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DARAC

Detection and Identification of Rare Audiovisual Cues

e Objective: Detect and interpret “rare” events
e by analysis and fusion of multimodal sensory inputs

e Hynek Hermansky — Pl and Coordinator
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Outline

 Background: Novelty is old
e Oddballs vs. rare

e Categorization framework
e Rare definition

* Role of utilities

e Examples
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Intelligence: Response to the Unknown

e Ubiquity of the problem: Response to the unexpected
(fight or flight)

* Long history in philosophy and science from Aristotle to
modern philosophers

e Psychology and Cognitive Science
— Cognitive functions and intelligence
— Discrimination
— Categorization
— Generalization

e Informatics Examples
— Information Theory: Quantification of surprise
— Statistical pattern recognition, classification
— Machine Learning
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Problem

e Given: A classification system designed to respond
optimally to examples in a training & validation sets

e System is confronted with a stimulus that is different
from those in the training set

e Possible responses:
— Fixed Response: Best fitting class

— Adaptive Response: Modify the best fitting class — adapt
the most probable category

— Adaptive Response: Create a new category with a
temporary label

— Adaptive Response: Run ©
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Basic Premise

 Observation: Humans and animals are usually good
at responding optimally to the detection of “rare”
stimuli and events

e Violations of this observation are striking

e Can we build robots with these capabilities?

e Can we refine neuroscience paradigms to determine
the neural substrate of this capability?
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Determinants of Intelligent (Objective) Response

e |sthere an explicable reason for the stimulus
interpretation?
— Noise
— Distortion
— Occlusion
— Context

e |sthe response to the rare event important?

— Context
— Task
— Consequences
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Psychology: Paradigms and Approaches

Paradigms used to study of humans and animal
responses to novel stimuli

* Discrimination
— Sensitivity of the sensory system

 (Categorization

— Search
— Oddball detection

e Generalization
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Framework for Discrimination and Categorization

Noise
Distortion Sensory

Interference Inputs

Peripheral

Analysis

X Stimulus Frequency [Hz]
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Perceptual Discrimination

Example: Discrimination between two tones, f; and f,

Response Response
A B
Threshold . Oddball

330 332
Stimulus Frequency [HZz]
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Perceptual Categorization

Example: Categorization of tones, f;, and f,

Response Response
uDOn “Re”
Category ~
Boundary R
! \
! \
! \
/ \
/ \
_ / \ -
330 (E) 370 (F#)

Stimulus Frequency [HZz]
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Multidimensional Categorization

Example: Categorization Regions
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Example: Salivation response to tones

Trained Test
Response Response
VA

Psychological Generalization

Stimulus Frequency [HZz]

0 - Generalization Math tical
n S : athematica
s 2 Gradient Models based on
a2 UTILITY
T n
Stimulus Frequency [Hz] HEALTH &
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Generalization vs. Categorization
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Learning
dynamics
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Classical Detection of “Novel” Stimuli

Telluride 2008

Spatial Oddball Detection: Color or Shape

Temporal Oddball Detection: Color or Shape
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Intuitive Notion of Rare, Unexpected Events

 Low class posterior probability can be caused by
— Low prior probability
— Uncertain, ambiguous measurement
— Unexpected combination of observations
— New class —to be added?
— Low class prior probability in context

e Most current systems’ response to Low probability stimuli

— System finds the response with maximum a posteriori probability
(MAP)

— The output is the MAP response
— System may provide confidence metrics

e (Can system recognize its ignorance?
Feature — class incongruence + high importance (utility)
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Summary of Intuitive Description

 Low posterior probability due to conflicts among
different interpretations of the same object or
concept

* More generic interpretation has high posterior while
the less generic has low posterior probability

 To make this intuition precise we need a formal
structure
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Notation

e QObservations

* Features

* (Classes/Labels

e Prior Class Probability
e Set of Utilities:

* Context

 Probability of new category

Telluride 2008

X ={X;, X500, X, )

Y ={Y,Y,,..Y,)
L={l,1,,..1)
P{L|C)

U = {UOO’u01’u10'ull}
c, p{C

P{L..IC]
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Classification in Context

* Maximum a Posteriori --P{L|Y,C} =P{Y|L,C} P{L|C}
P{Y|C}
- Mode of posterior

probability distribution . _ argmax {P{L|Y,C}}

VI

e Maximum Expected

L = arg max u P LK, X,C
Utility: gVL {Z - l }}

Need a framework for classification
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Part-Membership Hierarchy of Categories
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Class-Membership Categories
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http://en.wikipedia.org/wiki/Image:Afghan_Hound.jpg
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Shortcomings of a-priori Hierarchical Structures

e Strict hierarchy (tree-based representation) is violated

* Infinite number of levels — What level is appropriate?
— Basic categories???? ° 0 O
— Well-defined hierarchy level???

