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The Big Picture: Motivation

Developing Biomorphic Robotics

Biomuscle/
Catapult System
Enclosure

Shell

Adaptive
Biomorphic
Circuits &
Systems

Restoring function after limb Restoring function after severe
amputation spinal cord injury
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Central Pattern Generator (CPG)

Networks of neurons in the spinal
cord of vertebrates

Generate sequences of patterned
outputs to activate muscles

Control motor systems with regular,
periodic activity (breathing, chewing,
locomotion, etc.)

Basic architecture is preserved across
species

[Cohen et al., 1988]

Basis of locomotion in all vertebrates
studied to-date, including primates
and humans*

Convincing evidence in marmosets
[Fedirchuk et al., 1998]

Similar data in humans

(without deafferentation)

[Dimitrijevic et al., 1998]
CPG is used for “periodic” not
specialized, locomotion
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CPG Architecture

First conceptual “model” in
1911 by T. G. Brown: half-
center oscillator

&_©

HCO structure preserved in
modern models

Cellular models in primitive
vertebrates

Models in higher

vertebrates are less

detailed; designed to match

behavioral data Source: Rybak et al., J Physiol, 2006




CPGs in Action

Spinal Transection @ T11

« The CPG is self-sufficient and
contained within the spinal

cord
Source: Mellen et al., 1995;

Grillner & Zangger, 1984; Minassian et al., 2004
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CPGs for arm movements

Question: “Does the CPG also effect upper limb movements?”




CPGs for arm movements

Question: “Does the CPG also effect unoer limb movements?”




CPGs for arm movement

. Two philosophies:
Pattern-generation based models

Visually-guided trajectory formation models

. Schaal et al.: wrist flexion/extension
experiments to compare Rhythmic and Discrete

Activity (RA, DA)
=» Do the two types of movements have a common

neural basis?

[Schaal, S., Sternad, D., Osu, R., Kawato, M. Rhythmic arm movement is not discrete. Nature Neuroscience 7(10), 1137-1144 (2004) ]




CPGs for arm movement
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Conclusion: “since the entire functional rhythmic movement is contained

in the discrete circuit, it is possible that discrete movement is based on
modulating the original pattern generator loop, for example by smoothly
aborting the rhythmic movement after half a cycle”

[Schaal, S., Sternad, D., Osu, R., Kawato, M. Rhythmic arm movement is not discrete. Nature Neuroscience 7(10), 1137-1144 (2004) ]




Repetitive Hand Motions

. Object rotation
. Force sensing resistors on
object

. Study intrinsic relationships
between fingers during
task

. Organize contact patterns
within a “period”

[Y. Kurita, J. Ueda, Y.
Matsumoto, T. Ogasawara.
CPG-based manipulation:

generation of rhythmic finger
gaits from human
observation. Proc.ICRA, 2004.]




CPG implementation

Index turns off thumb

Thumb turns off ring

Ring turns off index Middle
Middle and thumb in sync fing.

S0 LA 0.2 0.3 0.4 o5 0.6 o7 0g

[Russel, et al., EMBS, 2008]




Controlling upper limb movements

. it is possible to use CPG-based mechanisms to
smoothly abort the rhythmic movement after
half a cycle, as suggested by Schall

. This can be achieved on wrist movements as
well as movements of individual fingers

. In amputees and tetraplegics: necessity to
first extract movement intention as conveyed
by CNS/PNS-related activity
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=

Spinal Cord Injury (SCl)

SCl is usually a focal injury:

vertebral body dislocation =

spinal cord contusion

Kills spinal cord cells at lesion
Site
Severs connections

Leaves cells above/below
lesion intact

In most cases (¥65%), lower limb
CPG is intact after SCI

Paralysis is caused by loss of
descending control of the CPG,
not by loss of CPG itself

Tonic & phasic inputs to CPG
are disconnected

Efferent inputs required to
activate CPG and control

locomotion
—> Paralysis

32 and Bowel and Bladder

Cauda
Equina




Responsibilities of Locomotion
Controller

1. Select Gait
+ specify desired motor output ,
- phase relationships £5% 2. Activate CPG

- joint angles W + tonic stimulation initiates locomotion
' N~ - epidural spinal cord stimulation (ESCS)

