub-statements. In other words, the time intervals of all sub-statements lie within the time

interval of the composite statement.

Formally, for a composite statementf consisting of sub-statementss1;s2; : : :sn, the fol-

lowing conditions hold:8i 2 f1;2; : : : ;ng : Tstart( f )� Tstart(si)^Tend(si)� Tend( f )

Note that sequential statements are not necessarily executed continuously. In particular,

gaps may exist between the end of one statement and the start of the following statement,

as well as between the start (end) of a composite statement and the start (end) of its sub-

statements. The presence and length of such gaps are non-deterministic.

Example: Figure 3.1 shows an example of a composite behaviorB that is composed of

the sequential execution of three child behaviorsa, b andc.

b

time

ca

B

Tstart(a) Tend(a) Tstart(b) Tend(b) Tstart(c) Tend(c)

Tstart(B) Tend(B)

Figure 3.1: Time interval example for sequential execution.

The time interval formalism for this example derives the following equations:

Tstart(B)� Tstart(a)< Tend(a) � Tstart(b) < Tend(b)� Tstart(c)< Tend(c)� Tend(B)
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3.3 Concurrent execution

Concurrent execution of statements, specified by either thepar or pipe statements, is de-

fined by time intervals that have the same start and end times as thepar or pipe statement,

respectively. In particular, the child behaviors invoked by apar or pipe statement begin

and terminate their execution at the same time.

Formally, for apar or pipe statementp that executes the child behaviorsp1; p2; : : : pn

concurrently, the following equations hold:

8i 2 f1;2; : : : ;ng : Tstart(p) = Tstart(pi)^Tend(pi) = Tend(p)

Note that again a non-deterministic gap may exist between the start (end) time of a

concurrent child behavior and the start (end) time of its statements. Therefore, it is possible

but not necessary that the statements of concurrent child behaviors are actually executed in

parallel.

As a result, concurrent execution may be implemented truly in parallel, or by portion-

wise sequential execution where the order and size of the portions is undefined. This, in

particular, includes the possibility of using preemptive execution. No atomicity is guaran-

teed for the execution of any portion of concurrent code. In other words, except for the time

interval equations defined above, concurrent execution is non-deterministic.

Example: Figure 3.2 shows an example of a composite behaviorB that is composed of

the concurrent execution of two child behaviorsa andb. The child behaviorsa andb in

turn consist of the statementsa1 anda2, andb1 andb2, respectively.

time

a1 a2

b1 b2

Tstart(b2)           Tend(b2)Tstart(b1)   Tend(b1)

Tstart(B) Tend(B)

B

Tstart(a1)     Tend(a1) Tstart(a2)                Tend(a2)

Figure 3.2: Time interval example for concurrent execution.
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The time interval formalism for this example derives the following equations:

Tstart(B) = Tstart(a) = Tstart(b)

Tend(B) = Tend(a) = Tend(b)

Tstart(B)� Tstart(a1) < Tend(a1)� Tstart(a2) < Tend(a2) � Tend(B)

Tstart(B)� Tstart(b1) < Tend(b1)� Tstart(b2) < Tend(b2) � Tend(B)

3.4 Simulation time

The concept of simulation time in SpecC is supported by the use of thewaitfor statement.

The execution of awaitfor statement suspends the current thread from further execution for

the amount of simulation time specified as an argument to thewaitfor statement.

For the time interval of awaitfor statementw with argumentd, the end timeTend(w) is

given by adding the specified delayd to the start timeTstart(w). Formally,

Tstart(w)+d � Tend(w)

In other words, the execution time of awaitfor statement is specified explicitly as its

argument which, as defined in Section 2.4.8, must be a non-negative, integral value of type

time. As such, the execution time of awaitfor statement is not restricted to an infinitesimal

amount of time as for ordinary statements. Instead, it extends to an integral amount of

simulation time.

In case the execution of awaitfor statement is interrupted due to activation of anyin-

terrupt handlers (see Section 2.4.7), then the execution time of thewaitfor statement is

prolonged by the amount of time serving the interrupts. More specifically, the total execu-

tion time dinterrupt spent in any interrupt handlers is added to the delaydargument specified

with thewaitfor statement. Formally,d = dargument+dinterrupt.

In summary, for awaitfor statementw with argumentd, whose execution starts at

simulation timet, the following equations hold:

t � Tstart(w)< t +1

t +d � Tend(w)< t +d+1 whered = dargument+dinterrupt

Example: Figure 3.3 illustrates the relation between execution time and simulation time.

The example shows three sequential statementsa, w and b, wherea and b are ordinary
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statements andw is awaitfor statement with argument 10. Further, the example assumes

that statementa is executed at simulation time 0.

time

a w b

T = 0 T = 1 T = 10 T = 11...

Figure 3.3: Time interval example for simulation time.

The time interval formalism for this example derives the following equations:

0� Tstart(a)< Tend(a)� Tstart(w)< 1

10� Tend(w)� Tstart(b) < Tend(b)< 11

3.5 Synchronization

In order for concurrent threads to be cooperative, the threads need to be synchronized at

points of communication. Synchronization of concurrent threads can be specified by use of

thenotify (or notifyone) andwait statements. As defined in Section 2.4.6, await statement

suspends the current thread from further execution until a specified event is triggered by the

execution of anotify (or notifyone) statement.

In order to define this synchronization mechanism in terms of the time interval formal-

ism, a notify-wait pairhn;wi is defined as anotify (or notifyone) statementn and a corre-

spondingwait statementw, where an event triggered by thenotify (or notifyone) statement

n reaches thewait statementw.

Note that, whether or not an event triggered by anotify (or notifyone) statement actu-

ally reaches await statement, is not defined within the time interval formalism. However,

in Section 3.6 one valid simulation algorithm is defined that determines how a valid notify-

wait pair is found.

Formally, the following equation holds for a notify-wait pairhn;wi:

Tend(n) � Tend(w)
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Example: Figure 3.4 illustrates the time interval formalism for synchronization. The ex-

ample shows two concurrent threadsa andb, wherea consists of the sequential statements

a1, w anda2, andb consists of the sequential statementsb1, n andb2. Further, the example

assumes thata1, a2, b1 andb2 are ordinary statements, whereasn andw arenotify and

wait statements, respectively, that form a notify-wait pair.

time

a1

b1 b2n

a2w

Tend(n)       <=       Tend(w)

Figure 3.4: Time interval example for synchronization.

The time interval formalism for this example derives the following equations:

Tstart(a1) < Tend(a1)� Tstart(w)< Tend(w)� Tstart(a2)< Tend(a2)

Tstart(b1) < Tend(b1)� Tstart(n)< Tend(n) � Tstart(b2) < Tend(b2)

Tend(n) � Tend(w)

3.6 Abstract simulation algorithm

In order to summarize the execution semantics of the SpecC language, this section describes

an abstract simulation algorithm for SpecC programs.

The algorithm defined in the following is one valid implementation of the SpecC exe-

cution semantics. Other valid implementations may exist.

Definitions:

(a) The setT represents the set of threads that are active during the program execution.

In the beginning,T contains only the root threadtroot. Whentroot is completed, the

execution of the program terminates.

(b) The number of threads inT changes during the program execution due to creation

of new threads and termination of completed threads. At apar (or pipe) statement,
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the specified concurrent child behaviors are added as threads toT. When the child

behaviors have completed their execution, they are taken out ofT.

(c) At any time, each threadt 2 T belongs to exactly one subset ofT. More specifically,

T is composed of the three subsetsTready, Twait andTwait f or which do not overlap.

Formally,T = Tready[Twait [Twait f or, where

Tready\Twait = /0 ^ Twait \Twait f or = /0 ^ Tready\Twait f or = /0

In the beginning,Tready= ftrootg, Twait = /0, Twait f or = /0

(d) The setN represents the set of notified events during the program execution. Events

notified bynotify statements are added toN. Delivered or expired events are taken

out of N. In the beginning,N = /0.

(e) The variabletnow holds the current simulation time. In the beginning,tnow= 0.

(f) For each threadt 2 Twait f or, a functiontwakeup(t) determines the wakeup time of the

thread. The wakeup time is computed at the time awaitfor statement is reached. For

awaitfor statement with argumentd, twakeup(t) = tnow+d.

Algorithm:

Step 1 : Start.

Step 2 : Select one threadtrun 2 Tready, executetrun.

