
M I C R O P R O C E S S O R R E P O R T

MICROPROCESSOR
THE INSIDERS’ GUIDE TO MICROPROCESSOR HARDWARE

REPORT

O C T O B E R 2 4 , 1 9 9 4V O L U M E 8 N U M B E R 1 4
by Michael Slater

At the recent Microprocessor Forum,
AMD unveiled its challenger to Pen-
tium, setting the stage for AMD—along
with Cyrix, IBM, and NexGen—to chal-
lenge Intel’s domination of the high-end
x86 microprocessor market.

The chip is the first in a new line from AMD that is
based on an entirely AMD-developed core. By developing
its own microarchitecture, AMD hopes to eliminate legal
squabbles and gain a competitive edge. The first chip in
the K86 family carries the project name of K5; the formal
product name has not been released.

At the heart of the chip is an advanced four-issue
superscalar core that supports speculative, out-of-order
execution and register renaming (see 081102.PDF). The
design goes beyond Intel’s Pentium and Cyrix’s M1,
using fully decoupled instruction dispatch and execution
in an effort to deliver more effective superscalar opera-
tion.

AMD was due to tape out the design as we go to
press, so first silicon won’t be seen until November. The
chip is a static, 3.3-V design that is implemented in
AMD’s 0.5-micron, three-layer-metal CMOS process (the
same as used for AMD’s DX4-100). Die size for the chip,
which uses 4.3 million transistors as compared with
Pentium’s 3.3 million, has not been disclosed.

AMD plans to deliver samples to customers by the
end of the year, with production by the middle of 1995.
Initial chips will come from AMD’s Submicron Develop-
ment Center, which has been equipped as a production
facility, with volume production from the company’s new
Fab 25, now nearing completion in Austin. AMD plans to
shift the K5 to a 0.35-micron process in 1996.

30% Faster at Same Clock Rate
AMD’s simulations show that, at the same clock

rate, the K5 should be at least 30% faster than Pentium
(on integer code) and 2.5 times as fast as a 486. AMD has

AMD’s K5 Designed
Four-Issue Out-of-Order Processo

1 9 9 4

FORUMMI
CROPROCESSOR
AMD’s K5 Designed to Outrun Pentium Vol. 8, No. 14, October 24,
put less emphasis on floating-point performance but still
expects the K5 to be roughly comparable to Pentium.

The K5 is a much more flexible, more aggressive mi-
croarchitecture than Pentium, so it is not surprising that
it would achieve higher performance at the same clock
rate. AMD expects to match Intel’s current top rate of
100 MHz, but Intel probably will have higher-clock-rate
Pentiums by the time the K5 is in volume production. It
remains to be seen whether AMD will actually ship
higher-performance processors than Intel at any point in
time.

At the conference, Mike Johnson, AMD’s director of
microprocessor architecture, displayed pipeline simula-
tions of Pentium and the K5 running actual traces from
Microsoft Word, which showed the K5 to be more than
30% faster than Pentium on a per-clock-cycle basis. On
selected code sections, the K5 is as much as three times
as fast as Pentium.

Tackling the x86 Bottleneck
Decoding multiple x86 instructions in parallel is

challenging. RISC instructions have a fixed length, mak-
ing it easy to decode as many of them in parallel as de-
sired. For x86 instructions, on the other hand, the vari-
able length means that the next instruction can’t be
decoded until the length of the previous instruction is
known. Pentium proved that this challenge could be
overcome, but it decodes only two instructions at a time.

AMD’s architects avoided this problem by predecod-
ing x86 instructions as they are fetched from memory
and fed to the instruction cache, as Figure 1 shows. Since
most instructions fetched come from the cache, the pre-
decode information frees superscalar instruction dis-
patch logic from having to deal with the variable-length
aspects of the x86 instruction set.

Since an average x86 instruction is about three
bytes long, it takes the K5 an average of nearly three
clock cycles to predecode the eight instruction bytes
fetched in a single bus transaction. If the bus clock were
the same as the processor clock, the predecoder wouldn’t

to Outrun Pentium
r Is First Member of K86 Family
1994 © 1994 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

be able to keep up, but the fact that the CPU core runs at
a multiple of the bus clock gives the decoder extra time.
In a worst-case situation (short instructions, a CPU core
running at only 1.5 times the bus clock, and a single-
cycle burst rate from memory), the serial instruction de-
coder could limit performance during a cache miss, but
this would have little impact, since the vast majority of
instruction fetches are cache hits.

