

Detecting Rare Events in Cognitive Systems

Misha Pavel, Holly Jimison, Hynek Hermansky Daphna Weinshall

Detection and Identification of Rare Audiovisual Cues

- EU project of the FP6, with nine partners:
 - http://www.diracproject.org/
 - IDIAP research institute (CH),
 - Eidgenossische Technische Hochschule Zuerich (CH),
 - The Hebrew University of Jerusalem (IL),
 - Czech Technical University (CS),
 - Carl von Ossietzky Universitaet Oldenburg (DE),
 - <u>Leibniz Institute for Neurobiology</u> (DE),
 - Katholieke Universiteit Leuven (B),
 - Oregon Health and Science University (USA).

- Objective: Detect and interpret "rare" events
- by analysis and fusion of multimodal sensory inputs
- Hynek Hermansky PI and Coordinator

Outline

- Background: Novelty is old
- Oddballs vs. rare
- Categorization framework
- Rare definition
- Role of utilities
- Examples

Intelligence: Response to the Unknown

- Ubiquity of the problem: Response to the unexpected (fight or flight)
- Long history in philosophy and science from Aristotle to modern philosophers
- Psychology and Cognitive Science
 - Cognitive functions and intelligence
 - Discrimination
 - Categorization
 - Generalization
- Informatics Examples
 - Information Theory: Quantification of surprise
 - Statistical pattern recognition, classification
 - Machine Learning
 - Data Compression

Problem

- Given: A classification system designed to respond optimally to examples in a training & validation sets
- System is confronted with a stimulus that is different from those in the training set
- Possible responses:
 - Fixed Response: Best fitting class
 - Adaptive Response: Modify the best fitting class adapt the most probable category
 - Adaptive Response: Create a new category with a temporary label
 - Adaptive Response: Run ©

Basic Premise

 Observation: Humans and animals are usually good at responding optimally to the detection of "rare" stimuli and events

Violations of this observation are striking

- Can we build robots with these capabilities?
- Can we refine neuroscience paradigms to determine the neural substrate of this capability?

Determinants of Intelligent (Objective) Response

- Is there an explicable reason for the stimulus interpretation?
 - Noise
 - Distortion
 - Occlusion
 - Context
- Is the response to the rare event important?
 - Context
 - Task
 - Consequences

Psychology: Paradigms and Approaches

Paradigms used to study of humans and animal responses to novel stimuli

- Discrimination
 - Sensitivity of the sensory system
- Categorization
 - Search
 - Oddball detection
- Generalization

Framework for Discrimination and Categorization

Perceptual Discrimination

Example: Discrimination between two tones, f₁ and f₂

Perceptual Categorization

Example: Categorization of tones, f₁ and f₂

Multidimensional Categorization

Example: Categorization Regions

Psychological Generalization

Example: Salivation response to tones

Generalization vs. Categorization

Classical Detection of "Novel" Stimuli

Spatial Oddball Detection: Color or Shape

Temporal Oddball Detection: Color or Shape

Intuitive Notion of Rare, Unexpected Events

- Low <u>class</u> posterior probability can be caused by
 - Low prior probability
 - Uncertain, ambiguous measurement
 - Unexpected combination of observations
 - New class to be added?
 - Low class prior probability in context
- Most current systems' response to Low probability stimuli
 - System finds the response with maximum a posteriori probability (MAP)
 - The output is the MAP response
 - System may provide confidence metrics
- Can system recognize its ignorance?
 Feature class incongruence + high importance (utility)

Summary of Intuitive Description

- Low posterior probability due to conflicts among different interpretations of the same object or concept
- More generic interpretation has high posterior while the less generic has low posterior probability
- To make this intuition precise we need a formal structure

Notation

Observations

$$\mathbf{X} = \{X_1, X_2, ..., X_n\}$$

Features

$$\mathbf{Y} = \left\{ Y_1, Y_2, ..., Y_m \right\}$$

Classes/Labels

$$\mathbf{L} = \left\{ l_1, l_2, \dots, l_k \right\}$$

Prior Class Probability

$$P\{L \mid C\}$$

Set of Utilities:

$$U = \{u_{00}, u_{01}, u_{10}.u_{11}\}$$

Context

$$C$$
, $P\{C\}$

Probability of new category

$$P\{L_{n+1} \mid C\}$$

Classification in Context

- Maximum a Posteriori -- $P\{L \mid \mathbf{Y}, C\} = P\{\mathbf{Y} \mid L, C\} \frac{P\{L \mid C\}}{P\{\mathbf{Y} \mid C\}}$ Mode of posterior
 - probability distribution

$$L^* = \arg\max_{\forall l} \{P\{L \mid \mathbf{Y}, C\}\}$$

Maximum Expected Utility:

$$L^* = \underset{\forall L}{\operatorname{arg\,max}} \left\{ \sum_{K} u_{LK} P\{L \mid K, \mathbf{X}, C\} \right\}$$

Need a framework for classification

Part-Membership Hierarchy of Categories

Class-Membership Categories

Shortcomings of a-priori Hierarchical Structures

- Strict hierarchy (tree-based representation) is violated
- Infinite number of levels What level is appropriate?
 - Basic categories????
 - Well-defined hierarchy level???

