VOLUME 10, NUMBER 3
MARCH 5, 1996

MICROPROCENOR:.-epoT

INSIDERS' GUIDE

TO MICROPROCESSOR HARDWARE

Intel’s MMX Speeds Multimedia

Instruction-Set Extensions to Aid Audio, Video, and Speech

By Linley Gwennap

The first major extension to the x86 instruction set
since 1985 will greatly improve the venerable architecture’s
handling of emerging multimedia applications. Collectively
known as MMX, these 57 new instructions accelerate calcu-
lations common in audio, 2D and 3D graphics, video, speech
synthesis and recognition, and data communications algo-
rithms by as much as 8%. Overall, users will see a 50-100%
performance improvement or more on these types of pro-
grams when using MMX instructions, as Figure 1 shows.

Intel plans to implement MMX throughout its product
line in 1997. The first instantiation of MMX will be the
P55C, a Pentium derivative due in 4Q96. MMX will also be
included in Klamath (see 1003ED.PDF), a cost-reduced Pen-
tium Pro that we expect to debut in 1H97. By the end of
1997, these two devices (and their successors) will displace
most or all of Intel’s non-MMX processors. AMD plans to
incorporate MMX in its future processors (see
1001MSB.PDF), and we expect Cyrix will follow suit.

MMX is designed to have no impact on the operating
system, making it compatible with existing x86-based OSs.
Applications can take advantage of MMX in two ways: either
by calling MMX-enabled drivers, such as a graphics driver, or
by adding MMX instructions to critical routines. Most appli-
cations will take the driver route.

Intel has been working with dozens of key software and
hardware vendors for months to help them add MMX to
their applications and drivers. Today’s public disclosure of
the instruction set will enable any programmer to begin
recoding their software for the new instructions. The num-
ber of MMX-enabled drivers and applications will build
quickly once P55C systems are released.

These new instructions will provide PC users with a
highly visible performance boost on many of today’s most
performance-critical applications. This boost should foster
increased growth in the PC market and give Intel a leg up on
competitors, such as PowerPC, that are lagging in adopting
similar technology.

Simple Software Model

The mark of a good organization is learning from past mis-
takes. In designing the MMX software model, Intel took
pains to avoid creating any new modes or new user state that
would complicate an already complex architecture. MMX
instructions can be used in any processor mode and at any
privilege level. They generate no new interrupts or excep-
tions. These features eliminate the need for changes in the
operating system to allow use of the new instructions.

From the programmer’s view, there are eight new
MMX registers (MM0-MM7) along with new instructions that
operate on these registers. But to avoid adding new state,
these registers are mapped onto the existing floating-point
registers (FPO-FP7). When a multitasking operating system
(or application) executes an FSAVE instruction, as it does
today to save state, the contents of MMO-MM?7 are saved in
place of FPO-FP7 if MMX instructions are in use.

The obvious drawback is that programs cannot use
both FP and MMX instructions within the same routines, as
both share the same register set. This is rarely an issue, since
most programs don’t use FP at all, and those that do typically
use these calculations to generate data, while MMX is typi-

4

35 B Non-MMX
W Mmmx

w

N
5

Relative Performance
[C, I)

N
I

o
]
|

MPEG-1 Speech

Modem ISDN Video MPEG-1 Image
Video Recognition

Conference Audio Processing

Figure 1. MMX improves performance on most multimedia appli-
cations by 50-100%, according to simulations of the forthcoming
P55C processor. MPEG-1 performance refers to decoding; image
processing is pixel manipulation, as in Photoshop. (Source: Intel)

Intel's MMX Speeds Multimedia Vol. 10, No. 3, March 5, 1996

© 1996 MicroDesign Resources

MICROPROCESSOR REPORT

cally used in separate routines that display data. For 3D
graphics, Intel recommends that geometry calculations
remain in floating point while MMX is used to accelerate 3D
rendering routines.