When instructions are written into the instruction
cache, the predecoder adds five bits to each byte. These
bits indicate whether the byte is the start or end of an
x86 instruction; the number of microinstructions re-
quired to implement the x86 instruction; and the loca-
tion of opcodes and prefixes.

The predecode bits increase the size of the instruc-
tion cache array by about 50% (the cache data array is
increased by 5/8 but tags and prediction bits aren’t in-
creased). In return, they dramatically reduce the com-
plexity of the parallel dispatch logic following the cache.

Dispatching Four Instructions Per Cycle
After instructions are fetched from the cache, the

K5 converts each instruction to one or more micro-
instructions, which AMD calls RISC operations or ROPs
(pronounced “ar-ops” by Johnson). The x86 instructions
are pulled from the instruction cache 16 bytes (plus pre-
decode bits) at a time and converted to ROPs. Up to four
ROPs can be issued per cycle.
2 AMD’s K5 Designed to Outrun Pentium Vol. 8, No. 14, October

Figure 1. Block diagram of AMD’s K5, which adds predecode bits to x8

Prefetch
Predecode

Branch
Prediction

ALU 0
Shifter

ALU 1
Load/Sto

Load/S

TLB
(128 entry)

Physical
Tags

Bus Interface
Unit

16K
Instruction Cache
(plus Predecode

Information)

4-Wide
ROP Translate
and Dispatch

Addr Data Control

32 64

128 + 80 predecode

Branch
Unit

Four instruction dispatch buse

64-bit internal data bus

8K D
Data

Add
The ROPs aren’t quite like conventional RISC in-
structions, but they share two important characteristics:
fixed length and simple, consistent encodings. The ROPs
are essentially the same as microcode, except that the
majority of them are generated directly by hardware
decoders rather than fetched from ROM. Pentium also
decodes simple x86 instructions directly into microin-
struction sequences, but the K5’s ROPs have more of a
life of their own; they are not necessarily executed right
away or even in order.

Unlike more limited superscalar machines, such as
Pentium, there are no instruction grouping require-
ments for multiple issue. Even x86 instruction bound-
aries do not limit ROP dispatch. The K5 thereby avoids
the need for specific compiler optimizations; 486-opti-
mized code will run well, and Pentium-optimized code
will run better (though many Pentium optimizations are
unnecessary for the K5).

Figure 2 shows the instruction translation process
in more detail. Instructions from the cache are fed into a
16-byte queue. The fetch logic tries to keep this queue
filled, speculatively following branches as needed. As in-
structions are consumed from this queue, new instruc-
tions are added from the cache.

Up to four instructions can be pulled from the byte
queue during each clock cycle. Because these instruc-
tions are already tagged with predecode bits indicating
where instructions start and end and how many ROPs
 24, 1994 © 1994 MicroDesign Resources

6 instructions before caching them.

re 0

tore 1

FPU
Special

Registers

Eight 41-bit
operand
buses

Five 41-bit result buses

40-Word Register File

Operand Steering
s

ual-Port
 Cache

r Data

16-Entry Reorder Buffer

ROP
Convert

Speculative PC

MROM

add EAX,[EBP+d8]

Instruction Cache

ROP
Convert

ROP
Convert

ROP
Convert

add EAX,[EBP+d8]
cmp EAX,imm32
push ECX

(2 ROPs)
(1 ROP)
(2 ROPs)

cmp EAX,imm32 push ECX

Byte Queue

load temp,[EBP+d8] add EAX,temp cmp EAX,imm32 sub ESP,4 str [ESP],ECX

str [ESP],ECX

Parse/Duplicate
each needs, it is a relatively simple task for the byte
queue to locate instruction boundaries and find four
ROPs worth of instructions.

All four ROP converters are identical and can han-
dle any instruction. The ROP converters translate most
x86 instructions directly into ROPs, breaking the com-
plex instructions into multiple ROPs and rearranging
instruction fields for consistency.

In this example, the parse/duplicate logic sends the
first instruction, which requires two ROPs, to the first
two ROP converters, along with an indication of where
in the ROP sequence each converter lies. The two ROPs
produced by the add memory-to-register instruction are:
• Load temporary register from memory
• Add temporary register to target register

The second instruction, compare register to immediate
value, translates into a single ROP. The final instruc-
tion, a register push, translates into two ROPs: one to
decrement the stack pointer and a second to perform the
store to memory.