Step 3 : At notify statement, add notified events toN, go to step 6.

Step 4 : At wait statement, movetrun from Tready to Twait, go to step 6.

Step 5 : At waitfor statement, movetrun from Tready to Twait f or, go to step 6.

Step 6 : If Tready 6= /0 then go to step 2.

Step 7 : Move all t 2 Twait waiting for eventse2 N to Tready.

Step 8 : SetN = /0.

Step 9 : If Tready 6= /0 then go to step 2.
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Step 10 : Settnow= minftwakeup(t) j t 2 Twait f org.

Step 11 : Move all t 2 Twait f or wheretwakeup(t) = tnow to Tready.

Step 12 : If Tready 6= /0 then go to step 2.

Step 13 : Stop.

Notes:

i. The abstract simulation algorithm starts with Step 1. As defined above, all variables

are set to their initial values:T = Tready = ftrootg, Twait = /0, Twait f or = /0, N = /0,

tnow= 0.

ii. In Step 2, one thread is chosen for execution out of all threads in the ready queue

Tready. Note that, at any time, this algorithm runs only one thread. This is a valid

choice for implementing the potential concurrency, as defined in Section 3.3.

A different implementation, that also would be valid according to Section 3.3, could

actually choose to execute some or even all threads out ofTready in parallel. However,

in this case care must be taken when accessing the variables of the algorithm because

those are shared among all the threads.

iii. In Step 3, events triggered bynotify statements are collected inN. Although not

shown in the algorithm, events triggered bynotifyone statements would be handled

in a very similar manner.

iv. In Step 4, threads executing await statement are suspended from further execution

by putting them into the wait queueTwait.

v. In Step 5,waitfor statements are handled in the same fashion as thewait statements in

Step 4. Threads executing awaitfor statement are suspended from further execution

by putting them into the waitfor queueTwait f or. Note that in this case a wakeup time

for the thread is computed so that it can be resumed after the specified time period.

vi. Step 6 defines the innermost loop of the simulation algorithm, which is called the

synchronization cycle. This synchronization cycle ensures that all threads are exe-
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cuted until they hit await or waitfor statement. Only if no thread is available any

more for execution, Step 7 is reached.

vii. In Step 7, all notified events are delivered to the waiting threads. Threads from the

wait queue, whose events were notified, are resumed. Other threads stay in the wait

queue.

Note that in this step also updating ofsignalandbuffered variables would take place,

as well as exception handling. These tasks, however, are left out in the algorithm for

the reason of simplicity.

viii. In Step 8, the set of notified events is cleared. Events that could not be delivered in

Step 7, expire at this point.

ix. Step 9 defines the second loop of the simulation algorithm. All the threads, that have

received events they were waiting for, can resume their execution.

x. In Step 10 the simulation timetnow is updated. It is increased by the minimum amount

of time that any threads in the waitfor queue still have to wait for.

xi. In Step 11, the threads whose wakeup time has been reached, are enabled for execu-

tion again.

xii. Step 12 defines the outermost loop of the simulation algorithm. If any threads could

be awakened in Step 11, they can now resume their execution.

xiii. In Step 13, the simulation algorithm terminates. Note that at this point no thread is

available for further execution any more because both the ready queueTready and the

waitfor queueTwait f or are empty. The wait queueTwait, however, still contains one

or more threads that are waiting for events, but since no other thread is available any

more to notify any events, the simulation is stuck in a deadlock situation and must

terminate.
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Appendix A

SpecC Grammar

In the following, the complete grammar of the SpecC language version 2.0 is listed in the

format of an extended Backus-Naur form (EBNF).

A.1 Lexical elements

A.1.1 Lexical rules

The following lexical rules are used to make up the definitions below.

de l im i te r [ n t nbnr ]
newline [nnn f nv]
whitespace fde l im i te rg+
ws fde l im i te rg�
u c l e t t e r [A�Z]
l c l e t t e r [ a�z ]
l e t t e r (f u c l e t t e rgjf l c l e t t e r g)
d ig i t [ 0�9]
b ind ig i t [ 01 ]
oc td ig i t [ 0�7]
hexdig i t [ 0�9a�fA�F]
i d e n t i f i e r ((f l e t t e r gj” ” ) ( f l e t t e r gjf d ig i t gj” ”) �)
in teger fd ig i t g+
binary fb ind ig i t g+
decinteger [ 1�9]f d ig i t g�
oc t in teger ”0”f oc td ig i t g�
hexin teger ”0”[xX]f hexdig i tg+

103
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decintegeru fdecintegerg[uU]
oc t in teger u foc t in tegerg[uU]
hex in tegeru fhexin tegerg[uU]
dec in tege rl fdecintegerg[ lL ]
o c t i n t e g e r l foc t in tegerg[ lL ]
hex in teger l fhexin tegerg[ lL ]
dec in tegeru l fdecintegerg( [ uU] [ lL ] j [ lL ] [ uU])
oc t i n tege r u l foc t in tegerg( [ uU] [ lL ] j [ lL ] [ uU])
hex in tegeru l fhexin tegerg( [ uU] [ lL ] j [ lL ] [ uU])
dec in tege r l l fdecintegerg[ lL ] [ lL ]
o c t i n t e g e r l l foc t in tegerg[ lL ] [ lL ]
hex in tege r l l fhexin tegerg[ lL ] [ lL ]
dec in tege ru l l fdecintegerg( [ uU] [ lL ] [ lL ] j [ lL ] [ lL ] [ uU])
o c t i n t e g e r u l l foc t in tegerg( [ uU] [ lL ] [ lL ] j [ lL ] [ lL ] [ uU])
hex in tege ru l l fhexin tegerg( [ uU] [ lL ] [ lL ] j [ lL ] [ lL ] [ uU])
octchar ”nn” f oc td ig i t gf1 , 3g
hexchar ”nnx”f hexdig i tg+
exponent [ eE][+�]?f i n tegerg
f r ac t i on f i n tegerg
f loa t1 f i n tegerg”.” f f r ac t i ong?(f exponentg)?
f loa t2 ”.” f f r ac t i ong(f exponentg)?
f loa t3 f i n tegergfexponentg
f l oa t i ng f f loa t1 gjf f loa t2 gjf f loa t3g
f l o a t f f f l oa t i ng g[ fF ]
f l o a t l f f l oa t i ng g[ lL ]
b i t vec to r fbinaryg[bB]
b i tvec to r u fbinaryg( [ uU] [ bB] j [ bB] [ uU])

A.1.2 Comments

In addition to the standard C style comments, the SpecC language also supports C++ style

comments. Everything following two slash-characters is ignored until the end of the line.

”/ �” < anything> ” �/” / � ignore comment� /
” / / ” < anything> ”nn” / � ignore comment� /

A.1.3 String and character constants

SpecC follows the standard C/C++ conventions for encoding character and string constants.

The following escape sequences are recognized:
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”nn” / � newline ( 0x0a )� /
”n t ” / � t abu la to r ( 0x09 )� /
”nv” / � v e r t i c a l t abu la to r ( 0x0b )� /
”nb” / � backspace ( 0x08 )� /
”n r ” / � car r iage return ( 0x0d )� /
”n f ” / � form feed ( 0x0c )� /
”na” /� be l l ( 0x07 ) � /
foctcharg /� oc ta l encoded charac te r� /
fhexcharg /� hexadecimal encoded charac te r� /

Strings are character sequences surrounded by quotation marks. Two subsequent

strings, only separated by whitespace, are concatenated, in other words, they are treated

the same way as one single string.

A.1.4 White space and preprocessor directives

White space in the source code is ignored. Preprocessor directives are handled by the C

preprocessor (cpp) and are therefore eliminated from the SpecC source code when it is read

by the actual SpecC parser.

fnewlineg /� skip � /
fwhitespaceg /� skip � /

A.1.5 Keywords

The SpecC language recognizes the following ANSI-C keywords:

auto, break, case, char, const, continue, default, do, double, else, enum, extern,

float, for , goto, if , int , long, register, return , short, signed, sizeof, static, struct, switch,

typedef, union, unsigned, void, volatile, while.

In addition, the following SpecC keywords are recognized:

behavior, bit , bool, buffered, channel, event, falling , false, fsm, fsmd, implements,

import , in, inout, interface, interrupt , note, notify , notifyone, out, par, pipe, piped,

range, rising, signal, this, timing , trap , true, try , wait, waitfor .