Without a mode bit, there is no foolproof way to pre-
vent FP instructions from corrupting MMX data, and vice
versa. Intel has taken some precautions, however, to trap
the most common foolish situations. When data is loaded
from memory into any MM register, it marks all the FP
registers as busy, causing any subsequent FP instruction
to trap. At the end of an MMX routine, the programmer
must insert an EMMS instruction to restore the registers
for FP use.

The converse situation is mostly covered. Taking
advantage of the fact that the MMX registers are 64 bits
wide while the FP registers are 80, MMX instructions
always set the 16-bit exponent to NaN (not a number)
while storing the result in the 64 fraction bits. Thus,
although there is no way to trap an MMX instruction that
is executed during a sequence of FP instructions, any sub-
sequent FP calculation on the modified data will produce
a floating-point exception. Alas, an FST instruction could
store the corrupted data in memory; Intel could not find
an easy way to plug this hole.

Single Instruction, Multiple Data

The new instructions, listed in Table 1, use a SIMD (single
instruction, multiple data) model, operating on several val-
ues at a time. In this respect, they are similar to multimedia
instructions in the Motorola 88110, HP’s PA-7100LC, and
Sun’s UltraSparc. Using the 64-bit MMX registers, these
instructions can operate on eight bytes, four words, or two
double words at once, greatly increasing throughput.

Figure 2 shows the three new data types: packed byte,
packed word, and packed double word. (RISC devotees
should note that Intel words are 16 bits, and double words
are 32 bits.) These data types are particularly suited to
multimedia because many algorithms work on small data
sizes.

For example, audio data is usually stored in 8-, 12-, or
16-bit samples; the average person cannot appreciate fur-
ther precision. Video is represented in pixels, commonly
encoded as RGB (red, green, blue) triplets. Each of the
three color values can be stored in 4, 6, or 8 bits; the last
provides 16 million possible colors, more than most peo-
ple can discern.

Most of the new mnemonics begin with “P” for
packed; for example, PADD means packed add. The opcodes
all begin with the byte OF, as do existing long jump, set

byte, and Pentium-specific

instructions. MMX uses pre-

Group Mnemonic Opcode* Description
MOVID,Q] 6E/7E,6F/7F Move [double,quad] to/from MM register
PACKUSWB 67 Pack words into bytes with unsigned saturation
PACKSS[WB,DW] | 63,6B Pack [words into bytes, doubles into words]
Data Transfer, with signed saturation
Pack, Unpack | PUNPCKH 68,69,6A Unpack (interleave) high-order
[BW,WD,DQ] [bytes, words, doubles] from MM register
PUNPCKL 60,61,62 Unpack (interleave) low-order
[BW,WD,DQ] [bytes, words, doubles] from MM register
PADDI[B,W,D] FC,FD,FE Packed add on [byte, word, double]
PADDS[B,W] EC,ED Saturating add on [byte, word]
PADDUS[B,W] DC,DD Unsigned saturating add on [byte, word]
PSUB[B,W,D] F8,F9,FA Packed subtraction on [byte, word, double]
Arithmetic PSUBS[B,W] ES,E9 Saturating subtraction on [byte, word]
PSUBUSI[B,WI D8,D9 Unsigned saturating subtraction on [byte, word]
PMULHW E5 Multiply packed words to get high bits of product
PMULLW D5 Multiply packed words to get low bits of product
PMADDWD F5 Multply packed words, add pairs of products
PSLL[W,D,Q] F1/71,F2/72, Packed shift left logical
F3/73t [word, double, quad]
Shift PSRL[W,D,Q] D1/71,D2/72, | Packed shift right logical
D3/73t [word, double, quad]
PSRA[W,D] E1/71,E2/72% | Packed shift right arithmetic [word, double]
PAND DB Bitwise logical AND
Logical PANDN DF Bitwise logical AND NOT
POR EB Bitwise logical OR
PXOR EF Bitwise logical XOR
G PCMPEQI[B,W,D] | 74,75,76 Packed compare if equal [byte, word, double]
PCMPGTIB,W.D] | 64,65,66 Packed compare if greater than [byte, word, dbl]
Misc EMMS 77 Empty MMX state

viously reserved values for
the second byte (none of
which is used by other x86
vendors). The next two (or
more) bytes provide the two
operands, using the same
encodings as other x86
instructions, except the tar-
get registers are the MMX
registers, not the integer reg-
isters (EAX, etc.).