Any instruction that can be executed with one, two,
or three ROPs is handled entirely in hardware. For com-
plex instructions, such as string move, that require four
or more ROPs, ROP sequences (which are essentially the
same as microcode) from the MROM are used. The
MROM can dispatch four ROPs per cycle.

Once past the ROP converters, the K5 core is RISC-
like in that it does not have to deal with variable-length
instructions and memory-based operands. It does, how-
ever, have numerous special features to support the va-
garies of the x86 instruction set—most notably, dual
load/store units with full support for complex x86 ad-
dressing modes.

The limit of dispatching four instructions per cycle
is based on ROPs, not x86 instructions. If each x86 in-
struction in the group requires only one ROP, then four
x86 instructions can be dispatched at once. In the exam-
ple shown in Figure 2, the first instruction requires two
ROPs, the second requires one, and the third requires
two. The processor will dispatch, in a single cycle, the
first four of these ROPs—that is, all the ROPs for the
first two instructions and the first of two ROPs for the
third instruction.

On average, 16-bit x86 code produces 1.9 ROPs per
instruction. Because 32-bit x86 code tends toward a sim-
pler subset of the instruction set, it produces only 1.3
ROPs per instruction. Thus, in terms of x86 instructions
dispatched per cycle, the peak rate for an average in-
struction mix is about two instructions for 16-bit code
and three instructions for 32-bit code.

Execution Resources Include Dual ALUs
Instructions are dispatched from the byte queue in

order, without regard to the availability of the operands
and execution resources required for the instructions.

M I C R O P R O C E S S O R R E P O R T
3 AMD’s K5 Designed to Outrun Pentium Vol. 8, No. 14, Octobe
The ROPs are dispatched to the execution units, where
they wait in reservation stations for the execution unit
and the needed operands to be available. Each unit ex-
cept the FPU has two reservation stations; the FPU has
only one. The dispatch process stalls as soon as any ROP
is blocked from being dispatched because no reservation
station is available.

The K5’s six execution units are two ALUs, one
FPU, two load/store units, and a branch unit. Only one
ALU has a shifter, and only the other has a divider; oth-
erwise they are identical. The floating-point unit does
not include a hardware register stack, as in traditional
x86 designs; the stack is emulated in the general register
file with special register-renaming logic.

One area where the K5 has saved a little silicon and
is therefore slower than Pentium is in floating-point
multiplication, which has a latency of seven cycles (worst
case, with a four-cycle issue rate) versus three for Pen-
tium. Like Pentium, the K5 supports the parallel execu-
tion of the floating-point exchange (FXCH) instruction
along with another floating-point operation—an impor-
tant optimization aimed at mitigating the performance
handicap of the stack architecture.

Eight operand buses feed the execution units, al-
lowing four units to be fed two operands each on every
cycle, thereby supporting the peak issue rate. There are
five result buses. Each bus is 41 bits wide to support
transfers of floating-point data; two buses are used in
parallel to provide the 82-bit width needed for x86-
compatible floating-point operations.

The register file holds 40 words, much bigger than
the basic x86 register set. This is because the register file
must also store the floating-point stack and temporary
registers used for passing data between ROPs.

A 16-entry reorder buffer (ROB) stores results from
instructions that have been speculatively executed (see
sidebar below). All results are first written to the ROB;

Figure 2. Instructions are issued from a queue (filled from the
cache) into four parallel ROP instruction decoders.
r 24, 1994 © 1994 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

calculate
fetch pc

fetch instr

predict
branch

merge into
byte queue

scan queue

generate
ROPS

drive ROPs
to decode

access
registers
or ROB

execute

result bus
arbitrate

result on
bus

write ROB

result
forwarding

branch
correction

write to
register

ROB
forwarding

dispatch to
function
unit

fetch decode1 decode2 execute result (retire)

calculate
dcache
index

calculate

address

access
cache

segment
limit check

protection
checks

drive data
and status
on bus

For load
or store:
writes to the register file are performed by the ROB
when the result is known to no longer be speculative.
Operands may be fetched from either the reorder buffer
or the register file; each has eight ports, enough to ser-
vice four two-operand instructions in every cycle.

Pipeline Has Few Penalties
Figure 3 shows the pipeline timing. There are six

pipeline stages, but it is effectively a five-stage pipeline
because the final stage does not affect performance. The
final stage, due to the reorder buffer, adds a cycle of la-
tency before results are written to the register file, but it
does not affect processor performance, since results are
forwarded to any waiting execution units as soon as they
are available from the ROB or a result bus.