For future extensions, the following tokens are reserved. These keywords must not be

used as identifiers in any SpecC program.

and, and eq, asm, bitand, bitor , catch, class, compl, const cast, delete, dy-

namic cast, explicit, export, friend , inline, mutable, namespace, new, not, not eq,
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operator, or, or eq, private, protected, public, reinterpret cast, static cast, template,

throw , typeid, typename, using, virtual , wchar t, xor, xor eq, fix.

A.1.6 Token with values

The following is a complete list of all tokens in the grammar that carry values.

i d e n t i f i e r =
f i d e n t i f i e r g

typedef name =
f i d e n t i f i e r g

behavior name =
f i d e n t i f i e r g

channelname =
f i d e n t i f i e r g

in ter face name =
f i d e n t i f i e r g

i n teger =
fdecintegerg
j f oc t in tegerg
j f hexin tegerg
j f decintegeru g
j f oc t in teger u g
j f hexin tegeru g
j f dec in tege rl g
j f o c t i n t e g e r l g
j f hex in teger l g
j f dec in tegeru l g
j f oc t i n tege r u l g
j f hex in tegeru l g
j f dec in tege r l l g
j f o c t i n t e g e r l l g
j f hex in tege r l l g
j f dec in tege ru l l g
j f o c t i n t e g e r u l l g
j f hex in tege ru l l g

f l oa t i ng =
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f f l oa t i ngg
j f f l o a t f g
j f f l o a t l g

charac te r =
fcharac te rg

s t r i ng =
f s t r i ngg

b i t vec to r =
fb i t vec to rg
j f b i tvec to r u g

A.2 Constants

constant =
in teger
j f l oa t i ng
j charac te r
j f a lse
j true
j b i t vec to r
j s t r i n g l i t e r a l l i s t

s t r i n g l i t e r a l l i s t =
s t r i ng
j s t r i n g l i t e r a l l i s t s t r i ng

A.3 Expressions

pr imary expression =
i d e n t i f i e r
j constant
j ’ ( ’ comma expression ’ ) ’
j th is

post f i x express ion =
pr imary expression
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j post f i x express ion ’ [ ’ commaexpression ’ ] ’
j post f i x express ion ’ ( ’ ’ ) ’
j post f i x express ion ’ ( ’ a rgumentexpress ionl is t ’ ) ’
j post f i x express ion ’ . ’ membername
j post f i x express ion ’�> ’ membername
j post f i x express ion ’++’
j post f i x express ion ’��’
j post f i x express ion ’ [ ’ constan texpress ion ’ : ’

constan texpress ion ’ ] ’

membername =
i d e n t i f i e r
j typedef or c lass name

argument express ionl is t =
assignmentexpression
j argument express ionl is t ’ , ’ ass ignmentexpression

unary expression =
post f i x express ion
j ’ + + ’ unary expression
j ’ �� ’ unary expression
j unary operator cas texpress ion
j s izeof unary expression
j s izeof ’ ( ’ type name ’ ) ’

unary operator =
’&’
j ’ � ’
j ’ + ’
j ’ � ’
j ’ ˜ ’
j ’ ! ’

cas t express ion =
unary expression
j ’ ( ’ type name ’ ) ’ cas t express ion

concat expression =
cas t express ion
j concat expression ’@’ castexpress ion

mu l t i p l i ca t i ve exp ress ion =
concat expression
j mu l t i p l i ca t i ve exp ress ion ’� ’ concat expression
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j mu l t i p l i ca t i ve exp ress ion ’ / ’ concatexpression
j mu l t i p l i ca t i ve exp ress ion ’%’ concatexpression

add i t i ve express ion =
mu l t i p l i ca t i ve exp ress ion
j add i t i ve express ion ’ + ’ mu l t i p l i ca t i veexp ress ion
j add i t i ve express ion ’� ’ mu l t i p l i ca t i ve exp ress ion

sh i f t exp ress ion =
add i t i ve express ion
j sh i f t exp ress ion ’<< ’ add i t i ve express ion
j sh i f t exp ress ion ’>> ’ add i t i ve express ion

re la t i ona l exp ress ion =
sh i f t exp ress ion
j r e l a t i ona l exp ress ion ’< ’ sh i f t exp ress ion
j r e l a t i ona l exp ress ion ’> ’ sh i f t exp ress ion
j r e l a t i ona l exp ress ion ’<=’ sh i f t exp ress ion
j r e l a t i ona l exp ress ion ’>=’ sh i f t exp ress ion

equa l i t y express ion =
re la t i ona l exp ress ion
j equa l i t y express ion ’== ’ r e la t i ona lexp ress ion
j equa l i t y express ion ’ ! = ’ r e la t i ona lexp ress ion

and expression =
equa l i t y express ion
j and expression ’& ’ equa l i t y express ion

exc lus ive or express ion =
and expression
j exc lus ive or express ion ’ ˆ ’ andexpression

inc lus i ve o r exp ress ion =
exc lus ive or express ion
j i n c lus i ve o r exp ress ion ’j ’ exc lus ive or express ion

log ica l and express ion =
inc lus i ve o r exp ress ion
j l og ica l and express ion ’&&’ i nc lus i ve o r exp ress ion

log i ca l o r exp ress ion =
log ica l and express ion
j l og i ca l o r exp ress ion ’j j ’ l og ica l and express ion



110 APPENDIX A. SPECC GRAMMAR

cond i t iona l express ion =
log i ca l o r exp ress ion
j l og i ca l o r exp ress ion ’ ? ’ commaexpression ’ : ’

cond i t iona l express ion

assignmentexpression =
cond i t iona l express ion
j unary expression assignmentoperator assignmentexpression

assignmentoperator =
’=’
j ’ �= ’
j ’ / = ’
j ’%=’
j ’ += ’
j ’ �=’
j ’<<=’
j ’>>=’
j ’&=’
j ’ ˆ = ’
j ’ j= ’

commaexpression =
assignmentexpression
j commaexpression ’ , ’ assignmentexpression

constan texpress ion =
cond i t iona l express ion

comma expressionopt =
<nothing>
j commaexpression

A.4 Declarations

dec la ra t ion =
s u e d e c l a r a t i o n s p e c i f i e r ’ ; ’
j sue type spec i f i e r ’ ; ’
j d e c l a r i n g l i s t ’ ; ’
j d e f a u l t d e c l a r i n g l i s t ’ ; ’

d e f a u l t d e c l a r i n g l i s t =
d e c l a r a t i o n q u a l i f i e r l i s t i d e n t i f i e r d e c l a r a t o r i n i t i a l i z e ro p t
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j t y p e q u a l i f i e r l i s t i d e n t i f i e r d e c l a r a t o r i n i t i a l i z e ro p t
j d e f a u l t d e c l a r i n g l i s t ’ , ’ i d e n t i f i e r d e c l a r a t o r i n i t i a l i z e ro p t
j s igna l c lass d e c l a r a t i o nq u a l i f i e r l i s t i d e n t i f i e r d e c l a r a t o r

i n i t i a l i z e r o p t
j s igna l c lass t y p e q u a l i f i e r l i s t i d e n t i f i e r d e c l a r a t o r

i n i t i a l i z e r o p t

d e c l a r i n g l i s t =
d e c l a r a t i o n s p e c i f i e r dec la ra to r i n i t i a l i z e ro p t
j t ype spec i f i e r dec la ra to r i n i t i a l i z e ro p t
j d e c l a r i n g l i s t ’ , ’ dec la ra to r i n i t i a l i z e r o p t
j s igna l c lass d e c l a r a t i o ns p e c i f i e r dec la ra to r i n i t i a l i z e ro p t
j s igna l c l ass typespec i f i e r dec la ra to r i n i t i a l i z e ro p t

s igna l c lass op t =
<nothing>
j s igna l c lass

s igna l c lass =
signal
j buffered
j buffered ’ [ ’ c l ock spec i f i e r ’ ] ’
j buffered ’ [ ’ c l ock spec i f i e r ’ ; ’ r e s e t s i g n a l o p t ’ ] ’

d e c l a r a t i o n s p e c i f i e r =
b a s i c d e c l a r a t i o n s p e c i f i e r
j s u e d e c l a r a t i o ns p e c i f i e r
j t y p e d e f d e c l a r a t i o ns p e c i f i e r