Depends on
Context and Task

Can we develop a structure that captures the OREGON ISt
advantages hierarchy and overcomes HE%%?TIEINE
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An Alternative: Object — Feature Space

Objects

h)

Sensors

Feature 1

Feature 1
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Object — Feature Space — Sensors as Predicates

Objects
|:1

Sensors

F:Y—>{01}

Partial Order

— b Fsh
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Complete Partial Order
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Class-Specific Partial Order
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Example: Partial Order in Visual Search

Q
A
A \ A

E FE@ F ®F I (FOR)RE FHe2

1\‘I ey
Slme AL
|
Sl moe

Q

F, — Shape

Rank




—

Object — Feature Space — Sensors as Predicates

Objects yeY
Predicates F:Y —{01}
Partial Order d <b/<:>Fa Ejlzb\
Stronger Weaker
More Specific More General [ [
Model Model ALTH t=d
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Example: Part — Membership Category

|:dog = |:Iegs M |:hea |:tall
Fioy © Fegs = dog < legs

Dog is more specific (stronger) model then parts
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Example: Class — Membership

|:dog = |:Afgan - |:Beagel N |:Collie
Fioy 2 Fegs = dog > Afgan

Dog is more general (weaker) model then the breeds
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http://en.wikipedia.org/wiki/Image:Rough_Collie_600.jpg
http://en.wikipedia.org/wiki/Image:Afghan_Hound.jpg

Incongruent Part — Whole Category

|:dog = |:Iegs M |:head a |:tail
Fioy © Fegs = dog < legs

Pdsog = H Pb :Plegs Phead Ptail

beAl

Incongruent Piog (X) > Pyog (X)
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Example: Class — Membership

@ |:dog = |:Afgan N |:Beagel - |:Collie

Fioy 2 Fegs = dog >~ Afgan
|:dog = |:Afgan N |:Beagel N |:Collie

dog Z P I:)Afgan Beagle I:)Collie

be A’

Pivg (X) < Pyog (X)

Incongruent
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http://en.wikipedia.org/wiki/Image:Rough_Collie_600.jpg
http://en.wikipedia.org/wiki/Image:Afghan_Hound.jpg

Rare —

Incongruent Events

Specific General
“Noise” or
oddball Low Low
Incongruent Low High
Incorrect :
Model High Low
Not : :
| ot rare or High High
incongruent
P. (%)
D P P I dx
[ } J )log '(x)

Telluride 2008
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Algorithms for Detection of Rare Events

Sensory Context
Inputs
X Peripheral Model 1
Analysis Inference
Class
P {Y | X} Inverse

Model

e Compare

D[P{Y|x},P{Y| L}]

Evaluate < Utlllty

Deviation
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Hierarchical Models of Rare Events

Sensory
Inputs

Context

X

P{Y|X}

Utility
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Context

e Task
 Environmental setting
 Hierarchy of models

* Prior probabilities
e Utilities
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How to Get Utility Estimates?

o Utility estimation from context and background
— Linguistic analysis
— Multimodal inputs
— Contextual cues
— Task objectives
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Example of Utility Assessment: Linguistic Analysis

IDet|

e T T N |

The maly man drank| pivo
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Example of Utility Application: Roadside Text/Graphics

[ = — — —Gr="T"—

| | |
:Advertise: ' Inform ! ' Warn ! ' Prohibit !

Higher Utility -

G | OWer Utility
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Example of Utility Application: Roadside Text/Graphics

[ = — — —Gr="T"— [— = = — — =

| | |
:Advertise: ' Inform ! ' Warn ! ' Prohibit !

Diamond shape gives the context of the sign |
Warning has a high utility HEALTL B2
&SCIENCE
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http://www.answers.com/main/Record2?a=NR&url=http://commons.wikimedia.org/wiki/Image:Signmedian.svg
http://commons.wikimedia.org/wiki/Image:Diamond road sign dangerous corner.svg
http://commons.wikimedia.org/wiki/Image:Diamond road sign dangerous bend.svg

Example of Utility Application: Roadside Text/Graphics

' Advertise !

Telluride 2008

|
' Inform ! :

Novel symbol (at some point)
(junction at a bend)
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http://commons.wikimedia.org/wiki/Image:Diamond road sign junction bend minor road.svg

Framework: Detection of Conflict in Probabilities

 Generative approach (a speech example)
e Discriminative approach (a vision example)

E—
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Example: Digit Recognition

Context: “Please say your ten digit account number”
e Expected: Sequence of 10 digits:
e Possible “unexpected” inputs:

— “0”

— “Not”

— “Three hundred twenty”

e Context: “Please say your address”
e Expected: “One six zero zero pennsylvania avenue”

* Possible “unexpected” inputs:
— “Sixteen hundred pennsylvania avenue”
— “Pennsylvania avenue sixteen hundred ”
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Example: Detection of out-of-vocabulary (OOV) Words

