
MICROPROCESSOR
THE INSIDERS’ GUIDE TO MICROPROCESSOR HARDWARE

REPORT

M A R C H 2 7 , 1 9 9 5V O L U M E 9 — N U M B E R 4
by James L. Turley

Seeking to shoulder the trophy for best code density,
Advanced RISC Machines (ARM) has taken a unique ap-
proach, adding an entirely new instruction set to its
ARM7 processor core. The new feature, inevitably called
Thumb, seeks to shoehorn the 36 most commonly used
instructions into a 16-bit instruction format. A Thumb-
equipped processor can execute both 32-bit ARM code
and 16-bit Thumb code, though the two instruction sets
cannot be directly intermixed.

Thumb addresses the issue of code density in an in-
novative way. In embedded systems, the cost of ROM
and RAM can make up a significant portion of the cost of
the system, so reducing the size of compiled object code,
or improving code density, is an important considera-
tion. ARM’s engineers evaluated different approaches,
including actually compressing finished programs with a
Huffman or PKZIP-type algorithm and then adding real-
time decompression hardware. The ultimate solution is
much simpler: ARM defined a second instruction set.

Thumb is not a new processor but an optional macro-
cell for ARM7-based designs. The macrocell adds an in-
struction predecoder (which the company calls an “de-
compressor”) and associated control logic. The new
instruction set is not complete: exception handling and
MMU configuration can’t be performed with Thumb
code, relying instead on the original 32-bit instruction
set. Thumb also limits program access to eight registers.

The results are encouraging. Object code averages
25–35% smaller than comparable ARM code. Thumb
code also performs better than ARM over a 16-bit bus.

The announcement comes on the heels of the com-
pany’s recent agreement with Digital Semiconductor to
develop a new generation of high-end chips (see
0902MSB.PDF), but the two developments are not re-
lated. While the StrongArm venture is aimed at high-
end designs, Thumb is intended to elbow into the lower
end of the market, where 16-bit microprocessors tradi-
tionally have an advantage in code density.

Thumb Squeezes
New Core Module Provides Opt
Thumb Squeezes ARM Code Size Vol. 9, No. 4, March 27, 1995
New Design Thumbs Nose at 16-Bit RISC
In selecting which 36 lucky instructions would be

part of the new instruction set, ARM’s designers consid-
ered three criteria: those instructions that do not need 32
bits (i.e., do not substantially degrade through 16-bit en-
coding); those that are used most often; and those that
are required by compilers to implement reasonable ob-
ject code. (Exclusive-OR instructions, for example, do not
appear frequently but are invaluable when needed.)

Using an iterative process to arrive at the final
instruction set, code samples were recompiled and the
resulting object sizes compared. By removing some
instructions and including others, the company arrived
at an acceptable performance/code-size tradeoff.

ARM’s engineers could afford to be picky about
which instructions are implemented by Thumb. Major
functions are ignored by relegating them to the standard
32-bit ARM instruction set. System-control functions, for
example, are not supported, nor are coprocessors, excep-
tion handling, or the upper half of the register set.
Thumb, therefore, is not a complete instruction set in the
true sense but rather a collection of frequently used in-
structions in shorthand form. The entire Thumb instruc-
tion set appears in Table 1.

Tiny Instructions Sacrifice Generality
Many sacrifices had to be made to fit the ARM in-

struction set—which is already among the densest of
any 32-bit RISC architecture—into half the size. The
first amputation was ARM’s most unusual feature: its
conditional execution of every instruction (see MPR
12/18/91, p. 11). ARM chips also have the ability to shift
or rotate one operand as an intrinsic part of any instruc-
tion; this feature, too, was dropped for space reasons. Fi-
nally, Thumb instructions always update the processor’s
status flags, a previously optional step and another move
toward a more conventional programming model.

The removal of the conditional-execution feature is
the most profound change in the architecture. Normally,

 ARM Code Size
imized Second Instruction Set
© 1995 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

ARM does not use conditional branch instructions; every
instruction is conditional, virtually eliminating branches
around small code fragments. Thumb, on the other
hand, has a traditional branch on condition (Bcc) instruc-
tion familiar to programmers of other microprocessors.