t ype spec i f i e r =
b a s i c t y p e s p e c i f i e r
j sue type spec i f i e r
j t ypede f t ype spec i f i e r

d e c l a r a t i o n q u a l i f i e r l i s t =
s to rage c lass
j t y p e q u a l i f i e r l i s t s to rage c lass
j d e c l a r a t i o n q u a l i f i e r l i s t d e c l a r a t i o n q u a l i f i e r

t y p e q u a l i f i e r l i s t =
t y p e q u a l i f i e r
j t y p e q u a l i f i e r l i s t t y p e q u a l i f i e r

d e c l a r a t i o n q u a l i f i e r =
s to rage c lass
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j t y p e q u a l i f i e r

t y p e q u a l i f i e r =
const
j vo la t i l e

b a s i c d e c l a r a t i o n s p e c i f i e r =
d e c l a r a t i o n q u a l i f i e r l i s t basic type name
j b a s i c t y p e s p e c i f i e r s to ragec lass
j b a s i c d e c l a r a t i o n s p e c i f i e r d e c l a r a t i o nq u a l i f i e r
j b a s i c d e c l a r a t i o n s p e c i f i e r basictype name

b a s i c t y p e s p e c i f i e r =
basic type name
j t y p e q u a l i f i e r l i s t basic type name
j b a s i c t y p e s p e c i f i e r t y p e q u a l i f i e r
j b a s i c t y p e s p e c i f i e r basictype name

s u e d e c l a r a t i o n s p e c i f i e r =
d e c l a r a t i o n q u a l i f i e r l i s t elaboratedtype name
j sue type spec i f i e r s to ragec lass
j s u e d e c l a r a t i o ns p e c i f i e r d e c l a r a t i o nq u a l i f i e r

sue type spec i f i e r =
elaboratedtype name
j t y p e q u a l i f i e r l i s t elaboratedtype name
j sue type spec i f i e r t y p e q u a l i f i e r

t y p e d e f d e c l a r a t i o ns p e c i f i e r =
t ypede f t ype spec i f i e r s to ragec lass
j d e c l a r a t i o n q u a l i f i e r l i s t typedef name
j t y p e d e f d e c l a r a t i o ns p e c i f i e r d e c l a r a t i o nq u a l i f i e r

t ypede f t ype spec i f i e r =
typedef name
j t y p e q u a l i f i e r l i s t typedef name
j t ypede f t ype spec i f i e r t y p e q u a l i f i e r

s to rage c lass =
typedef
j extern
j s ta t i c
j auto
j reg is ter
j piped
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basic type name =
int
j char
j short
j long
j f loa t
j double
j signed
j unsigned
j void
j bool
j bit ’ [ ’ constan t express ion ’ : ’ constan texpress ion ’ ] ’
j bit ’ [ ’ constan t express ion ’ ] ’
j event

elaboratedtype name =
aggregatename
j enumname

aggregatename =
aggregatekey ’ f ’ member dec la ra t ion l is t ’ g ’
j aggregatekey iden t i f i e r o r t ypede f name ’f ’

member dec la ra t ion l is t ’ g ’
j aggregatekey iden t i f i e r o r t ypede f name

aggregatekey =
struct
j union

member dec la ra t ion l is t =
memberdeclarat ion
j member dec la ra t ion l is t memberdeclarat ion

memberdeclarat ion =
member dec lar ing l is t ’ ; ’
j member de fau l t dec la r ing l is t ’ ; ’
j no te de f i n i t i on

member de fau l t dec la r ing l is t =
t y p e q u a l i f i e r l i s t member iden t i f ie r dec la ra to r
j member de fau l t dec la r ing l is t ’ , ’ member iden t i f ie r dec la ra to r

member dec lar ing l is t =
t ype spec i f i e r memberdeclarator
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j member dec lar ing l is t ’ , ’ member declarator

member declarator =
dec la ra to r b i t f i e l d s i z e o p t
j b i t f i e l d s i z e

member iden t i f ie r dec la ra to r =
i d e n t i f i e r d e c l a r a t o r b i t f i e l d s i z e o p t
j b i t f i e l d s i z e

b i t f i e l d s i z e o p t =
<nothing>
j b i t f i e l d s i z e

b i t f i e l d s i z e =
’ : ’ constan t express ion

enumname =
enum ’ f ’ enumera to r l i s t ’ g ’
j enum i den t i f i e r o r t ypede f name ’f ’ enumera to r l i s t ’ g ’
j enum i den t i f i e r o r t ypede f name

enumera to rl i s t =
iden t i f i e r o r t ypede f name enumeratorva lue opt
j enumera to rl i s t ’ , ’ i den t i f i e r o r t ypede f name

enumeratorva lue opt

enumeratorva lue opt =
<nothing>
j ’ = ’ constan t express ion

pa rame te rt ype l i s t =
pa rame te rl i s t
j pa rame te rl i s t ’ , ’ ’ . . . ’

pa rame te rl i s t =
parameterdec la ra t ion
j pa rame te rl i s t ’ , ’ pa rameter dec la ra t ion
j i n te r face parameter
j pa rame te rl i s t ’ , ’ i n te r face parameter

parameterdec la ra t ion =
d e c l a r a t i o n s p e c i f i e r
j d e c l a r a t i o n s p e c i f i e r a b s t r a c td e c l a r a t o r
j d e c l a r a t i o n s p e c i f i e r i d e n t i f i e r d e c l a r a t o r
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j d e c l a r a t i o n s p e c i f i e r parametertypede f dec la ra to r
j d e c l a r a t i o n q u a l i f i e r l i s t
j d e c l a r a t i o n q u a l i f i e r l i s t a b s t r a c t d e c l a r a t o r
j d e c l a r a t i o n q u a l i f i e r l i s t i d e n t i f i e r d e c l a r a t o r
j t ype spec i f i e r
j t ype spec i f i e r a b s t r a c td e c l a r a t o r
j t ype spec i f i e r i d e n t i f i e r d e c l a r a t o r
j t ype spec i f i e r parametertypede f dec la ra to r
j t y p e q u a l i f i e r l i s t
j t y p e q u a l i f i e r l i s t a b s t r a c t d e c l a r a t o r
j t y p e q u a l i f i e r l i s t i d e n t i f i e r d e c l a r a t o r

i den t i f i e r o r t ypede f name =
i d e n t i f i e r
j typedef or c lass name

type name =
type spec i f i e r
j t ype spec i f i e r a b s t r a c td e c l a r a t o r
j t y p e q u a l i f i e r l i s t
j t y p e q u a l i f i e r l i s t a b s t r a c t d e c l a r a t o r

i n i t i a l i z e r o p t =
<nothing>
j ’ = ’ i n i t i a l i z e r

i n i t i a l i z e r =
’ f ’ i n i t i a l i z e r l i s t ’ g ’
j ’ f ’ i n i t i a l i z e r l i s t ’ , ’ ’ g ’
j constan texpress ion

i n i t i a l i z e r l i s t =
i n i t i a l i z e r
j i n i t i a l i z e r l i s t ’ , ’ i n i t i a l i z e r

A.5 Classes

spec c de f i n i t i on =
impo r t de f i n i t i on
j behav io r dec la ra t ion
j behav io r de f i n i t i on
j channe l dec la ra t ion
j channe l de f i n i t i on
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j i n t e r f a c e d e c l a r a t i o n
j i n t e r f a c e d e f i n i t i o n
j no te de f i n i t i on

impo r t de f i n i t i on =
import s t r i n g l i t e r a l l i s t ’ ; ’

behav io r dec la ra t ion =
behav io r spec i f i e r p o r t l i s t o p t imp lementsin te r face op t ’ ; ’

behav io r de f i n i t i on =
behav io r spec i f i e r p o r t l i s t o p t imp lementsin te r face op t

’ f ’ i n t e r n a l d e f i n i t i o n l i s t o p t ’ g ’ ’ ; ’

behav io r spec i f i e r =
behavior i d e n t i f i e r

channe l dec la ra t ion =
channe l spec i f i e r p o r t l i s t o p t imp lementsin te r face op t ’ ; ’

channe l de f i n i t i on =
channe l spec i f i e r p o r t l i s t o p t imp lementsin te r face op t

