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Overview

Three half-hour lectures:

~ Floating-Point Bit Twiddling
Fast approximate exponential, logarithm, power,
logistic functions (for GPUs & microcontrollers)

~ Gradient-Based Optimization
Review of standard methods, background for:

_ Stochastic Quasi-Newton Methods
My latest & greatest algorithms for fast online
adaptation, and learning from large sets of data.
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Part One

Twiddling the Bits of

IEEE-754 Floating-Point

Numbers for Fun & Profit
just
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Exponentials: Ubiquitous but Slow @

Exponentials ubiquitous in scientific computing:

~ physics: translates energy into probability
(thermodynamics, electronics, quantum anything)

_ statistics: exponential family of distributions
= maximum likelihood estimation (machine learning!)

They are not cheap to compute:
_ typically involves 10" order Chebyshev polynomial

_ used to be slow on general-purpose CPUs
(embedded systems didn’t have any floating-point)

_ now hardware-accelerated on general-purpose CPUs
but still slow on embedded systems: GPUs, uCs, ...
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IEEE-754 Floating-Point Format

IEEE-754 value: vy =(-1)° (1 + m) 2% -1023)

~ s:Ssign bit
~ X: 11-bit exponent (shifted by const. bias xo = 1023)

~ m: 52-bit mantissa, binary fraction in the range [0,1)

_ stored in 8 bytes of memory as:

SXXX XXXX | XXXX mmmm | mmmm mmmm | mmmm mmmm | mm...
1 2 3 4

Simple idea: to exponentiate a number,
write it into the IEEE-754 exponent (duh).
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Fast Approximate Exponentiation

Specifically: to get EXP(x),
- multiply x by 2°2-1n 2, cast result to integer
~ add bias: 2°2- 1023, reinterpret as |IEEE-754

Done! Okay, some more details:

~ Use C union or C** reinterpret_cast with 64-bit
integer to directly access IEEE-754 components

~ Can also use 2 32-bit integers (multiplier becomes
220 -1n 2; beware of big-endian vs. little-endian h/w)

_ Especially fast for quantized arguments
(uses only integer arithmetic!)

_ no seatbelts (beware of overflow into sign bit!)
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Exponentials for Nothing,
and the Interpolation’s for free!

What happens to the “tail end” of that large
integer we write into the IEEE-754 exponent?
_ it overflows into the mantissa. Oh dear?
_ actually, this performs linear interpolation for us!

We can use a trick to improve accuracy:
EXP2(x) := EXP(x/2) / EXP(-x/2)

_ at the cost of a single floating-point division,

we now have piecewise rational interpolation

_ even higher accuracy is possible, but gets
iIncreasingly expensive = usually not worth it
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More Fast Functions

_ logistic function: y=1/(1 + €*) (tanh is similar)
quite important for neuromorphs...!
Implement this as EXP(x/2)/[EXP(x/2) + EXP(-x/2)]
= accuracy like EXP2, but no extra division

_ logarithms: just use EXP or EXP2 in reverse

_ power functions: use xY = 2¥Iny X
(base 2: multiplier becomes bit shift = yet faster)

_ square root: adjust for bias, shift 1 bit right
(use this to initialize Newton-Raphson iterations)
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Conclusion

IEEE-754 bit twiddling

_ yields fast, approximate exp, log, pow, tanh, sgr, ...
_ saves memory (no look-up table to store)

_ preserves cache (ho memory access)

_ zero-cost interpolation (overflow into mantissa)

For more information:

_ basic EXP (with full error analysis)
published in Neural Computation (1998)

_ everything else not yet published
(but | have code if you ask nicely :-)
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