For example, the MOVD
and MOVQ instructions can
move data to and from mem-
ory using the same multitude
of addressing modes as the
standard MOV instruction;
they also move data from one
MM register to another. The
MOVD instruction can even
exchange data with the inte-
ger registers. Likewise, PADD
performs register-to-register
or memory-to-register oper-
ations, just like the integer
ADD instruction. One excep-

Table 1. Intel's MMX multimedia extensions include 57 new opcodes. Brackets indicate a set of options
where only one may be chosen for a given instruction. B=byte, W=word, D=double word, Q=quad word.
*All opcodes start with OF followed by the extension byte shown here. tOpcodes with 71, 72, and 73 as
the second byte end with a third byte: Dr (PSRL), Er (PSRA), or Fr (PSLL), where “r" is the first operand.

tion is that register-to-mem-
ory mode is not supported in
MMX.

2 Intel's MMX Speeds Multimedia Vol. 10, No. 3, March 5, 1996

© 1996 MicroDesign Resources

MICROPROCESSOR REPORT

Pack and Unpack Instructions Shuffle Bytes

In many cases, byte or word data is already stored in consec-
utive locations in memory and thus can be operated on by
the new instructions. If the data is stored as aligned 32-bit
values, however, it may be necessary to rearrange it to the
packed format. The PACKxxDW instruction reads two double
words from memory and combines them with two double
words in a register, resulting in four packed 16-bit words.

If the original item exceeds the maximum value ex-
pressible in 16 bits, it is saturated: items that are too small are
set to the smallest possible value, and items that are too large
are set to the largest possible value. There are two options for
calculating the saturation values, signed and unsigned,
depending on how the source data is expressed. Similarly, the
PACKxxWB instruction converts packed word data to packed
byte data.

These operations can be reversed to unpack data. The
mellifluous mnemonic PUNPCKxBW converts packed bytes
into packed words, zero-extending the bytes, as Figure 3(a)
shows. It can also interleave two sets of byte data into word
data, as Figure 3(b) demonstrates. Similarly, PUNPCKxWD
and PUNPCKxDQ convert packed words to double words and
packed double words to quad words, respectively.

New Instructions Calculate in Parallel

Once the data is packed, calculations proceed in parallel. Each
MMX calculation combines two 64-bit operands and pro-
duces a 64-bit result, so packed-byte instructions calculate
eight results in parallel. Similarly, packed-word instructions
generate four results, and instructions that operate on packed
double words produce two results. Because most x86 instruc-
tions generate only one result at a time, this parallel calcula-
tion ability is the key to MMX’s performance gains.

The performance boost is even greater on the P55C,
due to the way MMX instructions are issued. The current
Pentium design, while nominally two-way superscalar, exe-
cutes only one FP calculation at a time and cannot pair these
instructions with integer operations. The P55C allows pair-
ing of MMX and integer instructions and can even pair
MMX instructions with each other as long as they use differ-
ent function units. Thus, the P55C can calculate up to 16
results (of one byte each) per cycle, helping to generate the
performance gains seen previously in Figure 1.

The calculation instructions are all similar and, for the
most part, straightforward. As Figure 3(c) shows, the PADDW
(packed add word) instruction performs a parallel add of
each of the four words in the source operand with the corre-
sponding word in the destination operand, storing the result
in the specified destination. Any carry out of a 16-bit addi-
tion is ignored. The results of the integer flags (carry, over-
flow, zero, etc.) are unchanged by any MMX calculation.

Both the add and subtract instructions can operate
on packed bytes, words, or (in some cases) double words.
Mnemonically, the suffixes B, W, or D are appended to indi-
cate the data type. A set of logical operations (AND, AND

\ MMX Register (64 bits) |

Packed Double Words

Packed Words

Packed Bytes

Figure 2. MMX adds three new data types: packed byte, packed
word, and packed double word.