- intraspinal microstimulation (ISMS)
4. Control Output of CPG

+ phasic stimulation
(efferent copy required for

precisely-timed stimuli)
- convert baseline CPG activity
into functional motor output
- correct deviations
- adjust individual components
- adapt output to environment

f ’-_: 1‘ 18 Select gait ~ brain
3. Generate “Efferent Copy” i) & Activate CPG ™~ brainstem (MLR)

+ monitor sensorimotor state Uy Efferent copy ~ efferent copy

- external sensors on limbs y X L Enforce/adapt output ~ phasic RS
- internal afferent recordings
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Hardware Development:
Gait Controller

Goal: develop a hardware system that can prescribe appropriate motor output
based on pre-defined gait and current sensorimotor state

Justification: need to know what the biological CPG is doing at all times and what
we want it to do next in order to effectively control it

Approach: build a silicon model of biological CPG, i.e. a neuromorphic silicon CPG
chip (SiCPG)
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CPGv2 (Tenore et al., 2004) CPGv3 (Tenore et al., 2006)




Approach:
Neuromorphic Engineering
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Mead, C. Analog M@MH&W%/%W@GP use for cortical spiking neurons?
IEEE Trans. Neural Networks, 15:5, 1063-1070 (2004)




Robot + CPG Chip

CPG Tonic Drive

. Goal: Use artificial motor s | g | e
system to develop on-line s St o

A Right Hip Flex

phase control infrastructure
(for future use in animal
studies)

Materials: ,
Knee Extensor Knee Extensor

Partially-supported bipedal robot LN R .
“" ” nee Flexor Tonic Urive nee Flexor Tonic Drive
(“RedBot”) or RoboCat

. Servo motors actuate hips,
knees, and ankles

Reconfigurable silicon CPG chip

. CPG controls hip movements,
knee/ankles are passive

Strategy: Use same
experimental design as
lamprey preparation to test
new hardware

Choose desired gait

Measure PDR of CPG chip

Apply stimuli at specific phases

FFFPFPFFERGESR

Source: Lewis et al., 2005 Source: Tenore et al., 2004




In Vivo Testing of SiICPG Gait Controller

Goal: apply hardware to locomotion controller

Demonstrate that SiCPG can function as a-Gait Controller in vivo (i.e. prescribe
appropriate motor output in real-time based on pre-defined gait and current
sensorimotor state: l.e. generate our “Efferent Copy”)

Procedure:
Design CPG network to produce forward walking; specify gait in terms of:
. Phase relationships between muscles
. Joint angles for swing, stance, etc.
Program CPG network onto SiCPG chip
Use external sensors on limbs to provide sensory feedback to SiCPG chip
Use output of SiCPG chip to control locomotion

For testing purposes, use intramuscular (IM) electrodes to stimulate muscles
directly (not phasic CPG control)
. Causes rapid fatigue and has other problems, BUT...

. Directly controlling all motor activity in closed-loop (by controlling the muscles) verifies
that we can use the current state to prescribe appropriate motor output

Output of limbs ~ CPG activity (efferent copy)
. Can be extended to phasic control of activated CPG




Cat Walking 101

. IF-THEN formulation of
“rules” governing hind limb
stepping in cats:

Stance-to-swing transitions:
IF ipsilateral hip is extended
AND ipsilateral limb is unloaded
AND contralateral limb is
bearing weight
THEN initiate flexion in the
ipsilateral limb
Swing-to-stance transitions:
IF ipsilateral hip is flexed

THEN initiate extension in the
ipsilateral limb

Source: Saigal et al., IEEE TNSRE, 2004;
Prochazka, Can J Physiol Pharmacol, 1996; Guevremont et
al., J Neurophys, 2007

linegistened)

Source: Ekeberg and Pearson, J Neurophys, 2005
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Designing the Gait Controller’s CPG
Network

Patterns in normal walking and IF-THEN
formulation provides basis for CPG
network

Incremental design process, starting
with the basics
Extensors and flexors are active in
counterphase

Hindlimbs alternate between stance
(extension) and swing (flexion) phases
with roughly 70-30 duty cycle

Transitions from stance to swing and
vice-versa are triggered by two main
proprioceptive inputs
. Hip angle: inputs indicate degree of
left/right extension/flexion
. Ankle load: inputs indicate degree
of left/right loading
Extensible: replace flexor and extensor
neurons with hip/knee/ankle
subpopulations

Structure similar to biology-based
models [Pearson, personal comm.]
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Source: Vogelstein et al., IEEE TBioCAS (submitted)

Synaptic weights on bias, sensory, and lateral
inhibitory inputs, along with rate of SFA,
determine whether swing/stance
(extensor/flexor) transitions are timed or
sensory-driven

For these experiments, cats were allowed to walk
at self-driven pace




Gait Control System

Analog signal processing front-end

Vin &—b—\w—?