Logical shift and rotate operations come for free in
the original ARM instruction set. Any three-operand in-
struction (AND, EOR, etc.) can shift or rotate one source
operand before it is used. By simply specifying a null
logic operation or a move in place, shifts or rotates can be
executed alone. The additional bits required to encode
these options were not available to the Thumb designers,
so discrete arithmetic (signed) and logical (unsigned)
shift and rotate instructions were added.

There are no changes to the ARM7’s 32-bit core, so
32 × 32 → 32-bit multiply operations are untouched, but
the multiply-accumulate instruction is not supported in
2 Thumb Squeezes ARM Code Size Vol. 9, No. 4, March 27, 1995

Table 1. A complete list of Thumb instructions shows that, while the
instruction set is very small, most common functions are supported.
*New instructions with ARM Version 4.

LDMIA Load Multiple LDMIA Rb!, {Reg List}

AND Logical AND AND Rd, Rs, Rn

ADC Add with Carry ADCS Rd, Rd, Rs
ADD Add ADDS Rd, Rs, Rn

ASR Arithmetic Shift Right MOVS Rd, Rd, ASR Rs

B Branch Unconditional B {label}
Bcc Branch Conditional B[xx] {label}

BIC Bit Clear BICS Rd, Rd, Rs

BL Branch and Link BL {label}
BX Branch and Exchange n/a

CMN Compare Negative CMN Rd, Rs

CMP Compare CMP Rd, #offset8

EOR Exclusive-OR EORS Rd, Rd, Rs

LDR Load Word LDR Rd, [PC, #imm5]
LDRB Load Byte LDRB Rd, [Rb, #imm5]

LDRH* Load Halfword n/a

LSL Logical Shift Left MOVS Rd, Rs, LSL Rs

LDRSB* Load Signed Byte n/a

LDRSH* Load Signed Halfword n/a

LSR Logical Shift Right MOV Rd, Rd, LSR Rs

MOV Move Register/Register MOVS Rd, #offset8

MUL Multiply MUL Rd, Rs, Rd

MVN Move and Invert MVNS Rd, Rs

NEG Negate RSBS Rd, Rs, #0

ORR Logical OR ORRS Rd, Rd, Rs

POP Pop Registers LDMIA R13!, {Reg List}
PUSH Push Registers STMDB R13!, {Reg List}

ROR Rotate Right MOVS Rd, Rd, ROR Rs

SBC Subtract with Carry SBCS Rd, Rd, Rs

STMIA Store Multiple STMIA Rb!, {Reg List}

STR Store Word STR Rd, [Rb, Ro]
STRB Store Byte STRB Rd, [Rb, Ro]
STRH* Store Halfword n/a

SWI Software Interrupt SWI value8

SUB Subtract SUBS Rd, Rs, Rn

TST Test Bits TST Rd, Rs

Mnemonic Description ARM Equivalent
Thumb. Neither are atomic memory transactions, co-
processor operations, or the two reverse-subtract (RSB,
RSC) instructions. A new NEG instruction performs the
same function as a reverse-subtract from zero.

The load-multiple and store-multiple instructions
are still available but are hard-coded to use the post-
increment addressing mode. New PUSH and POP in-
structions make up for the lack of stack addressing
modes, standing in for the load/store-multiple instruc-
tions with pre-decrement and post-increment address-
ing, respectively.

Hardware Translation Adds No Delays
The Thumb module works by reconstituting incom-

ing Thumb opcodes into their matching ARM instruc-
tions. It does this through a simple hardwired lookup
table. Because there are so few Thumb opcodes, and be-
cause they all map one-to-one to ARM instructions, the
lookup PLA is fairly small. Thumb adds approximately
3,000 transistors to an ARM7 core, representing about
5% of the total core area, or less than 1 mm2 in a 0.8-
micron three-layer-metal process.