NOT, and OR) operate on a bit-by-bit basis and thus do not
require a data-type suffix. They are identical to the existing
logical instructions, except that they operate on MMX regis-
ters instead of integer registers.

New shift instructions differ from integer shift instruc-
tions in that each packed data element is treated individually.
For example, PSLL (packed shift logical left) shifts items left
while filling the lower bits of each with zeroes. The logical
right shift fills the upper bits with zeroes, while the arith-
metic right shift inserts sign bits. The shift count can be spec-
ified by an immediate value or an MMX register. These
instructions can be used to quickly multiply or divide signed
and unsigned data by powers of two.

Saturating and Unsaturating Arithmetic

The add and subtract instructions have three variations. The
default (no suffix) option is simple, nonsaturating arith-
metic. The other two options apply saturating arithmetic; as
with the saturating PACK instructions, any overflow causes
the result to be “clamped” to its maximum value, and under-
flows set the result to the minimum value. The suffix S indi-

(a) PUNPCKHBW MMO,ZERO

[oo]ooJooJoo]ooJoo]o0[00] [A1]A2[A3]A4][A5]A6]A7]A8]
| ‘

‘ MMO
]
} =
MMO [00 [A1] 00 [A2] 00 [A3] 00 [A4]
(b) PUNPCKHBW MMO0,MM1
[B1[B2[B3[B4|B5][B6|B7 B8] [A1][A2][A3]A4][A5]A6][A7]A8]
|
! MMO

v v v v
MMO [B1 A1 B2 [A2[B3 [A3][B4 [Ad]

(c) PADDW MMO,MM1

Mvmo s w0 v v
+ + + +
Mvi1 [Cw Xy [z

MMO [S+W [TT+X [U+Y [[VsZ]

Figure 3. (a) Unpack operation converts packed bytes to words
with zero extension. (b) PUNPCK can also interleave bytes from
two MM registers. (c) Parallel add instruction calculates four 16-
bit sums simultaneously.

3 Intel's MMX Speeds Multimedia Vol. 10, No. 3, March 5, 1996

© 1996 MicroDesign Resources

MICROPROCESSOR REPORT

cates signed saturating arithmetic; the most significant bit in
each field is treated as a sign bit.

The third case is unsigned saturating (US) arithmetic,
typically used for pixel operations. When two intensities, for
example, are added, the result can never be whiter than white
or blacker than black; saturating arithmetic handles this
automatically, avoiding the long series of overflow and
underflow checks needed with traditional instruction sets. In
fact, a single PADDUSB instruction could replace 40 non-
MMX x86 instructions.

These options are not completely orthogonal, a fact
that should not surprise any x86 programmer. Although the
nonsaturating form supports bytes, words, and doubles, the
saturating forms cannot handle 32-bit data. The combina-
tion of the extra logic required to perform saturation with
the longer carry chain of the 32-bit adder failed to meet the
cycle-time requirement of the P55C.

For most situations, the saturating and nonsaturating
forms are equivalent. In fact, it is dangerous to use the non-
saturating form for values that might cause an overflow, as it
has no overflow trap. Of the nonsaturating adds and sub-
tracts, only the 32-bit versions are typically used, to compen-
sate for the lack of 32-bit saturating instructions.

Two Instructions Perform 16-bit Multiplication
Simple multiplication is handled by PMULHW and PMULLW.
These instruction operate only on 16-bit values. Because
the result of a multiplication can be twice the width of its
operands, PMULHW stores only the high-order word of the
result in the destination register. (Of course, it generates and
stores four results in parallel.) In some situations, this 16-bit
result will provide adequate precision.