Right GRF
Left GRF

Right GRF
Left GRF

Partial Support Sling Joint Markers
Intramuscular

Left Flexors |

Electrodes
Right Extensors
> 6
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i

Vip

Parallel Forceplates (GRF) e I:E II
P /i

Rolling Panel Splke proceSSing back-end

Accelerometers (HA)

Source: Vogelstein et al., IEEE TBioCAS, (submitted)

12 pairs of IM electrodes: 3 each for left/right hip, knee, and ankle extensors/flexors

Two types of sensory data were collected for each leg
Hip angle (HA)
Ground reaction force (GRF)




Results: SiCPG Chip Controls
Locomotion in a Paralyzed Cat
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Results: SiCPG Chip Controls
Locomotion in a Paralyzed Cat
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Source: Vogelstein et al., IEEE TBioCAS (accepted)
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Responsibilities of Neuroprosthesis

1. Select Gait

+ specity desired motor output
- phase relationships
- joint angles

L
4. Control Output of CPG
+ phasic stimulation
(efferent copy required for
stimuli)

motor output
- correct deviations
- adjust individual components
- adapt output to environment
o~
1}

§

3. Generate “Ffferent Copy’

+ monitor sensorimotor state
- external sensors on limbs
- internal afferent recordings




Nonlinear Oscillators 101

Standard techniques:
Phase-response curve (PRC)

Phase-transition curve (PTC)
aka Poincaré map

. Our technique: phase-dependent
response (PDR) plots

Advantage: simultaneously
illustrates effects of stimulation
on any observable output of the
nonlinear system (no state
variables necessary)

Descriptive: illustrates how
stimulation affects all relevant
output dimensions

Prescriptive: specifies when to
stimulate to achieve specific
output




Lamprey 101

Y Y

Business end of a lamprey Lamprey-related casualty




CPG as Nonlinear Oscillator

Specific experimental protocol

Excise spinal cord

Initiate CPG activity with bath
application of D-glutamate:
“fictive swimming”

Record motor outputs on ventral
roots

Apply suction electrode for
stimulation at rostral end

Stimulate at 100 phases
throughout CPG cycle

Measure effects of stimulation
on all parameters of fictive
locomotion as functions of phase
(PDR)
. Cycle period (IBI)
Burst length (BLi, BLc)
Burst delay (BDic, BDci)
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Source: Vogelstein et al., IEEE TNSRE, 2006




PDR Characteristics of Lamprey
Spinal Cord

. Results from one experimental trial
(PDR plot)

X-axis: Stimulation phase (%)

Y-axis: Measured burst parameter

Same stimulus applied at 100 different
phases

Effects of each stimulus are plotted on
all 5 axes
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Results: Summary
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Results: Control of Ipsilateral
Burst Length

Predicted Actual
BLi BLi

0.25 0.28 0.29
0.30 0.34 0.33
0.35 0.40 0.35
0.21 0.23 0.25

0]

Applied stimuli each cycle at §=025 9030 =035
specified phase for approximately . )
100 cycles 5 04 B85 ¥ ..‘?ﬁ‘:”,‘;‘; ;;‘.rs"*‘-i;ﬁr s 4’*:45?
Desired results ' '

Predictable effects

Stable responses

No permanent shifts

Interaction between BLi and BLc
at some phase/amplitude
combinations

A

Time (sec)

Source: Vogelstein et al. (in preparation)




Results: Steering Swimming

>

Cycle duration Burst duration

5 *& e
1 L——c—.'b—-n—f\:p——n

Interburst duration

CPG/motor output
during normal, brain-
controlled turning
(via phasic RS input)

Normalized mean
€ L]

Normalized mean
o [\8 ) 3 a3

n —= i

—
4 4 3 2 4 0 1 2 3 4 5

Cycle

(i1t

Time (s)

Neuroprosthetic control
via external stimulation

Maormalized Cycle Length
Mormalized Burst Length

(average effects)
Source: Vogelstein et al., 2006

Conclusion: locomotion controller can functionally replicate output of natural
neural control system through phasic spinal cord stimulation
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Control paradigm