’ f ’ i n t e r n a l d e f i n i t i o n l i s t o p t ’ g ’ ’ ; ’

channe l spec i f i e r =
channel i d e n t i f i e r

p o r t l i s t o p t =
<nothing>
j ’ ( ’ ’ ) ’
j ’ ( ’ p o r t l i s t ’ ) ’

p o r t l i s t =
po r t dec la ra t i on
j p o r t l i s t ’ , ’ po r t dec la ra t i on

po r t dec la ra t i on =
po r t d i r ec t i on s igna l c lass op t parameterdec la ra t ion
j i n te r face parameter

po r t d i r ec t i on =
<nothing>
j in
j out
j inout
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in te r face parameter =
in ter face name
j in ter face name i d e n t i f i e r

imp lementsin te r face op t =
<nothing>
j implements i n t e r f a c e l i s t

i n t e r f a c e l i s t =
in ter face name
j i n t e r f a c e l i s t ’ , ’ in ter face name

i n t e r n a l d e f i n i t i o n l i s t o p t =
<nothing>
j i n t e r n a l d e f i n i t i o n l i s t

i n t e r n a l d e f i n i t i o n l i s t =
i n t e r n a l d e f i n i t i o n
j i n t e r n a l d e f i n i t i o n l i s t i n t e r n a l d e f i n i t i o n

i n t e r n a l d e f i n i t i o n =
func t i on de f i n i t i on
j dec la ra t ion
j i n s t a n t i a t i o n
j no te de f i n i t i on

i n s t a n t i a t i o n =
i n s t a n c e d e c l a r i n g l i s t ’ ; ’

i n s t a n c e d e c l a r i n g l i s t =
behav ior or channel i ns tancedec la ra to r
j i n s t a n c e d e c l a r i n g l i s t ’ , ’ i ns tance dec la ra to r

i ns tance dec la ra to r =
i d e n t i f i e r por t mapp ing l is t op t
j typedef or c lass name por t mapp ing l is t op t

behav ior or channel =
behavior name
j channelname

por t mapp ing l is t op t =
<nothing>
j ’ ( ’ po r t mapp ing l is t ’ ) ’
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por t mapp ing l is t =
port mapping opt
j por t mapp ing l is t ’ , ’ port mapping opt

port mapping opt =
<nothing>
j port mapping

port mapping =
b i t s l i c e
j port mapping ’@’ b i t s l i c e

b i t s l i c e =
constant
j ’ ( ’ constan t express ion ’ ) ’
j i d e n t i f i e r
j i d e n t i f i e r ’ [ ’ constan t express ion ’ : ’ constan texpress ion ’ ] ’
j i d e n t i f i e r ’ [ ’ constan t express ion ’ ] ’

i n t e r f a c e d e c l a r a t i o n =
i n t e r f a c e s p e c i f i e r ’ ; ’

i n t e r f a c e d e f i n i t i o n =
i n t e r f a c e s p e c i f i e r ’f ’ i n t e r n a l d e c l a r a t i o n l i s t o p t ’ g ’ ’ ; ’

i n t e r f a c e s p e c i f i e r =
in ter face i d e n t i f i e r

i n t e r n a l d e c l a r a t i o n l i s t o p t =
<nothing>
j i n t e r n a l d e c l a r a t i o n l i s t

i n t e r n a l d e c l a r a t i o n l i s t =
i n t e r n a l d e c l a r a t i o n
j i n t e r n a l d e c l a r a t i o n l i s t i n t e r n a l d e c l a r a t i o n

i n t e r n a l d e c l a r a t i o n =
dec la ra t ion
j no te de f i n i t i on

no te de f i n i t i on =
note any name ’ = ’ annotat ion ’ ; ’
j note any name ’ . ’ anyname ’ = ’ annotat ion ’ ; ’
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annotat ion =
constan texpress ion
j ’ f ’ ’ g ’
j ’ f ’ a n n o t a t i o n l i s t ’ g ’

a n n o t a t i o n l i s t =
annotat ion
j a n n o t a t i o n l i s t ’ , ’ annotat ion

typedef or c lass name =
typedef name
j behavior name
j channelname
j in ter face name

any name =
i d e n t i f i e r
j typedef name
j behavior name
j channelname
j in ter face name

A.6 Statements

statement =
labe led s ta tement
j compoundstatement
j express ions ta tement
j se lec t i on s ta temen t
j i t e r a t i o n s t a t e m e n t
j jump statement
j spec c statement

labe led s ta tement =
iden t i f i e r o r t ypede f name ’ : ’ statement
j case constan texpress ion ’ : ’ statement
j default ’ : ’ statement

compoundstatement =
’ f ’ ’ g ’
j ’ f ’ d e c l a r a t i o n l i s t ’ g ’
j ’ f ’ s t a t e m e n t l i s t ’ g ’
j ’ f ’ d e c l a r a t i o n l i s t s t a t e m e n tl i s t ’ g ’
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d e c l a r a t i o n l i s t =
dec la ra t ion
j d e c l a r a t i o n l i s t dec la ra t ion
j no te de f i n i t i on
j d e c l a r a t i o n l i s t no te de f i n i t i on

s t a t e m e n tl i s t =
statement
j s t a t e m e n tl i s t statement
j s t a t e m e n tl i s t no te de f i n i t i on

express ions ta tement =
comma expressionopt ’ ; ’

se lec t i on s ta temen t =
i f ’ ( ’ comma expression ’ ) ’ statement
j i f ’ ( ’ comma expression ’ ) ’ statementelse statement
j switch ’ ( ’ comma expression ’ ) ’ statement

i t e r a t i o n s t a t e m e n t =
while ’ ( ’ comma expressionopt ’ ) ’ statement
j do statement while ’ ( ’ comma expression ’ ) ’ ’ ; ’
j for ’ ( ’ comma expressionopt ’ ; ’ comma expressionopt ’ ; ’

comma expressionopt ’ ) ’ statement

jump statement =
goto i den t i f i e r o r t ypede f name ’ ; ’
j continue ’ ; ’
j break ’ ; ’
j return comma expressionopt ’ ; ’

spec c statement =
concur rents ta tement
j fsm statement
j fsmd statement
j except ion statement
j t iming statement
j wai t s ta tement
j wai t fo r s ta tement
j no t i f y s ta tement

concur rents ta tement =
par compoundstatement
j pipe compoundstatement
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j pipe ’ ( ’ comma expressionopt ’ ; ’ comma expressionopt
’ ; ’ comma expressionopt ’ ) ’ compound statement

fsm statement =
fsm ’ f ’ ’ g ’
j fsm ’ f ’ t r a n s i t i o n l i s t ’ g ’

t r a n s i t i o n l i s t =
t r a n s i t i o n
j t r a n s i t i o n l i s t t r a n s i t i o n

t r a n s i t i o n =
s ta te ’ : ’
j s ta te ’ : ’ cond branch l is t
j s ta te ’ : ’ ’ f ’ ’ g ’
j s ta te ’ : ’ ’ f ’ cond branch l is t ’ g ’

s t a te =
i d e n t i f i e r
j i d e n t i f i e r compoundstatement

cond branch l is t =
cond branch
j cond branch l is t cond branch

cond branch =
i f ’ ( ’ comma expression ’ ) ’ goto i d e n t i f i e r ’ ; ’
j goto i d e n t i f i e r ’ ; ’
j i f ’ ( ’ comma expression ’ ) ’ break ’ ; ’
j break ’ ; ’

fsmd statement =
fsmd ’ ( ’ fsmd head ’ ) ’ fsmd body

fsmd head =
c lock spec i f i e r
j c lock spec i f i e r ’ ; ’ s e n s i t i v i t y l i s t o p t
j c lock spec i f i e r ’ ; ’ s e n s i t i v i t y l i s t o p t ’ ; ’ r e s e t s i g n a l o p t

c l ock spec i f i e r =
e v e n t l i s t
j constant
j ’ ( ’ time ’ ) ’

s e n s i t i v i t y l i s t o p t =
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<nothing>
j e v e n t l i s t

r e s e t s i g n a l o p t =
<nothing>
j i d e n t i f i e r
j ’ ! ’ i d e n t i f i e r