The Thumb-to-ARM conversion happens on the fly
as part of the second pipeline stage. At current clock
speeds, enough time is available in the decode stage to
add the extra logic without impacting pipeline through-
put or latency.

After the opcode bits are converted, register refer-
ences are extracted from the Thumb instruction and
placed in their proper positions in the ARM instruction,
as shown in Figure 1. Most Thumb instructions accept
two operands, while ARM instructions generally take
three; the missing source register is created by duplicat-
ing the destination operand, creating a destructive two-
operand operation—a classic CISC feature. If an imme-
diate value is present, it is zero-extended to fill the larger
instruction field. When the fully reconstituted 32-bit in-
struction makes its way through the pipeline, the stan-
dard ARM instruction decoder is none the wiser.

Some operations are encoded in as few as 4 opcode
bits; others take as many as 8. Instructions like ADD that
are used frequently and have many formats use a vari-
able encoding scheme. The add-immediate instruction
uses 5 opcode bits, leaving 3 bits for a destination regis-
ter and 8 bits for the immediate value. A three-register
ADD, on the other hand, uses a 7-bit opcode to distinguish
it from the add-immediate version and sacrifices the re-
mainder of the operand field to identify two source regis-
ters. The SUB (subtract) instruction works the same way.
Add and subtract are the only Thumb instructions that
retain support for three-operand operations.

A new CPU status bit controls a multiplexer, rout-
ing incoming instructions through the Thumb prede-
coder or directly into the usual ARM decode logic. Chang-
ing the bit requires a special branch-and-exchange (BX)
© 1995 MicroDesign Resources

001 10 Rd #imm8

ADD Rd, #immediate8

Condition Codes

Major Opcode

Destination & Source
Register

Zero-Extended
Constant

1110 001 01001 0 Rd 0 Rd 0000 #imm12

Minor Opcode

Figure 2. Comparing ARM7 cores with and without Thumb shows
the effects of memory bus width on performance. The 16-bit Thumb
instruction set surpasses ARM in low-cost systems. (Source: ARM).

32-Bit 16-Bit 8-Bit

100%

60%

40%

20%

80%

ARM7

Thumb

R
el

at
iv

e
P

er
fo

rm
an

ce

Memory Bus Width
M I C R O P R O C E S S O R R E P O R T

instruction, so ARM code and Thumb code must be seg-
regated into separate procedures. Interrupts and other
exceptions switch the processor to 32-bit mode, allowing
full use of the processor’s resources. ARM and Thumb
routines can call each other freely without confusing the
processor.

Effects on Performance Are Complex
The presence of a Thumb preprocessor has a neu-

tral effect on the performance of cached code. Because
Thumb instructions are cached while still in their com-
pressed form, twice as many Thumb instructions as
ARM instructions fit in the cache. Although more in-
structions are needed, they are only half as long, so the
overall size of most programs is reduced. This results in
a larger proportion of program code in the cache.

This benefit is neutralized, however, by the greater
number of instructions required and by the addition of
conditional branches, which cause extra pipeline breaks.
The net performance is equal, to within about 5%, be-
tween ARM code and Thumb code when both are cached.

The effect of memory latency on Thumb perfor-
mance is particularly intriguing. Given an ideal system
with a 32-bit memory bus and no wait states, and ignor-
ing the effects of cache, Thumb code runs about 20%
slower due to the increased number of instructions re-
quired to perform routine tasks. However, after adding
just one wait state to external bus cycles, ARM and
Thumb run neck and neck. Adding more wait states
gives Thumb an increasing edge.

Thumb has a leg up after only a few wait states be-
cause the processor can fetch two instructions during
every 32-bit bus access. Although the latency affects
both ARM and Thumb equally for the first instruction, a
processor fetching Thumb code effectively gets every sec-
ond instruction for free. The minimum ARM7 bus trans-
action lasts only one clock cycle, so one wait state equates
to a half-speed bus—the point at which ARM and Thumb
cores perform almost equally. Additional latency penal-
izes ARM code more severely.