Compared with a traditional x86 implementation,
the K5 requires an extra decode stage for the x86-to-
ROP translation. The K5 compensates for the added la-
tency by combining address generation into the same
stage as cache access; all other pipelined x86s use a sep-
arate stage for address generation.

The K5’s load/store units are especially complex be-
cause they perform full x86 address calculations in addi-
tion to the data cache access, all in one clock cycle. In the
first phase of the execute stage, the cache index (the
least-significant 11 bits of the linear address) is calcu-
lated. In the second phase, the cache is accessed. The full
32-bit linear address calculation isn’t complete until late
in the second phase, just in time to compare it to the tag
returned from the cache access. All the segment and pro-
tection checking is also done during the second phase,
and if all goes well, the data is available at the start of
the next clock cycle. As a result, there is no load-use
penalty; data can be loaded by one instruction and used
by the next without stalling.

Branches are predicted using a simple single-bit al-

Figure 3. The K5’s pipeline has six stages, but only five that affect ins
packs address generation into the execute stage.
4 AMD’s K5 Designed to Outrun Pentium Vol. 8, No. 14, October
gorithm that is cache-line based: the branch history bit
reflects the previous direction taken by the branch, ex-
cept that a backwards branch that was predicted to be
taken but is later not taken doesn’t change the predic-
tion bit. The K5 has one prediction entry per cache line,
implemented as part of the cache array rather than a
separate branch prediction cache.

Including the prediction bits in the cache array al-
lows the chip to store predictions for 1,024 different
cache lines—four times the size of Pentium’s branch pre-
diction cache. AMD believes that this approach is just as
effective as the two-bit algorithm used in Pentium and
recent superscalar RISCs; it has lower prediction accu-
racy per branch but stores prediction information for
many more branches.

The prediction entry for each cache line includes a
pointer to the target instruction, with its cache index
and byte offset. This pointer enables the processor to fol-
low a taken branch without a pipeline bubble. The
penalty for a mispredicted branch is a minimum of three
cycles, or 12 potential ROP instruction slots.

Caches and Memory Management
The dual load/store units allow two accesses to the

8K data cache to be performed in a single clock cycle,
provided that no two accesses are to the same bank.
Dual load/store units are included because of the high in-
cidence of loads and stores in the ROP stream, thanks to
the paucity of registers in the x86 architecture.

The cache is divided into four banks. There are two
access ports, one for each load/store unit, and both ac-
cesses proceed in parallel as long as they are to different
banks. (Pentium uses a similar dual-access scheme with
eight banks; Johnson says that AMD’s simulations
showed little benefit for eight banks instead of four.) Two
accesses to the same cache bank are allowed in the same

truction timing. It uses an extra decode stage for the byte queue but
 24, 1994 © 1994 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

K86 Roots and Relatives
Although active work on the K86 processors at AMD

did not begin until nearly three years ago, their roots go
back to at least 1989, when Mike Johnson published his
Ph.D. dissertation, Super-Scalar Processor Design
(Stanford University). This work grew into the first
book on the subject, published in 1991 by Prentice-Hall
as Superscalar Microprocessor Design.

Johnson’s book even includes an appendix titled “A
Superscalar 386,” which includes comments on why it
would be “extremely painful to implement a superscalar
version” of the architecture. Many seeds of the K5 de-
sign, including the use of a reorder buffer and the possi-
bility of using predecode bits in the instruction cache,
can be seen in this appendix.

Johnson joined AMD not to work on a superscalar
x86 but to create the 29000 family. In parallel with the
K5 effort, he also led the design of the first superscalar
29000 implementation (see 081404.PDF). While the two
chips are very different, because of the differing de-
mands of their instruction sets, some logic blocks—such
as most of the reorder buffer and the ALUs—were
shared between the two designs. The K5’s FPU was bor-
rowed from the 29050 and extended to 80 bits.

Reorder Buffer Operation
The reorder buffer used in AMD’s K5 and its super-

scalar 29000 implements register renaming, facilitates
branch prediction and precise exceptions, and serves as
a central clearinghouse for the register values used and
produced by instructions.