fsmd body =
’ f ’ ’ g ’
j ’ f ’ d e c l a r a t i o n l i s t ’ g ’
j ’ f ’ r e s e t s t a t e ’g ’
j ’ f ’ d e c l a r a t i o n l i s t r e s e t s t a t e ’g ’
j ’ f ’ de fau l t ac t i on ’g ’
j ’ f ’ d e c l a r a t i o n l i s t de fau l t ac t i on ’g ’
j ’ f ’ r e s e t s t a t e de fau l tac t i on ’g ’
j ’ f ’ d e c l a r a t i o n l i s t r e s e t s t a t e de fau l tac t i on ’g ’
j ’ f ’ f s m d s t a t e l i s t ’ g ’
j ’ f ’ d e c l a r a t i o n l i s t f s m d s t a t e l i s t ’ g ’
j ’ f ’ r e s e t s t a t e f s m d s t a t e l i s t ’ g ’
j ’ f ’ d e c l a r a t i o n l i s t r e s e t s t a t e f s m d s t a t e l i s t ’ g ’
j ’ f ’ de fau l t ac t i on f s m d s t a t e l i s t ’ g ’
j ’ f ’ d e c l a r a t i o n l i s t de fau l t ac t i on f s m d s t a t e l i s t ’ g ’
j ’ f ’ r e s e t s t a t e de fau l tac t i on f s m d s t a t e l i s t ’ g ’
j ’ f ’ d e c l a r a t i o n l i s t r e s e t s t a t e de fau l tac t i on f s m d s t a t e l i s t ’ g ’

r e s e t s t a t e =
i f ’ ( ’ comma expression ’ ) ’ act ion

de fau l t ac t i on =
act ion

f s m d s t a t e l i s t =
fsmd state
j f s m d s t a t e l i s t fsmd state

fsmd state =
iden t i f i e r o r t ypede f name ’ : ’ act ion

act ion =
’ f ’ ’ g ’
j ’ f ’ d e c l a r a t i o n l i s t ’ g ’
j ’ f ’ r t l s t a t e m e n t l i s t ’ g ’
j ’ f ’ d e c l a r a t i o n l i s t r t l s t a t e m e n t l i s t ’ g ’
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r t l s t a t e m e n t l i s t =
r t l s t a temen t
j r t l s t a t e m e n t l i s t r t l s t a temen t
j r t l s t a t e m e n t l i s t no te de f i n i t i on

r t l s t a temen t =
r t l l a b e l e d s t a t e m e n t
j r t l compoundstatement
j express ions ta tement
j r t l s e l e c t i o n s t a t e m e n t
j r t l jump sta tement

r t l l a b e l e d s t a t e m e n t =
case constan texpress ion ’ : ’ r t l s t a temen t
j default ’ : ’ r t l s t a temen t

r t l compoundstatement =
’ f ’ ’ g ’
j ’ f ’ d e c l a r a t i o n l i s t ’ g ’
j ’ f ’ r t l s t a t e m e n t l i s t ’ g ’
j ’ f ’ d e c l a r a t i o n l i s t r t l s t a t e m e n t l i s t ’ g ’

r t l s e l e c t i o n s t a t e m e n t =
i f ’ ( ’ comma expression ’ ) ’ r t l s t a temen t
j i f ’ ( ’ comma expression ’ ) ’ r t l s t a temen t else r t l s t a temen t
j switch ’ ( ’ comma expression ’ ) ’ r t l s t a temen t

r t l jump sta tement =
goto i den t i f i e r o r t ypede f name ’ ; ’
j break ’ ; ’

except ion statement =
try compoundstatement e x c e p t i o nl i s t o p t

e x c e p t i o n l i s t o p t =
<nothing>
j e x c e p t i o n l i s t

e x c e p t i o n l i s t =
except ion
j e x c e p t i o n l i s t except ion

except ion =
trap pa ren even t l i s t compoundstatement
j interrupt pa ren even t l i s t compoundstatement
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paren even t l i s t =
e v e n t l i s t
j ’ ( ’ e v e n t l i s t ’ ) ’

e v e n t l i s t =
e v e n t i d e n t i f i e r
j e v e n t l i s t ’ , ’ e v e n t i d e n t i f i e r
j e v e n t l i s t ’ j j ’ e v e n t i d e n t i f i e r

pa ren and even t l i s t =
and even t l i s t
j ’ ( ’ and even t l i s t ’ ) ’

and even t l i s t =
e v e n t i d e n t i f i e r ’&&’ e v e n t i d e n t i f i e r
j and even t l i s t ’&&’ e v e n t i d e n t i f i e r

e v e n t i d e n t i f i e r =
i d e n t i f i e r
j edge se lec to r i d e n t i f i e r
j i d e n t i f i e r edgese lec to r

edge se lec to r =
r is ing
j fa l l ing

t iming statement =
do compoundstatement timing ’ f ’ c o n s t r a i n t l i s t o p t ’g ’

c o n s t r a i n t l i s t o p t =
<nothing>
j c o n s t r a i n t l i s t

c o n s t r a i n t l i s t =
cons t ra in t
j c o n s t r a i n t l i s t cons t ra in t

cons t ra in t =
range ’ ( ’ any name ’ ; ’ any name ’ ; ’ t ime opt ’ ; ’ t ime opt ’ ) ’ ’ ; ’

t ime opt =
<nothing>
j time
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time =
constan texpress ion

wai t s ta tement =
wait pa ren even t l i s t ’ ; ’
j wait pa ren and even t l i s t ’ ; ’

wa i t fo r s ta tement =
waitfor time ’ ; ’

no t i f y s ta tement =
not i fy pa ren even t l i s t ’ ; ’
j notifyone pa ren even t l i s t ’ ; ’

A.7 External definitions

t r a n s l a t i o n u n i t =
<nothing>
j e x t e r n a l d e f i n i t i o n l i s t

e x t e r n a l d e f i n i t i o n l i s t =
e x t e r n a l d e f i n i t i o n
j e x t e r n a l d e f i n i t i o n l i s t e x t e r n a l d e f i n i t i o n

e x t e r n a l d e f i n i t i o n =
func t i on de f i n i t i on
j dec la ra t ion
j spec c de f i n i t i on

func t i on de f i n i t i on =
i d e n t i f i e r d e c l a r a t o r compoundstatement
j d e c l a r a t i o n s p e c i f i e r dec la ra to r compoundstatement
j t ype spec i f i e r dec la ra to r compoundstatement
j d e c l a r a t i o n q u a l i f i e r l i s t i d e n t i f i e r d e c l a r a t o r

compoundstatement
j t y p e q u a l i f i e r l i s t i d e n t i f i e r d e c l a r a t o r

compoundstatement

dec la ra to r =
i d e n t i f i e r d e c l a r a t o r
j t ypede f dec la ra to r

t ypede f dec la ra to r =
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paren typedef dec la ra to r
j parametertypede f dec la ra to r

parametertypede f dec la ra to r =
typedef or c lass name
j typedef or c lass name p o s t f i x i n ga b s t r a c t d e c l a r a t o r
j c lean typede f dec la ra to r

c l ean typede f dec la ra to r =
c lean pos t f i x t ypede f dec la ra to r
j ’ � ’ pa rameter typede f dec la ra to r
j ’ � ’ t y p e q u a l i f i e r l i s t parametertypede f dec la ra to r

c l ean pos t f i x t ypede f dec la ra to r =
’ ( ’ c l ean typede f dec la ra to r ’ ) ’
j ’ ( ’ c l ean typede f dec la ra to r ’ ) ’

p o s t f i x i n g a b s t r a c t d e c l a r a t o r

paren typedef dec la ra to r =
pa ren pos t f i x t ypede f dec la ra to r
j ’ � ’ ’ ( ’ s imp le paren typedef dec la ra to r ’ ) ’
j ’ � ’ t y p e q u a l i f i e r l i s t ’ ( ’ s imp le paren typedef dec la ra to r ’ ) ’
j ’ � ’ pa ren typedef dec la ra to r
j ’ � ’ t y p e q u a l i f i e r l i s t paren typedef dec la ra to r

pa ren pos t f i x t ypede f dec la ra to r =
’ ( ’ paren typedef dec la ra to r ’ ) ’
j ’ ( ’ s imp le paren typedef dec la ra to r

p o s t f i x i n g a b s t r a c t d e c l a r a t o r ’ ) ’
j ’ ( ’ pa ren typedef dec la ra to r ’ ) ’

p o s t f i x i n g a b s t r a c t d e c l a r a t o r

s imp le paren typedef dec la ra to r =
typedef or c lass name
j ’ ( ’ s imp le paren typedef dec la ra to r ’ ) ’

i d e n t i f i e r d e c l a r a t o r =
u n a r y i d e n t i f i e r d e c l a r a t o r
j p a r e n i d e n t i f i e r d e c l a r a t o r