. Acquisition of electrophysiological signals

involved in generation of movement

. Extraction of movement-related information

from biosignals

So if
something like
this should
happen to you

t|§ource:
20dedlbnmive’dx,

wanbsdgst

Thér@reto:
(safykedaitze)




State-of-the-art of Prosthetic

JHU/APL RP2009 Prototype Il Hand
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Upper limb prostheses

. Differences dependent on amputation level:
amputations distal to the wrist
transradial
elbow disarticulation/transhumeral
shoulder disarticulation




EMG Controlled Upper Limb
Prosthesis

. Typical option for transradial amputees

. Traditional control schemes typically provide 2
degrees of freedom (DoF)
Hand open/close

Wrist pronate/supinate

Insufficient for dexterous manipulation tasks and control
over individual fingers




Upper limb control

. Control signal provided by 2 non-invasive surface
EMG electrodes broadly placed over each side of
residual limb’s extensor and flexor muscles

. 1o switch between two DOFs requires co-contraction
of flexors and extensors

: J— “Extensor” electrode




Acquisition of electrophysiological
signals

. Invasive:
Neural signals from CNS (Spikes, LFPs)
Neural signals from PNS
Intramuscular EMG (IMES, BION)

. Non-invasive: .
Surface EMG




Repetitive movements :
Hand opening/closing




Repetitive movements :
Hand rotation
(pronation/supination)




Experimental protocol

. Acquisition of non-invasive surface EMG
signals from forearm (and upper arm)

. Subjects perform finger and hand
movements on cue (audiovisual) — 18
total

. Transradial amputees perform
movements also with intact hand
simultaneously

F. Tenore, A. Ramos, A. Fahmy, S. Acharya, R. Etienne-Cummings, N. V. Thakor, 2007. Towards the Control of Individual Fingers of a Prosthetic Hand Using Surface EMG Signals.
Proc EMBC, 2007.




Problem Statement

Fast pace of development of upper-
limb prostheses requires a paradigm
shift in EMG-based controls

Traditional control schemes typically
provide 2 degrees of freedom (DoF):

Insufficient for dexterous control
of individual fingers

Surface ElectroMyoGraphy (s-EMG)
electrodes placed on the forearm and
upper arm of an able bodied subject
and a transradial amputee



Experimental protocol (1)

. Number of electrodes =

f(amputation level) (1-V)
=» Level |: 32 electrodes, Level

V: 12 electrodes
. Single trial duration ~ 6 s

. After movement, subjects are
asked to hold position until rest ; Movement/
Rest Perio
cue (™~ 3s) (2-45e0) e

[F. Tenore et al., Proc EMBC, 2007.]




Decoding movements

. Extraction of EMG features
. Multilayer neural networks

. Trials divided into: training (~*50%), validation
(~20%), testing (30%)
Selected to take into account potential fatigue

Extractor(s)

y,(k)
d_,, 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Feature
Extractor(s) —
500 1000 1500 2000 2500 3000 3500 4000 4500 5000




Feature extraction

. 'Most crucial part of classification process”
[Englehart et al, 1999]
. Only time domain features implemented
Real-time classification [Englehart et al, 2003]

. Other possibilities:
Time-frequency domain: histogram
Frequency domain: cepstral coefficients
Wavelet domain




(

Implemented Solution (I)

12 movements to decode: 5 finger flexion and
extension, and combined middle-ring-pinky fingers
flexion and extension

Using the waveform length as extracted feature

, we train artificial neural networks (ANN) to
classify the different movements

Variable number of input features:12-32

~ 60 hidden layer neurons
12 outputs (= movements)



Feature extraction:
Time domain features (I)

. EMG TD features

Exploit characteristics of EMG signals, i.e.
presence/density of motor unit action
potentials for a given time period

. Characterized by:
Extraction of information from data within a
time window of brief duration (<300ms)

Window is extracted frequently (sliding
window: every 25-50 ms) to allow continuity

in extracted data




Feature extraction:
Time domain features (Il)

. Four features examined:

oo ltevarue: o
i=1

L]
Va rla nce° 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
- [o2 X.