For full 32-bit precision, the second half of the result is
generated by PMULLW. The results of the two instructions
must then be combined using PUNPCKWD, which interleaves
the two destination registers. The following code multiplies
the four words in MM1 by the four words in MM2, storing the

(a) PMADDWD MMO,MM1

MMo s [m v v
X X X X
Mv1 [Cw X vy [z

MMO [(SxW)+(TxX) [(UxYV)+(Vx2) |

(b) PCMPEQW MMO,MM1

MMO[21 [3 [47 [58 |

MM1 [21 [75 | 44 [58 |

MMO[_FF_[T00 [o0 [FE |
true false false true

Figure 4. (a) Packed multiply-add sums two pairs of products with
a single instruction. (b) Packed compare-if-equal compares packed
words and generates a packed Boolean output, where all zeroes
indicates false and all ones indicates true.

four products as two double words in MM1 and two double
words in MM2:
MOVQ MMO, MM1
PMULHW MMO, MM2

;Make copy of MM1

;Calculate high bits in MMO
PMULLW MM1, MM2 ;Calculate low bits in MM1
MOVQ MM2, MM1 ;Make copy of low bits
PUNPCKHWD MM1, MMO ;Merge first two dwords
PUNPCKLWD MM2, MMO ;Merge second dwords

This code calculates four products in 6 cycles on a P55C,

whereas a non-MMX Pentium requires 10 cycles to complete

asingle 16 x 16 — 32-bit integer multiplication.

Multiply-Add Speeds Signal Processing

The packed multiply-add instruction differs from the other
calculation instructions in that the data type of the result is
different from that of the source. As Figure 4(a) shows,
PMADDWD multiplies two pairs of 16-bit words, then sums
each pair, producing two 32-bit results. It executes in just
three cycles on a P55C and is fully pipelined.

Multiply-add is at the heart of many audio and video
algorithms, such as the fast Fouriér transform (FFT). This
procedure multiplies two vectors and accumulates the sum
of the products. Using PMADDWD, a P55C can multiply and
accumulate four vector entries per cycle (assuming the loop
has been unrolled three times) while freeing the second pipe
to perform loads, stores, index calculations, and branches.
This is eight times the peak FP performance of a Pentium
(which has no FP multiply-add instruction), not counting
the advantage of executing instructions in the second pipe.

One drawback to MMX is the lack of a multiply or
multiply-add for 32-bit operands. A fast 32-bit multiplier
consumes four times more die area than a 16-bit multiplier,
and Intel felt this feature was not worth the extra area.
Besides, multiplication of 32-bit data can be performed
using the standard integer multiply instruction. Although
this instruction takes 10 cycles in the Pentium core and is not
pipelined, it requires 4 cycles on Pentium Pro (and presum-
ably Klamath) and, more important, is fully pipelined.

The integer multiplier, however, operates on the integer
registers, not the MMX registers, and it cannot perform par-
allel calculations like the MMX units. Furthermore, there is
no integer multiply-add instruction in x86. Because 16-bit
precision is inadequate for advanced audio algorithms, such
as wavetable sound, and for most 3D geometry calculations,
the lack of a 32-bit multiply-add prevents these types of rou-
tines from taking advantage of MMX.

Parallel Comparisons Eliminate Branches

The MMX extensions include parallel compare operations
that seem awkward at first but will produce big performance
savings, particularly for Klamath and its successors. The
PCMPEQW instruction, for example, compares two packed
words; the fields in the result are set to zero if the comparison
is false (not equal, in this case) or all ones if the comparison
is true (equal), as Figure 4(b) shows.

4 Intel's MMX Speeds Multimedia Vol. 10, No. 3, March 5, 1996

© 1996 MicroDesign Resources

MICROPROCESSOR REPORT

This function is useful when combining or overlaying
two images. For example, a common video technique known
as chroma keying allows an object (such as the weatherman)
in front of a blue screen to be superimposed on another
image (such as the weather map). In a digital implementa-
tion, this technique requires combining two images such that
any blue pixels in the first image are replaced by the corre-
sponding pixels in the second image.

Assume that X[i] is the first image, Y[i] is the back-
ground image, and the result is put back into X[i]. Using tra-
ditional x86 code, a single iteration might look like this:

CMP X|i], BLUE :Check if blue

INE next_pixel ;If not, skip ahead

Mov X[i], YI[i] ;If blue, use second image
In this case, three instructions are needed per pixel.