u n a r y i d e n t i f i e r d e c l a r a t o r =
p o s t f i x i d e n t i f i e r d e c l a r a t o r
j ’ � ’ i d e n t i f i e r d e c l a r a t o r
j ’ � ’ t y p e q u a l i f i e r l i s t i d e n t i f i e r d e c l a r a t o r
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p o s t f i x i d e n t i f i e r d e c l a r a t o r =
p a r e n i d e n t i f i e r d e c l a r a t o r p o s t f i x i n ga b s t r a c t d e c l a r a t o r
j ’ ( ’ u n a r y i d e n t i f i e r d e c l a r a t o r ’ ) ’
j ’ ( ’ u n a r y i d e n t i f i e r d e c l a r a t o r ’ ) ’

p o s t f i x i n g a b s t r a c t d e c l a r a t o r

p a r e n i d e n t i f i e r d e c l a r a t o r =
i d e n t i f i e r
j ’ ( ’ p a r e n i d e n t i f i e r d e c l a r a t o r ’ ) ’

a b s t r a c t d e c l a r a t o r =
una ry abs t rac t dec la ra to r
j p o s t f i x a b s t r a c t d e c l a r a t o r
j p o s t f i x i n g a b s t r a c t d e c l a r a t o r

p o s t f i x i n g a b s t r a c t d e c l a r a t o r =
a r r a y a b s t r a c t d e c l a r a t o r
j ’ ( ’ ’ ) ’
j ’ ( ’ pa rame te r t ype l i s t ’ ) ’

a r r a y a b s t r a c t d e c l a r a t o r =
’ [ ’ ’ ] ’
j ’ [ ’ constan t express ion ’ ] ’
j a r r a y a b s t r a c t d e c l a r a t o r ’ [ ’ constan texpress ion ’ ] ’

una ry abs t rac t dec la ra to r =
’ � ’
j ’ � ’ t y p e q u a l i f i e r l i s t
j ’ � ’ a b s t r a c t d e c l a r a t o r
j ’ � ’ t y p e q u a l i f i e r l i s t a b s t r a c t d e c l a r a t o r

p o s t f i x a b s t r a c t d e c l a r a t o r =
’ ( ’ una ry abs t rac t dec la ra to r ’ ) ’
j ’ ( ’ p o s t f i x a b s t r a c t d e c l a r a t o r ’ ) ’
j ’ ( ’ p o s t f i x i n g a b s t r a c t d e c l a r a t o r ’ ) ’
j ’ ( ’ una ry abs t rac t dec la ra to r ’ ) ’

p o s t f i x i n g a b s t r a c t d e c l a r a t o r
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Appendix B

SpecC Standard Library

In addition to the standard library inherited from the ANSI-C language, the SpecC Refer-

ence Compiler (SCRC) includes a standard library that supports the handling of SpecC data

types. In addition, a set of standard channels is provided, covering popular synchronization,

resource management and communication methods.

At this time, the SpecC standard library described in this chapter is not yet approved by

the SpecC Technology Open Consortium (STOC) as part of the SpecC language. Therefore,

it is subject to change.

B.1 SpecC standard type and simulation library

In particular for simulation and test bench specification, the SpecC language supports a

simulation library whose application programming interface (API) is declared in the SpecC

header filesim.sh. Via the API defined insim.sh, the current simulation time in the simulator

can be accessed. Also,sim.shoffers APIs for the handling and conversion of the special

SpecC data types that are not supported by the standard library of the ANSI-C language.

The actual contents ofsim.share implementation dependent.

The following example ofsim.shshows the declarations that can be expected to be part

of any implementation of the SpecC simulation library.

Example of sim.sh:

129
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1 / ���������������������������������������������������������� /
2 / � sim.sh: API for SpecC run �time simulation library �/
3 / ���������������������������������������������������������� /
4

5 #ifndef SIM SH
6 #define SIM SH
7

8

9 / ��� type definitions ������������������������������������� /
10

11

12 typedef unsigned long long sim time; // simulation time
13

14

15 / ��� exported functions ����������������������������������� /
16

17

18 extern sim time now( // current simulation time
19 void );
20

21 extern const char �time2str( // convert time to string
22 sim time Time);
23

24 extern sim time str2time( // convert string to time
25 const char �str);
26

27 extern char �ll2str( // conv. longlong to string
28 unsigned int base, // 2 <= base <= 36
29 char �endptr, // last char in buff.
30 long long ll); // long long value
31

32 extern char �ull2str( // conv. ulonglong to string
33 unsigned int base, // 2 <= base <= 36
34 char �endptr, // last char in buff.
35 unsigned long long ull); // u. long long value
36

37 extern long long str2ll( // conv. string to longlong
38 unsigned int base, // 2 <= base <= 36
39 const char �str); // string value
40

41 extern unsigned long long str2ull( // string to ulonglong
42 unsigned int base, // 2 <= base <= 36
43 const char �str); // string value
44

45 extern char �bit2str( // convert bit to string
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46 unsigned int base, // 2 <= base <= 36
47 char �endptr, // last char in buff.
48 ... / � bit[l:r] b �/ ); // bit vector value
49

50 extern char �ubit2str( // convert ubit to string
51 unsigned int base, // 2 <= base <= 36
52 char �endptr, // last char in buff.
53 ... / � unsigned bit[l:r] b �/ ); // bit vector value
54

55 extern void str2bit( // convert string to bit
56 unsigned int base, // 2 <= base <= 36
57 const char �str, // string value
58 ... / � bit[l:r] �bptr �/ ); // pointer to result
59

60 extern void str2ubit( // convert string to ubit
61 unsigned int base, // 2 <= base <= 36
62 const char �str, // string value
63 ... / � unsigned bit[l:r] �bptr �/ );
64

65 #endif / � SIM SH �/
66

67 / ��� EOF sim.sh ������������������������������������������� /

Notes:

i. The SpecC simulation library is available through inclusion of the SpecC standard

header filesim.sh.

ii. The typesim timedefines the type of the simulation time. Since the actual represen-

tation of simulation time is implementation dependent, the typesim timeshould be

used for declaration of any variables of type time.

iii. The functionnowreturns the current simulation time.

iv. The functionstime2strandstr2timeconvert from simulation time to a text string, and

vice versa.

v. The functionsll2str andstr2ll convert fromsigned long long intto a text string, and

vice versa.

vi. The functionsull2str andstr2ull convert fromunsigned long long intto a text string,

and vice versa.
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vii. The functionsbit2str and str2bit convert from bit vector to a text string, and vice

versa.

viii. The functionsubit2str andstr2ubit convert from unsigned bit vector to a text string,

and vice versa.
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B.2 SpecC standard channel library

The SpecC standard channel library provides well-known mechanisms for synchronization,

resource management and communication.

The interfaces and channels listed in the following sections can be expected to be part

of any SpecC language implementation. Furthermore, each of these interfaces and channels

can be expected to be available forimport into any design, by using the interface or channel

name as argument to theimport declaration.

B.2.1 Semaphore channel

Purpose: Protected access to shared resources

Synopsis:

interface i semaphore
f

void release( void );
void acquire( void );
bool attempt( void );

g;

channel c semaphore( in const unsigned long c)
implements i semaphore;

Semantics:

(a) Each thread must callacquire()before using a resource and callrelease()when the

resource is not used any more. Callingrelease()without prior call toacquire() is

illegal.

(b) Calling acquire() multiple times in order to reserve multiple resources at the same

time is legal. However, a deadlock situation may occur if an insufficient number of

resources is available.

(c) release()may only be called as many times asacquire()has been called.

(d) Callingacquire()may suspend the calling thread indefinitely.
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(e) Methodattempt()tries to aquire a resource without any waiting and returns imme-

diately with or without success.attempt()returnsfalse if the resource could not be

acquired, andtrue if the resource has successfully been acquired.

(f) A successfulattempt()must be followed by a call torelease(). An unsuccessful

attempt()must not be followed by a call torelease().

(g) If a thread needs to obtain multiple resources at the same time, a global partial order

of obtaining the resources should be used, otherwise deadlock situations may occur.

(h) One channel instance is required for each set of shared resources.

