
 sml.nicta.com.au

Something Old,
Something New...

Nic Schraudolph
Telluride 2007

 sml.nicta.com.au

Overview

Three half-hour lectures:

Floating-Point Bit Twiddling
Fast approximate exponential, logarithm, power,
logistic functions (for GPUs & microcontrollers)

Gradient-Based Optimization
Review of standard methods, background for:

Stochastic Quasi-Newton Methods
My latest & greatest algorithms for fast online
adaptation, and learning from large sets of data.

2

 sml.nicta.com.au

Part One

Twiddling the Bits of
IEEE-754 Floating-Point
Numbers for Fun & Profit

3

^
just

 sml.nicta.com.au

Exponentials: Ubiquitous but Slow

Exponentials ubiquitous in scientific computing:
physics: translates energy into probability
(thermodynamics, electronics, quantum anything)
statistics: exponential family of distributions
⇒ maximum likelihood estimation (machine learning!)

They are not cheap to compute:
typically involves 10th order Chebyshev polynomial
used to be slow on general-purpose CPUs
(embedded systems didn’t have any floating-point)
now hardware-accelerated on general-purpose CPUs
but still slow on embedded systems: GPUs, μCs, ...

4

 sml.nicta.com.au

IEEE-754 Floating-Point Format

IEEE-754 value: y = (-1)s (1 + m) 2(x - 1023)

 s: sign bit

 x: 11-bit exponent (shifted by const. bias x0 = 1023)

m: 52-bit mantissa, binary fraction in the range [0,1)

stored in 8 bytes of memory as:
sxxx xxxx | xxxx mmmm | mmmm mmmm | mmmm mmmm | mm...
 1 2 3 4

Simple idea: to exponentiate a number,
write it into the IEEE-754 exponent (duh).

5

 sml.nicta.com.au

Fast Approximate Exponentiation

Specifically: to get EXP(x),
multiply x by 252·ln 2, cast result to integer
add bias: 252·1023, reinterpret as IEEE-754

Done! Okay, some more details:
Use C union or C++ reinterpret_cast with 64-bit
integer to directly access IEEE-754 components
Can also use 2 32-bit integers (multiplier becomes
220·ln 2; beware of big-endian vs. little-endian h/w)
Especially fast for quantized arguments
(uses only integer arithmetic!)
no seatbelts (beware of overflow into sign bit!)

6

 sml.nicta.com.au

Exponentials for Nothing,
and the Interpolation’s for free!
What happens to the “tail end” of that large
integer we write into the IEEE-754 exponent?

it overflows into the mantissa. Oh dear?
actually, this performs linear interpolation for us!

We can use a trick to improve accuracy:
 EXP2(x) := EXP(x/2) / EXP(-x/2)

at the cost of a single floating-point division,
we now have piecewise rational interpolation
even higher accuracy is possible, but gets
increasingly expensive ⇒ usually not worth it

7

 sml.nicta.com.au

More Fast Functions

logistic function: y = 1/(1 + e-x) (tanh is similar)
quite important for neuromorphs...!
implement this as EXP(x/2)/[EXP(x/2) + EXP(-x/2)]
⇒ accuracy like EXP2, but no extra division

logarithms: just use EXP or EXP2 in reverse

power functions: use xy = 2y ln2 x

(base 2: multiplier becomes bit shift ⇒ yet faster)

square root: adjust for bias, shift 1 bit right
(use this to initialize Newton-Raphson iterations)

8

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

3.0 3.5

0.950

0.975

3.30325 3.30326

0.9645405

0.9645400

 sml.nicta.com.au

How Inaccurate is it?

rel. error:
____ EXP
- - - EXP2

Logistic via 1/(1 + EXP(-x)), 32-bit integers:

9

-1 0 1
x

-0.02

0.00

0.02

0.04

0.06

 sml.nicta.com.au

Conclusion

IEEE-754 bit twiddling
yields fast, approximate exp, log, pow, tanh, sqrt, ...
saves memory (no look-up table to store)
preserves cache (no memory access)
zero-cost interpolation (overflow into mantissa)

For more information:
basic EXP (with full error analysis)
published in Neural Computation (1998)
everything else not yet published
(but I have code if you ask nicely :-)

10

