Something Old,
Something New...

Nic Schraudolph
Telluride 2007

NICTA Members
B Bunsw € === Businessil

el I & N R
Thes Piace o e m'*l mmu.&
NICTA Partners

Overview

Three half-hour lectures:

~ Floating-Point Bit Twiddling
Fast approximate exponential, logarithm, power,
logistic functions (for GPUs & microcontrollers)

~ Gradient-Based Optimization
Review of standard methods, background for:

_ Stochastic Quasi-Newton Methods
My latest & greatest algorithms for fast online
adaptation, and learning from large sets of data.

sml.nicta.com.au

Part One

Twiddling the Bits of

IEEE-754 Floating-Point

Numbers for Fun & Profit
just

sml.nicta.com.au

Exponentials: Ubiquitous but Slow @

Exponentials ubiquitous in scientific computing:

~ physics: translates energy into probability
(thermodynamics, electronics, quantum anything)

_ statistics: exponential family of distributions
= maximum likelihood estimation (machine learning!)

They are not cheap to compute:
_ typically involves 10" order Chebyshev polynomial

_ used to be slow on general-purpose CPUs
(embedded systems didn’t have any floating-point)

_ now hardware-accelerated on general-purpose CPUs
but still slow on embedded systems: GPUs, uCs, ...

sml.nicta.com.au

IEEE-754 Floating-Point Format

IEEE-754 value: vy =(-1)° (1 + m) 2% -1023)

~ s:Ssign bit
~ X: 11-bit exponent (shifted by const. bias xo = 1023)

~ m: 52-bit mantissa, binary fraction in the range [0,1)

_ stored in 8 bytes of memory as:

SXXX XXXX | XXXX mmmm | mmmm mmmm | mmmm mmmm | mm...
1 2 3 4

Simple idea: to exponentiate a number,
write it into the IEEE-754 exponent (duh).

sml.nicta.com.au

Fast Approximate Exponentiation

Specifically: to get EXP(x),
- multiply x by 2°2-1n 2, cast result to integer
~ add bias: 2°2- 1023, reinterpret as |IEEE-754

Done! Okay, some more details:

~ Use C union or C** reinterpret_cast with 64-bit
integer to directly access IEEE-754 components

~ Can also use 2 32-bit integers (multiplier becomes
220 -1n 2; beware of big-endian vs. little-endian h/w)

_ Especially fast for quantized arguments
(uses only integer arithmetic!)

_ no seatbelts (beware of overflow into sign bit!)

sml.nicta.com.au

Exponentials for Nothing,
and the Interpolation’s for free!

What happens to the “tail end” of that large
integer we write into the IEEE-754 exponent?
_ it overflows into the mantissa. Oh dear?
_ actually, this performs linear interpolation for us!

We can use a trick to improve accuracy:
EXP2(x) := EXP(x/2) / EXP(-x/2)

_ at the cost of a single floating-point division,

we now have piecewise rational interpolation

_ even higher accuracy is possible, but gets
iIncreasingly expensive = usually not worth it

sml.nicta.com.au

More Fast Functions

_ logistic function: y=1/(1 + €*) (tanh is similar)
quite important for neuromorphs...!
Implement this as EXP(x/2)/[EXP(x/2) + EXP(-x/2)]
= accuracy like EXP2, but no extra division

_ logarithms: just use EXP or EXP2 in reverse

_ power functions: use xY = 2¥Iny X
(base 2: multiplier becomes bit shift = yet faster)

_ square root: adjust for bias, shift 1 bit right
(use this to initialize Newton-Raphson iterations)

sml.nicta.com.au

How Inacc Je

NICTA

0.06

rel. error: .

—— EXP 0.02
- - - EXP> 0.00

-0.02 —

Logistic via 1/(1 + EXP

1.0

T 0.975 -
0.8

0.6 -
0.4

0.2 - 0.9645400 - ,

0.0

——
3.30325 3.30326

Conclusion

IEEE-754 bit twiddling

_ yields fast, approximate exp, log, pow, tanh, sgr, ...
_ saves memory (no look-up table to store)

_ preserves cache (ho memory access)

_ zero-cost interpolation (overflow into mantissa)

For more information:

_ basic EXP (with full error analysis)
published in Neural Computation (1998)

_ everything else not yet published
(but | have code if you ask nicely :-)

sml.nicta.com.au