When ROPs are dispatched to an execution unit, an
entry at the top of the reorder buffer is allocated for
each instruction. Up to four entries are allocated simul-
taneously. Each entry keeps track of the program
counter associated with its instruction and has a place
to hold the result of the instruction (if it produces one).
The reorder buffer acts as a true FIFO: as entries are
deallocated from the bottom of the buffer, all other en-
tries slide down, making room for the next group of in-
structions to be issued.

Up to four entries are deallocated from the bottom of
the buffer each cycle, provided that their results are
available; the branch prediction that led to their execu-
tion is validated as correct; and no exceptions were sig-
nalled along with the execution of the instructions (e.g.,
a page fault with a load or store). If the instruction as-
sociated with such an entry produced a result, the re-
sult is written to the register file.

The ROB helps branch prediction because results are
not written to the register file unless they are guaran-
teed correct. If a branch is mispredicted, the results of
instructions along the mispredicted path can simply be
invalidated in the buffer.

The ROB naturally implements register renaming
with hardware to implement associative lookup. Since
each instruction issued has an entry with a place to
hold a result, a unique storage location is available for
every result. To implement register renaming, though,
requires that the buffer function as an associative
memory when presented with a register number. Given
the number for a source register of an instruction that
is being issued, the reorder buffer must find the entry
that has the value associated with that register.

Further, it is possible that the ROB holds the results
of two or more instructions that name the same result
register; thus, when a new instruction is issued, the
buffer must find the entry with the most up-to-date
value for the instruction’s source registers. If a register
value is not yet available, the buffer must allocate a
unique tag instead of delivering the value. When the re-
quired value is later available, tag-comparison logic for-
wards the value directly to the waiting execution unit.

The associative lookup requires a set of comparators
and a priority encoder for each read port in the buffer.
Since read ports, comparators, and priority encoders all
require lots of metal routing, the die area consumed by
the reorder buffer can quickly get out of hand. This is
one reason that reorder buffers are kept as small as
possible. The K5’s ROB is more complex than the su-
perscalar 29K’s because it must support 8- and 16-bit
writes to fields in registers.

—BC
cycle if both are to the same cache line.
The instruction cache has a 16-byte line size, half

the 32-byte line size used by Pentium. Since the Pentium
bus, with which the K5 is compatible, performs cache
fills in 32-byte bursts, the K5 includes a 16-byte buffer to
hold the second cache line. Only if this line is subse-
quently requested (before another cache fill occurs) is it
loaded into the cache. The smaller line size is better for
the K5’s branch prediction, which is performed on a
cache-line basis, and it also yields a higher hit rate.

The caches are virtually addressed and virtually
tagged to avoid the need to translate addresses before a
cache access. In addition, a single set of physical tags is
shared by both the instruction and data caches. When
any changes are made to the virtual-to-physical map-
ping, the virtual cache tags are invalidated. To avoid the
performance degradation usually associated with virtual
caches, the physical tags continue to be checked on sub-
sequent accesses, and if a match is found, the cache line
is revalidated without reloading it from memory.

The physical tags are used for bus snooping, elimi-
nating any conflicts with the CPU for cache access. They
also serve to ensure consistency between the instruction
and data caches. If a write occurs to a location that is in
the instruction cache, that cache line is invalidated.

The bus interface is Pentium-compatible, using the
P54C pinout but without the APIC functions (i.e., it uses
the P5 signal set with the P54C pin arrangement).
5 AMD’s K5 Designed to Outrun Pentium Vol. 8, No. 14, October 24, 1994 © 1994 MicroDesign Resources

Design Technology

AMD is no stranger to the x86 microprocessor busi-
ness, having produced (by its own accounting) 28 million
of them in the past three years. All of them, however, are
virtual duplicates of Intel’s logic designs, so this record
does not speak to AMD’s ability to independently engi-
neer a compatible processor. To keep the K5 design pure,
AMD says that no one associated with the Intel-derived
designs was involved. AMD borrowed heavily from the
microarchitecture work that was done for the super-
scalar 29K, which was designed earlier, and much of the
design team had 29K experience. Two things that were
used from AMD’s x86 experience are
the compatibility test suites and vali-
dation methods that had been devel-
oped to test the clean-room 486 micro-
code.

To validate the design running
real software, a Quickturn-based hard-
ware emulator was used. Running on
the hardware emulator, the K5 booted
DOS in July and Windows in August.
AMD believes that its investment in
hardware emulation, which turned up
about two dozen subtle bugs, will pay
off in chips that have few problems in
the initial silicon. Indeed, AMD’s ag-
gressive schedule requires sampling
from first silicon.