O Depends on Context and Task

Can we develop a structure that captures the advantages hierarchy and overcomes

Incorporate context

An Alternative: Object – Feature Space

Object – Feature Space – Sensors as Predicates

Telluride 2008

Complete Partial Order

Class-Specific Partial Order

Example: Partial Order in Visual Search

Object – Feature Space – Sensors as Predicates

Objects

$$y \in \mathbf{Y}$$

Predicates

$$F_i: \mathbf{Y} \to \{\mathbf{0}, \mathbf{1}\}$$

Partial Order

Weaker

Model

Example: Part – Membership Category

Dog is more specific (stronger) model then parts

Example: Class – Membership

$$F_{\textit{dog}} = F_{\textit{Afgan}} \cup F_{\textit{Beagel}} \cup F_{\textit{Collie}}$$

$$F_{dog} \supset F_{legs} \Rightarrow dog \succ Afgan$$

Dog is more general (weaker) model then the breeds

Incongruent Part – Whole Category

$$F_{dog} = F_{legs} \cap F_{head} \cap F_{tail}$$

$$F_{dog} \subset F_{legs} \Rightarrow dog \prec legs$$

$$P_{dog}^{s} = \prod_{b \in A^{l}} P_{b} = P_{legs} P_{head} P_{tail}$$

$$P_{dog}^{s}(\mathbf{X}) \gg P_{dog}(\mathbf{X})$$

Example: Class – Membership

Incongruent

$$F_{dog} = F_{Afgan} \cup F_{Beagel} \cup F_{Collie}$$

$$F_{dog} \supset F_{legs} \Rightarrow dog \succ Afgan$$

$$F_{dog} = F_{Afgan} \cup F_{Beagel} \cup F_{Collie}$$

$$\mathbf{P}_{dog}^{g} = \sum_{b \in A^{s}} P_{b} = P_{Afgan} + P_{Beagle} + P_{Collie}$$

$$P_{dog}^{g}\left(\mathbf{X}\right) \ll P_{dog}\left(\mathbf{X}\right)$$

Rare – Incongruent Events

	Specific	General
"Noise" or oddball	Low	Low
Incongruent	Low	High
Incorrect Model	High	Low
Not rare or incongruent	High	High

$$D\left[P_a^l(\mathbf{X})|P_a(\mathbf{X})\right] = \int P_a^l(x) \log \frac{P_a(x)}{P_a^l(x)} dx$$

Algorithms for Detection of Rare Events

Hierarchical Models of Rare Events

Context

- Task
- Environmental setting
- Hierarchy of models

- Prior probabilities
- Utilities

How to Get Utility Estimates?

- Utility estimation from context and background
 - Linguistic analysis
 - Multimodal inputs
 - Contextual cues
 - Task objectives

Example of Utility Assessment: Linguistic Analysis

The maly man drank pivo

Example of Utility Application: Roadside Text/Graphics

Example of Utility Application: Roadside Text/Graphics

Diamond shape gives the context of the sign Warning has a high utility

Example of Utility Application: Roadside Text/Graphics

Novel symbol (at some point) (junction at a bend)

Framework: Detection of Conflict in Probabilities

- Generative approach (a speech example)
- Discriminative approach (a vision example)

Example: Digit Recognition

Context: "Please say your ten digit account number"

- Expected: Sequence of 10 digits:
- Possible "unexpected" inputs:
 - "O"
 - "Not"
 - "Three hundred twenty"
- Context: "Please say your address"
- Expected: "One six zero zero pennsylvania avenue"
- Possible "unexpected" inputs:
 - "Sixteen hundred pennsylvania avenue"
 - "Pennsylvania avenue sixteen hundred"

Example: Detection of out-of-vocabulary (OOV) Words

Example: Out-of-Vocabulary Word Detection

- Train a spoken digit recognizer on all but one digits
- Test with all digits

Example: Out-of-Vocabulary Word Detection

Detection Results (without Utility)

Audio-Visual Detection of New Individual

Known Training Identities

Known Testing Identities

Unknown Identities

Example: Detection of out-of-vocabulary (OOV) Words

Results

Audio-Visual Authentication

- Classify individuals using A/V inputs
- Categories were
 - Face
 - PLP Speech representation

Rare – Incongruent Events

	Specific Afgan	General Dog
"Noise" or oddball	Reject	Reject
Incongruent	Reject	Accept
Incorrect Model	Accept	Reject
Not rare or incongruent	Accept	Accept

ROC for Imposter Classification

Work in Progress

Using learning by generation (Hinton)

 Generative model of stimulus features

Leave a digit out

Summary:

- Detection of Conflict in Probabilities
- Utility of Responses

Human is not Perfect: Disjunction of Features

Search for Color and Shape

Application Areas

- 1. Elder Monitoring
 - 1. Elders inside/outside activities (falls, near falls, mishaps)
 - 2. Elders social interactions anomalies
 - 3. Elders adherence to regiments (medication taking)
- 2. Surveillance and Security
 - 1. Analysis of audio/video transmissions
 - 2. Analysis of interviews
- 3. Navigation Aids
 - 1. Navigation in unknown environments
 - 2. Navigation in support of people with cognitive deficits
- 4. A/V Appearance Training
- 5. Deception Detection

The Ultimate Goal

 Incongruence detection is the basic component of humor

- Robot that can tell jokes
- Robot that can laugh at good jokes
- Robot that will laugh at my jokes

Acknowledgements

Colleagues and partners in DIRAC

- European Commission Funding of DIRAC
- NIH
- DARPA

Thank You

END