The same advantage accrues to other microproces-
sors that have buses wider than their instruction size.
The R4650, for example, has a 64-bit bus, allowing it to
perform the same trick as Thumb but on a double-wide
scale. Hitachi’s SH7604 and new SH7708 (see
090302.PDF) are similar to Thumb in that they fetch 16-
bit code over a 32-bit bus.

The effect is even more pronounced in lower-cost
configurations. In systems with a 16-bit bus, Thumb
processors can fetch an instruction in a single cycle. As
Figure 2 shows, Thumb code actually runs faster than
equivalent ARM code over an 8-bit or 16-bit bus.

Halving the instruction size doesn’t double the num-
ber of instructions. For routines that can be executed
entirely in Thumb code, the space savings are significant.
3 Thumb Squeezes ARM Code Size Vol. 9, No. 4, March 27, 1995
In reality, programs may have to mix ARM and Thumb
code. Table 2 shows that, for comparatively real-world
applications from the SPECint suite, substantial overall
space savings can be found.

When Does It Pay Off?
Not all ARM instructions can be represented in

Thumb’s shorthand notation, forcing some routines to be
coded in the 32-bit instruction set. Any routine that re-
quires a 32-bit ARM instruction has to be written en-
tirely in ARM code, or branch to ARM code. With no rule
of thumb, it is difficult to estimate the point at which it
becomes effective to recompile existing ARM programs.

Frequently used loops might benefit from recompi-
lation, branching to and from a 32-bit handler. Several
factors will affect the final result. First, the BX instruc-
tion itself has a latency of three clock cycles, which would
not be incurred if the code were simply in line. Two BX in-
structions would typically be needed, one at each end.

Second, Thumb code cannot take advantage of most
of the quirks that make the ARM instruction set attrac-
tive in the first place, namely its conditional execution
and zero-latency shifts and rotates. Thumb code must
execute discrete shift or rotate instructions, perform ex-

Figure 1. The Thumb instruction decompression logic expands op-
codes and register references into their 32-bit ARM equivalents.

ADD Rd, Rd, #immediate12
© 1995 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

Price & Availability
The first Thumb-compatible processor core, the

ARM7TDMI, will be available in June. For more infor-
mation, contact Advanced RISC Machines (Cambridge,
U.K.) at 44.1223.400.400; fax 44.1223.400.410, or ARM
North America (Los Gatos, Calif.) at 408.399.5199; fax
408.399.8854.

Sharp Debuts ARM Controller
Sharp Electronics is using an ARM7 core as the

basis for its new integrated processor for handheld de-
vices. The chip includes 4K of cache, 2K of data SRAM,
an LCD controller, a DRAM controller, and serial and
parallel interfaces in a 160-lead TQFP package. Sharp
is hoping to attract makers of handheld instruments,
portable medical equipment, and personal communi-
cators with its new device.

While Sharp’s LH77790 chip does not integrate the
new Thumb module, it does have a 16-bit external
data bus. The on-chip 4K unified cache should keep the
part running happily at its 25-MHz peak, though off-
chip accesses will slow its execution rate considerably.
Apart from the 2K of RAM, there is no on-chip mem-
ory, so applications code will have to be fetched—at
least initially—from off-chip ROM.

The LH77790 includes a memory controller in lieu
of a conventional ARM-style system bus. The con-
troller drives five programmable chip selects and in-
cludes simple SRAM/EPROM control signals for WE

and OE. Support for page-mode DRAMs is also in-
cluded. Harking back to the now-forgotten ARM2 and
ARM3 chips, the external address bus is only 26 bits
wide, enough for 64M of external memory. For a hand-
held device, this restriction should not be too grievous.
The 16-bit data bus reduces cost but badly affects the
performance of programs that miss the cache.

The most complex feature of the chip is its mono-
chrome LCD controller. Suitable for so-called half-
VGA LCD displays, it supports programmable resolu-
tion up to 480 × 320 with four gray shades (2-bit pixel
depth). Sharp, by no coincidence, manufactures sev-
eral such LCD panels. Five programmable pulse-width
modulation outputs are also included, two of which
could be used for software control of the LCD bright-
ness and contrast.