AMD still could encounter stum-
bling blocks in making its design fully
x86-compatible. Cyrix’s and NexGen’s
examples, however, provide some as-
surance that compatibility is achiev-
able. Any gaps in the chip’s compati-
bility could be very damaging to AMD if they are not
found early and corrected quickly.

Comparing Superscalar x86s
Although Intel likes to characterize all x86-compat-

ible processors as imitators, the K5 is far from an imita-
tor of Pentium. It executes the same instruction set—es-
sentially that defined by the 386—and conforms to the
same pinout and bus interfaces, but inside it is a radi-
cally different machine. Although nothing can guarantee
that Intel won’t deem its intellectual property to be in-
fringed and file suit, there are no apparent grounds for
doing so; AMD’s independent design should avoid any
copyright issues, and Intel does not dispute AMD’s
patent license.

The K5 goes further than any previously described
design in combining x86 compatibility with a RISC-like
core, achieving the best of both: a large software base
and high performance. The overall style of the microar-

M I C R O P R O C E S S O R R E P O R T

“The complexity of
an impassable barrie
ally isn’t all that com
doesn’t make a lot o
biggest weakness
struction set is the
ters coupled with a
painful addressing s

Mike
6 AMD’s K5 Designed to Outrun Pentium Vol. 8, No. 14, October
chitecture is most similar to that used by NexGen’s
Nx586, in which x86 instructions are decoded only one at
a time but are translated into RISC-like operations that
are executed in parallel (see 080403.PDF). Unlike the K5,
however, the Nx586 does not cache predecode informa-
tion, so it is limited to dispatching the ROPs (RISC86 in-
structions, in NexGen’s lingo) for one x86 instruction at
a time. Whereas AMD expects to exceed Pentium perfor-
mance at the same clock rate by about 30%, NexGen’s
advantage is less than 10%.

The other Pentium competitor expected to debut
soon is Cyrix’s M1, which will be second-sourced by IBM
Microelectronics. Although the design was described at

last year’s Microprocessor Forum (see
071401.PDF) and shipments were promised
for 1994, the chip has not formally debuted.
Some press reports have put the M1 as
much as six months ahead of AMD’s K5, but
indications are that both designs will see
first silicon next month. Cyrix’s delivery
schedule appears to be based on a more ag-
gressive plan for moving the chip quickly
into production. Only time will tell who will
get to market first with significant quanti-
ties of debugged chips.

Like AMD’s K5, Cyrix’s M1 is more ad-
vanced than Pentium in its use of register
renaming and out-of-order execution. The
Cyrix design appears more like Intel’s in its
use of dual pipelines rather than AMD’s de-
coupled pool of execution resources; it is
therefore more limited in its ability to exe-
cute instructions out of order. Cyrix uses
deep, seven-stage pipelines. Until actual
benchmark results are available, it will be
impossible to judge the effectiveness of the

strategies AMD and Cyrix have chosen, but AMD’s de-
sign appears to be more capable.

Intel’s P6 processor is likely to have a great deal in
common with the K5. Because Pentium was developed
years earlier, it had to be buildable in 0.8-micron tech-
nology, so Intel was more limited in what it could do. The
P6 design, in addition to using techniques such as out-of-
order execution and register renaming, is expected to
boost performance by use of a proprietary second-level
cache chip, connected to the CPU chip within a single IC
package. Having a higher-bandwidth external cache
should give the P6 a performance edge but will also
make it more expensive to build.

Competing with Pentium
AMD has created, on paper at least, a formidable

challenger to Pentium. Taking advantage of coming to
market two years later, AMD aimed for a more aggres-
sive design point, enabling its chip to deliver higher per-

the x86 is not
r. The x86 re-
plex—it just

f sense.... The
in the x86 in-
lack of regis-
n extremely
cheme.”

Johnson, AMD

C
LA

R
E

N
C

E
T

O
W

E
R

S

 24, 1994 © 1994 MicroDesign Resources

Price & Availability
AMD has not formally announced any chips in the

K86 family, so no pricing information is available.
AMD is promising samples by the end of this year and
production in mid-1995.

Call AMD at 800.222.9323; fax 512.602.7639.
formance at the same clock rate. If AMD is able to de-
liver on its promises in a timely manner, it should be a
significant force in the Pentium-class CPU market by
the end of 1995. Although the K5’s die size is surely
larger than Pentium’s, the high margins in this market
make modest cost differences relatively insignificant.