Specific Model
Generative Model

Words

Sound

InpUt Peripheral
Sensory Compare Incongruence
X Analysis

General Model J——
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Example: Out-of-Vocabulary Word Detection

e Train a spoken digit recognizer on all but one digits
e Test with all digits
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Example: Out-of-Vocabulary Word Detection

from HMM

=
o
3

phoneme &

phoneme
index

Z

index

Kullbach-Leibner
divergence

“five” ““three” “Zero’
: 4 i e SH - e Specific
Y] s ohf Y/ comd  Model
| fa)"f i : ﬂ i l*— : i i
: a - AR/ T : General
—I-"\-— Irf ﬂ':ff """""""'"'l e Model I
I ) | | —
| |
1

time
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Detection Results (without Utility)

Miss probahility (in %)

w, .| ==+ = baseline: Cmax
"'e...i. | m—LYCSR + weak features
: : LVCBR + NN posterios
all featLnes

Telluride 2008
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Audio-Visual Detection of New Individual

Known Training Identities Known Testing Identities
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Example: Detection of out-of-vocabulary (OOV) Words

Specific Model

Generative Model
One of a -

Sound
InpUt Peripheral
Sensory Compare Incongruence
X Analysis
Video
Input

Detector

General Model OREGON
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0.2

0.1
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Audio
Fusion | -
1 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 05 0.6 0.7 08 0.9 1
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Audio-Visual Authentication

e (Classify individuals using
A/V inputs
e Categories were

— Face
— PLP Speech representation
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Rare — Incongruent Events

Specific General
Afgan Dog
“Noise” or : :
oddball Reject Reject
Incongruent Reject Accept
Incorrect -
Model Accept Reject
Not
. oL rare or Accept Accept
Incongruent
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ROC for Imposter Classification

True positive rate
—_
o

0.4 .
0.3 audio
02 visual i
audio—-visual
0.1 audio (OC-5VM)H
visual (OC-5VM)
D | | | | | | T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate /
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Work in Progress

 Using learning by
generation (Hinton)

e Generative model of
stimulus features

e Leave a digit out

Telluride 2008
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Summary:

e Detection of Conflict in Probabilities
e Utility of Responses

Specific/ Constrained

Incongruence

Detection
+

Utility
General/Weakly Constrained q
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Human is not Perfect: Disjunction of Features

Search for Color and Shape

Telluride 2008
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Application Areas

. Elder Monitoring

1. Elders inside/outside activities (falls, near falls, mishaps)
2. Elders social interactions anomalies

3. Elders adherence to regiments (medication taking)

. Surveillance and Security

1. Analysis of audio/video transmissions

2. Analysis of interviews

. Navigation Aids

1. Navigation in unknown environments

2. Navigation in support of people with cognitive deficits
. A/V Appearance Training

. Deception Detection
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The Ultimate Goal

Telluride 2008

Incongruence detection is the basic
component of humor

RO
RO
Ro

oot t
oot t

0ot t

nat can tell jokes
nat can laugh at good jokes

nat will laugh at my jokes
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Thank You
END

OREGON
HEALTH ez

&SCIENCE

Telluride 2008 UNIVERSITY



	Detecting Rare Events�in Cognitive  Systems
	DIRAC
	DIRAC
	Outline 
	Intelligence: Response to the Unknown
	Problem
	Basic Premise
	Determinants of Intelligent (Objective) Response
	Psychology:  Paradigms and Approaches
	Framework for Discrimination and Categorization
	Perceptual Discrimination
	Perceptual Categorization
	Multidimensional Categorization 
	Psychological Generalization
	Generalization  vs. Categorization
	Classical Detection of “Novel” Stimuli
	Intuitive Notion of Rare, Unexpected Events
	Summary of Intuitive Description
	Notation
	Classification in Context
	Part-Membership Hierarchy of Categories
	Class-Membership Categories
	Shortcomings of a-priori Hierarchical Structures
	An Alternative: Object – Feature Space
	Object – Feature Space – Sensors as Predicates
	Complete Partial Order
	Class-Specific Partial Order
	Example: Partial Order in Visual Search
	Object – Feature Space – Sensors as Predicates
	Example: Part – Membership Category
	Example: Class – Membership  
	Incongruent  Part – Whole Category
	Example: Class – Membership  
	Rare – Incongruent Events
	Algorithms for Detection of Rare Events
	Hierarchical Models of Rare Events
	Context
	How to Get Utility Estimates?
	Example of Utility Assessment: Linguistic Analysis
	Example of Utility Application: Roadside Text/Graphics
	Example of Utility Application: Roadside Text/Graphics
	Example of Utility Application: Roadside Text/Graphics
	Framework: Detection of Conflict in Probabilities
	Example: Digit Recognition
	Example: Detection of out-of-vocabulary (OOV) Words
	Example:  Out-of-Vocabulary Word Detection
	Example:  Out-of-Vocabulary Word Detection
	Example:  Out-of-Vocabulary Word Detection
	Detection Results (without Utility)
	Audio-Visual Detection of New Individual
	Example: Detection of out-of-vocabulary (OOV) Words
	Results
	Audio-Visual Authentication
	Rare – Incongruent Events
	ROC for Imposter Classification
	Work in Progress
	Summary:
	Human is not Perfect: Disjunction of Features
	Application Areas
	The Ultimate Goal
	Acknowledgements
	END