Using MMX instructions, this sequence can be recoded
as follows, assuming 16-bit pixels:

MOV MM1, X[i] ;Make a copy of X][i]

PCMPEQW MM1, BLUE ;Check four pixels in X[i]

PAND Y[i], MM1 ;Zero out non-blue pixels in Y

PANDN MM1, X[i] ;Zero out blue pixels in X

POR MML1, YI[i] ;Combine two images
Note that this sequence assumes all pixels are in MMX regis-
ters. The compare instruction generates four results in regis-
ter MM, setting each to zero if the corresponding pixel is not
blue. The PAND combines this result with Y[i], zeroing any
pixels corresponding to non-blue values in X[i]. Conversely,
the PANDN zeroes the blue pixels in X[i].

At first glance, this routine appears to be about 2.5%
faster than the non-MMX routine, processing four pixels in
five instructions. The actual performance will be even better,
however, because the second routine eliminates a branch.
Although modern processors predict branches, they mispre-
dict perhaps 10-20% of the time. Pentium’s misprediction
penalty is 4-5 cycles, while Pentium Pro (and presumably
Klamath) takes an average of 15 cycles to recover from a mis-
prediction. Thus, eliminating branches in this way signifi-
cantly improves performance.

Outshined by VIS But Ahead of Others

In many ways, MMX is quite similar to the VIS instruction
set (see 081604.PDF) developed by Sun for UltraSparc. Both
MMX and VIS pack 8-, 16-, and 32-bit data into 64-bit reg-
isters for parallel operations, including addition, multiplica-
tion, comparisons, and logical operations. Both use the float-
ing-point registers to store these values. Both perform
saturating and unsaturating arithmetic.

To this baseline feature set, VIS adds some highly spe-
cialized instructions. For example, PDIST calculates the sum
of the absolute values of the differences of two sets of eight
pixels. This instruction vastly accelerates the motion estima-
tion process in MPEG and other video-compression algo-
rithms, allowing UltraSparc to perform real-time MPEG-1
encoding. MMX will accelerate motion estimation com-
pared with non-MMX processors, but not as much as VIS.

For More Information

For more information on MMX, obtain the document
Intel MMX Technology Programmer's Reference Manual
by calling Intel at 800.628.8686, or access the Web at
www.intel.com/pc-supp/multimed/mmx/index.htm, or
contact your local Intel sales office.

UltraSparc also includes instructions to accelerate the
discrete cosine transform (used in video decompression),
pixel masking, and 3D rendering. As with other SPARC
instructions, the VIS instructions use three-operand encod-
ing rather than the two-operand MMX style, which would
alleviate some of the awkwardness seen in the above MMX
code examples.

The VIS instructions also operate on 32 registers in-
stead of the limited set of 8 MMX registers. A 4 X 4 matrix of
constants, commonly used in digital filters, fits within the
VIS register set but requires extra memory accesses in MMX.
MMX has one advantage in its multiply-add instruction; it
takes two instructions to perform this task under VIS.

While MMX may not go quite as far as VIS, it provides
a much wider range of multimedia-oriented instructions
than any other popular instruction set. HP’s recent proces-
sors include some parallel arithmetic (see 080103.PDF) but
operate on only two 16-bit quantities at once.

To date, the other leading desktop RISCs—PowerPC,
MIPS, and Alpha—have somehow failed to implement multi-
media instructions, despite the significant performance ben-
efits and minimal cost. One advantage that PowerPC has over
current Intel chips is in floating-point performance, which
can be used to speed audio processing and speech recogni-
tion, for example. For these multimedia applications, MMX
processors should improve Intel’s position.

Both NexGen and Cyrix have been developing their
own multimedia extensions to the x86 instruction set.
AMD’s purchase of NexGen and its subsequent licensing
agreement with Intel (see 1001MSB.PDF) ensure that com-
pany’s processors will move to MMX, starting with the K6.
Cyrix has said its M2 processor, due in early 1997, will
include its own multimedia extensions. We expect Cyrix will
eventually switch to MMX, although perhaps not in the first
version of the M2.