Three 16-bit counter/timers, a 24-bit parallel I/O
port, and three 16C450-compatible serial ports round
out the I/O section. One of the serial ports supports
Irda infrared communications.

Although the chip has a 32-bit ARM7 core and a con-
troller for a reasonably sized LCD screen, its narrow
external bus and small cache make it a little under-
powered for upcoming PDA applications. Sharp has
correctly positioned it for instrumentation, pocket or-
ganizers, and point-of-sale terminals instead.
plicit comparisons, and branch conditionally based on
the outcome. Most routines will require more instruc-
tions, even if they use fewer bytes of storage.

Third, the Thumb-encoded routine may or may not
execute at the same speed as a similar algorithm in 32-
bit mode. As shown previously, if the code has a low
cache-hit rate, and memory latency is more than three
cycles, the Thumb code may actually execute more
quickly, despite the added steps. For systems that need
all the speed they can get, the best performance still
comes from 32-bit ARM code running over a no-wait-
state, 32-bit bus.

New Version Handles Four New Instructions
ARM’s nomenclature assigns a letter suffix to each

optional core module. An ARM7 with the fast multiplier
becomes ARM7M, debug support adds a D, and in-circuit
emulator support is identified by the letter I. In that tax-
onomy, Thumb will be tagged with a T suffix. The first
Thumb-compatible core will be an ARM7TDMI—a fully
equipped processor core.

What’s not so obvious is that the ARM7TDMI core
will also be the first to implement the ARM Version 4 in-
struction set. This new definition adds four instructions
and a privileged system mode. System mode is intended
for operating-system tasks, allowing the processor to ex-
ecute privileged instructions while sharing the user-
mode register set.

The new instructions add support for signed byte
and halfword (16-bit) operands, something ARM previ-
ously lacked. The LDRSB instruction sign-extends a byte
from memory into a general-purpose register. Likewise,
LDRSH sign-extends halfwords, while the new LDRH in-
4 Thumb Squeezes ARM Code Size Vol. 9, No. 4, March 27, 1995 © 1995 MicroDesign Resources

Table 2. A comparison of object code size for three SPECint
benchmarks shows that even with an increased number of instruc-
tions, Thumb’s code density improves significantly over ARM7.
(Source: ARM, Micrologic Solutions)

 Test Thumb ARM7 386 8088 68020 SPARC

10,608
0.63

26,388
0.65

72,596
0.66

16,768
1.00

40,768
1.00

109,923
1.00

17,640
1.05

28,097
0.69

125,686
1.14

19,106
1.14

29,401
0.72

137,194
1.25

20,542
1.23

46,746
1.15

131,854
1.20

22,256
1.33

44,648
1.10

142,752
1.30

eqntott
Ratio
xlisp
Ratio
espresso
Ratio

This is the second ARM-based device to come from
Sharp. The company entered the market in early 1994
with its LH74610, an ARM610 chip that appears in
Apple’s Newton MessagePad 100 and 110 PDAs (see
0803MSB.PDF).

Samples of the LH77790 are expected in July. Pric-
ing has not yet been disclosed. For more information,
contact Mike Roberts or Len Elias at Sharp Electron-
ics Technology, (Camas, Wash.) phone 360.834.8791 or
360.834.8966; fax 360.834.8611.

struction zero-extends halfwords. ARM chips could al-
ways store individual bytes; now the STRH instruction
permits storing halfwords without first extending them
to 32 bits. All four new instructions support the usual as-
sortment of addressing modes.

The halfword loads and store make the new ARM
core more efficient with 16-bit buses, an area that ARM
is clearly targeting. Most signal-processing applications
typically deal with 10–12-bit words, making 16-bit loads
and stores valuable. Although the new Version 4 in-
structions are not dependent on a Thumb decoder, both
are aimed at attracting the same kind of designers.