Waveform length: EabYEREE

0 -
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Willison Amplitude:

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Willison Amplitude

N
W = Z_ll fOx =X, [) [T o=

f (X) N 1 ¥ time (ms)
0 otherwise




Multilayer Perceptrons

. Multiple layers of computational units: Input,

“Hidden”, Output
. Learning through backpropagation =» error fed back

through network

Weights updated through gradient descent
optimization

Extractor(s)

y (k)
E——




Synchronous classification

. Allows distinction between n movement types

. Training/testing occur on contraction (2s
duration), where features are stable

EMG Signal

1000 1500 2000 2500 3000 3500 4000 4500 5000

Movement/
Posture

(~3 sec)

[F. Tenore et al., EMBC 2007]




Results

Accuracy
(%)

. 4 subjects, 12 movements

32 electrodes able-bodied
subjects,

19 electrodes on
transradial amputee

2 13 14 5 345 el e2 e3 e4 e5 edd5

Confusion matrices: allow
identification of
misclassified movements
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Intended movements

Tenore, F., Ramos, A., Fahmy, A., Acharya, S., Etienne-Cummings, R., and Thakor, N.V. Decoding of individuated
finger movements using surface Electromyography. Submitted to /EEE Transactions on Biomedical engineering




Results (1)

. Waveform length: best feature overall

. Subject A: performed experiment multiple times (>3)

. Subjects B, C: female; A,D: male

Subject

Acc.

Subject

No. elec.

Feat.

Acc.

98.8+1.1
98.8+0.9
98.6+2.5
99.7+0.3

098.3+2.1
98.1+2.3
98.0+£2.7
99.14+1.3

32

MAV
Var
WA
WL

88.8£8.0
87.7£8.0
86.9+£9.8
93.6+6.2

84.4+10.9
84.8+11.2
86.9+£11.8
92.7+7.6

82.3+15.7
83.8+13.1
83.3+14.8
87.8+12.3

02.5+6.4
90.9+8.4
84.9+4.6
95.046.1

88.8+£9.4
87.8+10.0
80.0+13.0
94.3+£5.7

F. Tenore, et al., Submitted
to: IEEE TBME




Analysis of Results

. Non-parametric tests on the accuracy data (Kruskal-Wallis) show that
and subjects B, C, D, but

there IS significant difference between subject

no significant difference between B, C, D

. Transradial amputee confusion between movements e-fass and e-fs, e-fs,
fs, but not viceversa

Subject

No. elec.

Feat.

Acc.

Subject

No. elec.

Feat.

Acc.

32

MAV
Var
WA
WL

98.8+1.1
98.8+0.9
98.6+2.5
99.7+0.3

098.3+2.1
98.1+2.3
98.0+£2.7
99.14+1.3

32

MAV
Var
WA
WL

88.8£8.0
87.7£8.0
86.9+£9.8
93.6+6.2

84.4+10.9
84.8+11.2
86.9+£11.8
92.7+7.6

82.3+15.7
83.8+13.1
83.3+14.8
87.8+12.3

02.5+6.4
90.9+8.4
84.9+4.6
95.046.1

88.8+£9.4
87.8+10.0
80.0+13.0
94.3+£5.7

F. Tenore, et al., Submitted
to: IEEE TBME




Asynchronous Decoding

- Characterized by ability to differentiate between
rest state and movement states

- Decoded movement must occur within 300 ms of
performed movement

. Precise evaluation of states requires direct

knowledge of hand/finger position
=» impossible on transradial amputees

Tenore, F., Ramos, A., Fahmy, A., Acharya, S., Etienne-Cummings, R., and Thakor, N.V. Real-time decoding of individuated finger movements using surface
Electromyography. Manuscript in preparation




Asynchronous Decoding (lIl)

. Indirect approach:
uses “cue” signal as proxy for finger movement

Piecewise linear (fuzzy) decision envelope to
weigh output classification

- Wavelength feature
- Decision Enuelnpe1




Results

. 10 movements (fi-fs, ei-es)




Visualization on Virtual Integration
Environment

. VIE provided by JHUAPL for fast prototyping of
decoding algorithms




Cortical Decoding of Individual
Finger Movement

. itis possible to asynchronously decode dexterous finger
movements where cues indicating the onset movement
are not known

it is possible to decode these movements using
spatially-constrained volumes of neurons as typically
recorded from a microelectrode array

. decoding accuracy differs due to the configuration or
location of arrays within the M1 hand area
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Experimental Data

. Three M. mulatta trained to perform:
12 individuated finger movements (f1,f2,...,fw,el,e2,...,.ew)
6 combined finger movements (f1+2, f2+3, f4+5, e1+2, e2+3, e4+5)

Experimental Setup. A) pistol-grip manipulandum to separate fingers, B) Neuron Recordings. Location of microelectrode

bank of LEDs to present visual cues, and C) micro-switches to detect finger penetrations in M1.