(i) The number of available resources is given as an external count which must be spec-

ified at the time of the channel instantiation.
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B.2.2 Mutex channel

Purpose: Mutually exclusive access to a shared resource; binary semaphore

Synopsis:

interface i semaphore
f

void release( void );
void acquire( void );
bool attempt( void );

g;

channel c mutex implements i semaphore;

Semantics:

(a) Each thread must callacquire()before using a resource and callrelease()when the

resource is not used any more. Callingrelease()without prior call toacquire() is

illegal.

(b) Calling acquire() multiple times in order to reserve multiple resources at the same

time is legal. However, a deadlock situation may occur if an insufficient number of

resources is available.

(c) release()may only be called as many times asacquire()has been called.

(d) Callingacquire()may suspend the calling thread indefinitely.

(e) Methodattempt()tries to aquire a resource without any waiting and returns imme-

diately with or without success.attempt()returnsfalse if the resource could not be

acquired, andtrue if the resource has successfully been acquired.

(f) A successfulattempt()must be followed by a call torelease(). An unsuccessful

attempt()must not be followed by a call torelease().

(g) If a thread needs to obtain multiple resources at the same time, a global partial order

of obtaining the resources should be used, otherwise deadlock situations may occur.

(h) One channel instance is required for each mutex.
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B.2.3 Critical section channel

Purpose: Protected access to a critical section

Synopsis:

interface i critical section
f

void enter( void );
void leave( void );

g;

channel c critical section implements i critical section;

Semantics:

(a) Each thread must callenter()before entering the critical section and callleave()after

leaving the critical section.

(b) Calling leave()without prior call toenter()is illegal.

(c) Callingenter()twice withoutleave()in between is illegal.

(d) Calling leave()twice withoutenter()in between is illegal.

(e) Callingenter()may suspend the calling thread indefinitely.

(f) If a thread needs to enter multiple critical sections at the same time, a global partial

order of entering the sections should be used, otherwise deadlock situations may

occur.

(g) One channel instance is required for each critical section.



B.2. SPECC STANDARD CHANNEL LIBRARY 137

B.2.4 Barrier channel

Purpose: Barrier synchronization, rendezvous

Synopsis:

interface i barrier
f

void barrier( void );
g;

channel c barrier( in unsigned long N)
implements i barrier;

Semantics:

(a) Each participating thread callsbarrier() to synchronize with the other participating

threads at the barrier.

(b) A call tobarrier() will suspend the calling thread until all other participating threads

have arrived at the barrier. Then, all participating treads resume their execution.

(c) Callingbarrier() may suspend the calling thread indefinitely.

(d) One channel instance is required for each barrier.

(e) At the time of barrier instantiation, the numberN of participating threads that use the

barrier is fixed.

(f) Exactly N threads must use the barrier. If less thanN or more thanN threads use the

barrier, the behavior is undefined.
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B.2.5 Token channel

Purpose: Modeling Petri nets with consumers and producers

Synopsis:

interface i consumer
f

void consume( unsigned long n);
g;

interface i producer
f

void produce( unsigned long n);
g;

interface i token
f

void produce( unsigned long n);
void consume( unsigned long n);

g;

channel c token implements i producer, i consumer, i token;

Semantics:

(a) i consumerrepresents a consumer interface to a token channel as known from Petri

nets. Each connected thread acts as a consumer.

(b) i producer represents a producer interface to a token channel as known from Petri

nets. Each connected thread acts as a producer.

(c) i tokenrepresents a general interface to a token channel as known from Petri nets.

Each connected thread may act as both, a consumer and/or producer.

(d) A consumer callsconsume(n)to consumen tokens.

(e) A call to consume()will return immediately if the requested number of tokens is

already present, consuming those tokens.
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(f) A call to consume()will block the caller if not enough tokens are present, until a

sufficient number of tokens has been produced.

(g) Callingconsume()may suspend the calling thread indefinitely.

(h) A producer callsproduce(n)to producen tokens.

(i) A call to produce()will produce the given number of tokens and immediately return.

(j) One token channel instance may be used multiple times and with multiple consumers

and/or producers.

(k) If used for production and consumption by the same thread, the thread may consume

its own tokens.
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B.2.6 Queue channel

Purpose: Type-less, fixed-size queue for use with any number of senders and receivers

Synopsis:

interface i sender
f

void send( void �d, unsigned long l);
g;

interface i receiver
f

void receive( void �d, unsigned long l);
g;

interface i tranceiver
f

void send( void �d, unsigned long l);
void receive( void �d, unsigned long l);

g;

channel c queue( in const unsigned long size)
implements i sender, i receiver, i tranceiver;

Semantics:

(a) A thread connected to the interfacei senderacts as a sender.

(b) A thread connected to the interfacei receiveracts as a receiver.

(c) A thread connected to the interfacei tranceiveracts as a tranceiver. In other words,

it may act as a sender, receiver, or both.

(d) A call tosend()sends out a packet of data to a connected channel.

(e) Callingsend()may suspend the calling thread indefinitely.

(f) A call to receive()receives a packet of data from a connected channel.

(g) Calling receive()may suspend the calling thread indefinitely.
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(h) Data packets are typeless (represented by an array of bytes) and may vary in size for

separate calls tosend()andreceive().

(i) The queue channeli queueoperates in first-in-first-out (FIFO) mode.

(j) One channel instance is required for each queue.

(k) Multiple threads may use the same channel instance.

(l) The size (number of bytes) of the queue must be specified at the time of the channel

instantiation. The data packet size must not be larger than the specified size of the

queue.

(m) If different packet sizes are used with the same queue, a receiver may receive only

partial or multiple packets depending on the requested packet size.

(n) If insufficient space is available in the queue,send()will suspend the calling thread

until sufficient space becomes available.

(o) If insufficient data is available in the queue,receive()will suspend the calling thread

until sufficient data becomes available.
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B.2.7 Handshake channel

Purpose: Safe one-way synchronization between a sender and a receiver

Synopsis:

interface i receive
f

void receive( void );
g;

interface i send
f

void send( void );
g;

channel c handshake implements i send, i receive;

Semantics:

(a) A thread connected to the interfacei sendacts as a sender.

(b) A thread connected to the interfacei receiveacts as a receiver.

(c) A call to receive()lets the receiver wait for a handshake from the sender.

(d) If a handshake is present at the time ofreceive(), the call toreceive()will immediately

return.

(e) If no handshake is present at the time ofreceive(), the calling thread is suspended

until the sender sends the handshake. Then, the receiver will resume its execution.

(f) Calling receive()may suspend the calling thread indefinitely.

(g) A call tosend()sends a handshake to the receiver. If the receiver is waiting at the time

of thesend(), it will wake up and resume its execution. Otherwise, the handshake is

stored until the receiver callsreceive().

(h) Callingsend()will not suspend the calling thread.



B.2. SPECC STANDARD CHANNEL LIBRARY 143

(i) The behavior is undefined ifsend()is called successively without any calls tore-

ceive().

(j) Only one sender and one receiver may use the channel at any time. Otherwise, the

behavior is undefined.
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B.2.8 Double handshake channel

Purpose: 2-way handshake channel for type-less data transfer from a sender to a receiver

Synopsis:

interface i sender
f

void send( void �d, unsigned long l);
g;

interface i receiver
f

void receive( void �d, unsigned long l);
g;

channel c double handshake implements i sender, i receiver;

Semantics:

(a) A thread connected to the interfacei senderacts as a sender.

(b) A thread connected to the interfacei receiveracts as a receiver.

(c) A call tosend()sends out a packet of data to a connected channel.

(d) Callingsend()may suspend the calling thread indefinitely.

(e) A call toreceive()receives a packet of data from a connected channel.

(f) Calling receive()may suspend the calling thread indefinitely.

(g) Data packets are typeless (represented by an array of bytes) and may vary in size for

separate calls tosend()andreceive().

(h) The channelc doublehandshakeoperates in rendezvous fashion. A call tosend()

will suspend the sender until the receiver callsreceive(), and vice versa. When both

communicating parties are ready, data is transferred from the sender to the receiver

and both can resume their execution.
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(i) Exactly one receiver and one sender thread may use the same channel instance. If

used by more than one sender or receiver, the behavior of the channel is undefined.

(j) The same channel instance may be used multiple times in order to transfer multiple

data packets from the sender to the receiver.

(k) If different packet sizes are used with the same channel, the user has to ensure that

the data size of the sender always matches the data size expected by the receiver. It is

an error if the sizes in a transaction don’t match.
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