In the four years since the company began shipping
386 microprocessors, AMD has established business re-
lationships with dozens of PC vendors, becoming the
leading alternative to Intel. The credibility the company
has established in this process, culminating in its part-
nership with Compaq, has created a fertile environment
for the K5. If Compaq uses the K5, PC consumers and
other PC makers will see it as a stamp of approval—
making it much less intimidating for them to follow in
Compaq’s footsteps and leave the Intel fold.

With the 486, AMD’s market share—which the
company estimates at 13%—has been limited by its fab
capacity. Only one small fab (the Submicron Develop-
ment Center) is currently running AMD’s most ad-
vanced processes, needed for 486 and K5 chips. By the
middle of 1995, however, AMD expects to be in full pro-
duction at its new Fab 25. Intel has several comparable
fabs, giving it much greater capacity, but AMD’s goal is
not to overtake Intel as the market leader—just to be the
leading alternative, with 25–30% of the market. A single
large fab, plus the existing SDC and foundries such as
Digital, should enable AMD to achieve this market share
if it has the right products.

Marketing the K5 (or M1) against Pentium is an en-
tirely different challenge than creating such a device.
Ideally, AMD would like to be able to sell its x86 proces-
sors at similar prices to Intel’s for comparable perfor-
mance levels. Being the underdog, however, has pushed
AMD to offer higher performance for the same price.
When the 386 still had some life in it, AMD took over the
market with 40-MHz chips at the price of Intel’s top-of-
the-line 33-MHz devices. With the 486, AMD didn’t have
a clock speed advantage for nearly two years. Now AMD
is shipping 80-MHz 486 chips and sampling 100-MHz
parts, catching up with Intel’s DX4.

With the K5, AMD expects to match today’s top Pen-
tium clock rate of 100 MHz. The company has not an-
nounced any pricing or clock rates for the K5. Its natural

M I C R O P R O C E S S O R R E P O R T
7 AMD’s K5 Designed to Outrun Pentium Vol. 8, No. 14, Octobe
pricing strategy, however, will be to price the K5 identi-
cally to Pentium at the same clock rate, offering higher
performance as the incentive for buying from AMD.

Just how fast the chip will run has yet to be proved,
however; the achilles’ heel of an ambitious superscalar
design is that, if not superbly executed, the increased ef-
ficiency in instructions per clock cycle can be negated by
a reduced clock rate. AMD is confident in its simulations,
but other vendors with complex superscalar designs
have sometimes been unpleasantly surprised.

Intel won’t stand still, either. It is unclear just when
Intel will increase Pentium’s clock rate, but a 120-MHz
speed grade is likely early next year, and a 150-MHz ver-
sion (P55C), using a new 0.4-micron process, has been
promised for late 1995. AMD could market a 100-MHz
K5 against a 120-MHz Pentium, saying that the K5 of-
fers higher performance despite a lower clock rate, but
this may be a hard sell with consumers. Competitive sit-
uations such as this one highlight the need for a stan-
dard benchmark for x86 processors, replacing clock rate
as a measure of speed (see 0814ED.PDF).

How AMD fares against Cyrix’s M1, with IBM be-
hind it, remains to be seen. If both parts meet their ex-
pectations and are competitively priced, they should do
well. Whether one or the other becomes dominant de-
pends on the quality of each vendor’s design and the
strength of its relationships—factors that won’t be
tested until next year.

AMD has many challenges ahead. But if the com-
pany is able to produce K5 chips in the middle of next
year, if the chips are significantly faster than 100-MHz
Pentiums, and if there are no compatibility problems,
then AMD will be well-positioned to keep increasing its
x86 market share. ♦
r 24, 1994 © 1994 MicroDesign Resources

	AMD’s K5 Designed to Outrun Pentium
	30% Faster at Same Clock Rate
	Tackling the x86 Bottleneck
	Dispatching Four Instructions Per Cycle
	Figure 1. Block diagram of AMD’s K5 …
	Execution Resources Include Dual ALUs
	Figure 2. Instructions are issued from a queue …
	Figure 3. The K5’s pipeline has six stages …
	Pipeline Has Few Penalties
	Caches and Memory Management
	Design Technology
	Comparing Superscalar x86s
	Competing with Pentium

	K86 Roots and Relatives
	Reorder Buffer Operation
	Price & Availability