MMX to Appear Mainly in Drivers

Programming in MMX is challenging. Taking full advantage
of the SIMD architecture often requires unrolling loops and
carefully arranging instructions, yet there is no compiler
support planned other than allowing in-line MMX assembly
code. Intel plans to provide libraries of routines for common
multimedia functions as well as an assembler and debugger
that support MMX. Over time, third parties will also supply
MMX tools and library code.

5 Intel's MMX Speeds Multimedia Vol. 10, No. 3, March 5, 1996

© 1996 MicroDesign Resources

MICROPROCESSOR REPORT

Most multimedia applications will take advantage of
the new instructions simply by calling MMX-enabled drivers
or including the new library routines. One advantage of rely-
ing on drivers is that an application can automatically take
advantage of a hardware accelerator for 3D graphics, sound,
or MPEG decoding if one is installed. This model, of course,
pushes the coding effort onto the driver writers.

A few applications will have to incorporate MMX in-
structions directly. These include programs that do image
processing (e.g., Photoshop) or speech recognition, since
APIs for these tasks are not yet defined. Fortunately, a signif-
icant speedup can often be obtained by simply modifying a
few critical inner loops.

One problem is managing separate versions of each
application for MMX and for non-MMX systems, which will
be the majority of the installed base for several years. Soft-
ware can check bit 23 of the CPUID to determine if a proces-
sor implements MMX. Again, simply relying on drivers elim-
inates this problem for the application.

Improved Multimedia Fuels PC Sales Growth

Although the installed base of MMX processors is nonexis-
tent today, it will grow rapidly. We project that more than
half of Intel’s 1997 processor shipments, and virtually all
thereafter, will contain MMX, totaling more than 30 million
processors by the end of 1997. The 50-100% performance
gain will motivate multimedia software vendors to use
MMX; those that don’t will be uncompetitive. Intel expects

dozens of drivers and applications to be shipping with MMX
code when P55C systems first appear; this number will
quickly increase during the course of 1997.

While the two are not directly connected, MMX is
clearly designed to accelerate native signal processing
(NSP). NSP will be used mainly in low-end systems to per-
form multimedia tasks; more expensive PCs are likely to
include hardware accelerators. The P55C will significantly
increase the baseline multimedia capabilities of low-end
systems without accelerator chips. As Klamath reaches the
mainstream in 1998, it will offer another big performance
boost, possibly eliminating accelerator chips even in
midrange systems.

It’s not every day that you get a sizable step up in per-
formance with minimal die cost, but that’s what MMX
promises. Once the combination of MMX-based processors
and applications reaches the market, it should increase the
growth of PC sales, particularly in the already hot consumer
market, where multimedia is used most today. Even busi-
nesses will see the benefit as more use their PCs for video-
conferencing and similar tasks.

One problem will be measuring this new performance
level. Current benchmarks (SPEC95, Winstone, etc.) do not
measure improvements of this type. The computer industry,
with prodding from Intel, will most likely come up with new
benchmarks to solve this problem, but perhaps not in time
for the P55C’s debut. Fortunately, the increase in graphics
and video performance is something the buyer can see.

6 Intel's MMX Speeds Multimedia Vol. 10, No. 3, March 5, 1996

© 1996 MicroDesign Resources

	Intel’s MMX Speeds Multimedia
	Simple Software Model
	Figure 1. MMX improves performance on most multimedia applications
	Table 1. Intel’s MMX multimedia extensions include 57 new opcodes
	Single Instruction, Multiple Data
	Pack and Unpack Instructions Shuffle Bytes
	New Instructions Calculate in Parallel
	Saturating and Unsaturating Arithmetic
	Figure 2. MMX adds three new data types
	Figure 3. (a) Unpack operation...
	Two Instructions Perform 16-bit Multiplication
	Figure 4. (a) Packed multiply-add...
	Multiply-Add Speeds Signal Processing
	Parallel Comparisons Eliminate Branches
	Outshined by VIS But Ahead of Others
	MMX to Appear Mainly in Drivers
	Improved Multimedia Fuels PC Sales Growth

	F o r M o r e I n f o r m a t i o n