movement. (Poliakov and Schieber, 1999) 325 neurons (monkey C), 125 neurons (monkey G), 115
neurons (monkey K). (Poliakov and Schieber, 1999)




Decoding Challenges

. Fortunately, there are neurons in M1 that code for finger and wrist
movements

. Turns out M1 hand region is NOT somatotopically organized

neurons are “spatially distributed, intermingled, and physiologically
diverse”

M1 Hand Region. Spheres represent neurons in M1 hand region. Each color is for a different movement type. Size of
sphere is proportional to neuron activity for that movement type. (Schieber and Hibbard, 1993)




Input Space Complexity

Top: Temporal evolution of spiking activity
from an ensemble of neurons in Monkey K

switch closure

: i
K13407 .

K16201 ",
K13106
k13304 :u”
k32901 “"

Spikes per 100ms

=1
K13306 H,;

K27405 "0}
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K33002 f"
K32901 "‘” Neurons

0805 ) Time (s)
K35303 f‘
Increased activity around switch closure (1 sec)
advocates use of gating classifier to decode
movement intent, and dividing input space into

hierarchical subspaces.

Firing Rate (spikes / 100 ms)




.

&

-

Gating Classifier

Train a committee of ANN to distinguish between baseline activity
from the onset of movement K19500

How to train gating classifier?
trapezoidal membership function
fuzzy output label
threshold to produce binary variable

()= {1 if PAIt)}>T,

0 else

Majority voting rule chooses committee output of gating classifier

[ N
G(tk): 11 Z (Z(gn(tk))>?]>1—2

t=t,—t; \ n=1
0 else

Classifier Output




Movement Classifier

. Train ANN to distinguish amongst each movement type

. o K11404
. How to train movement classifier?

assign probability to each movement
type during 100 ms before switch closure

select movement type with greatest
probability

S, (ty) =arg max B,.{M,}

Spike rate per 100ms

. Majority voting rule chooses committee output of movement
classifier

S(t,) = mode{s, (t,)}




Decoded Output

Gating Classifier Movement Classifier

m— actual
= predicted
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. Final decoded output is product of two committee networks

F(t,)=06(t)xS(t,)




Real-Time Decoding Results
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Asynchronous decoding results for individuated and
combined finger movements. (Aggarwal et al,
submitted, 2007)

For individuated movements,
decoding accuracy was as high as
99.8% for monkey K using 40
neurons, and 95.4% using only 25
neurons

Although lower, decoding accuracy
was still 96.2% for monkey C and
90.5% for monkey G using 40
neurons

When combined movements were
included, average decoding
accuracy was 92.5% for all 18
movement types using 40 neurons
for monkey K




Virtual Electrode Arrays

Primary motor cortex hand area
where neurons were recorded
from.

One possible voxel where electrode
array could be placed. Blue dots
represent each neuron recorded
from (115 neurons). Red crosses
represent neurons enclosed within
given voxel (48 neurons).




Virtual Electrode Arrays

Caltech mlcroelectrode
Utah Microelectrode Array !

7

f/%//M|ch|gan microelectrode
Vi /i array

i . ;
N\ \

w7 alll e Ve Modified Utah
ff‘f " e microelectrode array,

”'Z
Each voxel configuration,
corresponding to different
arrays, were placed at five
distinct locations within the

recording space.

Approximate recording footprints from four different
electrode array configurations (Acharya et al, IEEE
TNSRE,2008)




Decoding Accuracy

Decoding Accuracy
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Real-Time Decoding Results

Caltech probe
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Decoding Accuracy

d) Monkey K

Decoding Accuracy

Michigan Array

~...—m=Voxel 3.

10 15 20
Number of Neurons

Caltech Array

—4— Voxel 1
—e— Voxel 2

—b—Voxel 4
—=—Voxel 5
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Number of Neurons

—e—Voxel 2
—=—Voxel 3
—b—Voxel 4
——Voxel 5

Asynchronous decoding results for different voxel
configurations (Acharya et al, IEEE TNSRE,2008)

Average decoding accuracy
was >80% with as few as 25
neurons in monkey C and
>85% with as few as 20
neurons in monkey K,
irrespective of voxel
configuration and placement

For the majority of cases, no
significant differences
(p<0.01) were detected in the
overall decoding accuracies
due to voxel placements.




Playing the Cortical Piano
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Conclusions and Future

Mechanoreceptors
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