ARM Flexes Design Muscle
The Thumb module is a unique approach to im-

proving code density. Content with neither a 32-bit in-
struction set nor a 16-bit one, ARM chose to offer its cus-
tomers both. As mentioned previously, Thumb is not
really a full-featured instruction set, so the company was
able to skimp on the system-level instructions and in-
stead implement only the most popular functions for the
tightest code.

It seems likely that most, if not all, future ARM
cores will come with the Thumb predecoder on them as a
matter of course. It costs very little in silicon, and the
benefits can be significant. Including the module also
avoids a potential quagmire of compatibility issues be-
tween ARM processors that support Thumb and those
that don’t. With or without Thumb, ARM processors can
still execute 32-bit ARM code.

Compared with other microprocessors that have 16-
bit instructions, Thumb sticks out. Hitachi’s SH series is
notable for toeing the line on 16-bit instructions and has
enviable code density to show for it. Conversely, because
the SH doesn’t have a “real” 32-bit instruction set to fall
back on, it must squeeze everything into 16 bits. Losing
many of those precious opcode bits to system-control
functions forces compromises, like the SH’s lack of vari-
able shift or rotate instructions and its implicit register
usage. Consequently, the SH can be an awkward chip for
assembly-language programmers.

NEC’s V851 nominally has 16-bit instructions but
makes frequent use of 16-bit extension words as well.

M I C R O P R O C E S S O R R E P O R T
5 Thumb Squeezes ARM Code Size Vol. 9, No. 4, March 27, 1995
This is also true of the entire 680x0 family. As Motorola
and NEC have found, the ideal instruction length seems
to vary somewhere around 24 bits, and leavening in-
structions with extenders was the only practical way to
achieve that size.

Plenty of chips have privileged or special modes
that use different instructions, but no other microproces-
sor today has such a marked difference between its de-
fault and its special-purpose instruction set. Such spe-
cial instructions usually serve control-and-configuration
purposes; they’re necessary overhead and provide little
advantage to the programmer. Thumb, on the other
hand, exists only to make code denser.

One obvious use for Thumb is in the upcoming gen-
eration of PDAs from Apple and others. Newton carries
several megabytes of code in expensive on-chip ROM,
and compacting that code would make the product more
cost-effective. Reducing the bus width to 16 bits is also
appealing for lower-end devices. Cirrus Logic, VLSI,
Sharp, and other ARM licensees with a history of sup-
plying core logic chips to Apple should be among the first
to capitalize on the benefits of Thumb and the Version 4
extensions (see sidebar).

Two interesting trends are evident here. First,
while operating in Thumb mode, the processor is not re-
ally executing its own native instruction set. Like the P6,
K5, and Nx586, ARM is translating binary code on the
fly into a form it can execute. Second, Thumb is starting
to show the early signs of adopting CISC principles. Like
many near-RISC chips before it, Thumb uses destructive
two-operand instructions, special-purpose addressing
modes that are not orthogonal, and a small register set.

One of the most compelling benefits of Thumb is
that programmers are not required to use it, allowing
them to tinker with recompiling their existing applica-
tions, looking for the best MIPS/byte tradeoff.

Many microprocessors try to find the best balance
among performance, capability, and code size. By
their nature, embedded processors necessarily have to
make compromises. By not standing on convictions
about what a RISC processor should be, ARM has
pointed out a unique approach by offering two archi-
tectures in one. ♦
© 1995 MicroDesign Resources

	Thumb Squeezes ARM Code Size
	New Design Thumbs Nose at 16-Bit RISC
	Tiny Instructions Sacrifice Generality
	Table 1. A complete list of Thumb instructions shows…
	Hardware Translation Adds No Delays
	Effects on Performance Are Complex
	Figure 1. The Thumb instruction decompression logic …
	When Does It Pay Off?
	Figure 2. Comparing ARM7 cores with and without Thumb …
	New Version Handles Four New Instructions
	Table 2. A comparison of object code size for three SPECint …
	ARM Flexes Design Muscle

	Price & Availability
	Sharp Debuts ARM Controller

