
M I C R O P R O C E S S O R R E P O R T

MICROPROCESSOR
THE INSIDERS’ GUIDE TO MICROPROCESSOR HARDWARE

REPORT

O C T O B E R 2 5 , 1 9 9 3V O L U M E 7 N U M B E R 1 4
by Linley Gwennap

Can a $70 million company develop a
better processor than a $6 billion giant?
Cyrix is attempting to reaffirm that
David can beat Goliath at his own game.
At the recent Microprocessor Forum,

Cyrix’s Peggy Herubin unwrapped the “M1” design, a su-
perscalar, deeply pipelined, x86-compatible CPU that
she claims will outperform both current and future gen-
erations of Intel’s Pentium processor.

Cyrix’s 20-person design team has pulled out all the
stops to maximize the performance of the x86 instruction
set. The M1 design uses advanced techniques such as
branch prediction, speculative execution, out-of-order ex-
ecution, register renaming, and memory bypassing to
overcome bottlenecks in the CISC-style architecture and
improve the efficiency of its pipeline. The complexity of
the hardware design removes much of the need for the
compiler to reorganize instructions; Cyrix believes that
the M1 will execute existing code at high speeds without
the need to recompile.

The company did not announce any specific prod-
ucts based on the M1 design; the first such products will
probably debut in 2H94. By that time, Intel should be
shipping its P54C version of Pentium, having boosted
the chip’s clock speed to near 100 MHz and reduced its
manufacturing cost significantly. The M1 core could be
used in parts that are pin-compatible with Pentium, or in
different packages. Cyrix would not discuss pricing for
these potential products, but the company has histori-
cally priced its products aggressively against Intel’s.

Breaking the Register Bottleneck
The biggest deficiency in the x86 architecture is

generally acknowledged (even by Intel) to be the small
register set. All x86 processors, even Pentium, have just
eight general-purpose registers, compared with 32 for
most RISC architectures. As a result, program data must
be constantly shuffled back and forth between memory

Cyrix Describes Pe
x86-Compatible “M1” Design is

1 9 9 3

FORUMMI
CROPROCESSOR
Cyrix Describes Pentium Competitor Vol. 7, No. 14, October 25, 1
and the registers. Sometimes, frequently used data is
simply left in memory, since the x86 instruction set sup-
ports memory-to-memory operations.

These situations reduce performance in two signifi-
cant ways. First, accesses to memory, even when
buffered by a fast cache, are often slower than register
accesses, which increases latencies. Second, reusing reg-
isters creates “false” dependencies, such as write-after-
read (w-a-r) and write-after-write (w-a-w) dependencies.
For example, in the sequence:

MOV [mem1], AX; MOV AX, [mem2]

a data value is being read from the AX register and stored
in memory so a second value can be written into AX. In a
RISC architecture, this sequence can often be avoided
entirely by allocating two registers for the two data val-
ues. This sequence slows down superscalar processors
such as Pentium because the register conflict prevents
the two instructions from executing in parallel.

Pentium overcomes this problem by having the
compiler rearrange the code by placing an unrelated in-
struction between the two moves; this instruction can be
executed in parallel with either MOV. Rearranging the in-
structions, however, requires a Pentium-aware compiler;
existing code might not be ordered properly. Even if the
program is recompiled, there is no guarantee that there
will always be an unrelated instruction to place in the
needed slot.

Cyrix solves w-a-r and w-a-w dependencies through
register renaming. The M1 design maps the eight logical
registers onto 32 physical registers. In the example
above, the code sequence would be translated into:

MOV [mem1], AX; MOV AX’, [mem2]

where AX’ is a different physical register than AX. The
new sequence can be executed in parallel, since the w-a-r
dependency has been removed. This mapping is done en-
tirely by the hardware; no recompilation is necessary.

Register renaming is also used in IBM’s POWER
processors (see 071301.PDF) to remove bottlenecks in the
floating-point register file. IBM’s design, however, per-
forms renaming only on load operations. The M1 will

ntium Competitor
 Superscalar, Deeply Pipelined
993 © 1993 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

perform renaming on every operation that updates the
general registers. For example, in the sequence:

MOV [mem1], AX; AND AX, DX

the destination of the AND will be mapped to a different
physical register, again avoiding the w-a-r dependency.

Pipelining “True” Dependencies
Renaming cannot resolve “true” dependencies, also

known as read-after-write (r-a-w) dependencies. These
often occur when a value is loaded from memory and im-
mediately used in a calculation. A typical sequence is:

MOV DX, [mem]; ADD AX, DX

In this case, the data must be loaded into DX before it can
be added to AX. This common situation stymies Pentium
(and most superscalar RISC chips, as well), and forces
the instructions to be executed one at a time. As with
w-a-r dependencies, Pentium counts on the compiler to
rearrange instructions to avoid r-a-w sequences. For un-
recompiled code, however, these sequences can signifi-
cantly reduce performance.

The M1 design resolves many r-a-w situations by or-
ganizing its pipeline as shown in Figure 1. The design in-
cludes separate stages for loading data from memory,
performing arithmetic calculations, and storing data to
memory. This eliminates the cache-access penalty com-
mon in most other processors. Figure 2 shows the in-
struction flow for the MOV, ADD sequence shown previ-
ously. The M1 will issue and execute these instructions
in parallel due to the data bypassing between the AC2
stage and the execute stage.

Pentium, in contrast, must execute these instruc-
tions sequentially. The Pentium pipeline, shown in Fig-
ure 1, has a single stage that executes all load and arith-
metic operations, forcing the ADD to wait until the MOV

has completed.
2 Cyrix Describes Pentium Competitor Vol. 7, No. 14, October 2

Instruction Fetch

Decode 1

Decode 2

Address Calc

Operand Fetch

Execute

Writeback

Decode 2

Address Calc

Operand Fetch

Execute

Writeback

IF:

D1:

D2:

AC1:

AC2:

EX:

WB:

X-Pipe Y-Pipe

Fetch 16 bytes pe
Access BTB and p

Extract next two v
 instructions from

Decode two instru
Issue to best poss

Calculate up to tw
Perform register r

Register file and c
TLB access and p

Execute up to two
Issue FP instructio

Write results to re
 or writeback bu

to FPQ

Cyrix M1 Pipeline

M
is

pr
ed

ic
te

d
B

ra
nc

h
P

en
al

ty

Figure 1. The M1 pipeline contains separate stages for cache loads a
execute stage, forcing these operations to be serialized.
Pairing Dependent Instructions
While the M1 pipeline will resolve many r-a-w de-

pendencies, it cannot handle situations where two suc-
cessive arithmetic instructions modify the same data.
For example, the sequence:

ADD AX, BX; ADD AX, DX

which sums the values in AX, BX, and DX, will be executed
serially in the M1. This is the case for most processors;
only SuperSPARC (and Power2, in some situations) can
execute such dependent operations in the same cycle.

Some dependent instruction pairs occur frequently
enough to deserve special handling. For example, a Jcc
(jump on condition code) instruction is often preceded by
a compare instruction that modifies the condition codes.
The M1 design will issue these two instructions together,
and the Jcc instruction will actually complete in the
writeback stage, one cycle after the compare is completed
in the execute stage. Note that if the required condition
code is already available when the Jcc is in the execute
stage, it will complete at that time rather than be de-
layed. In any case, the Jcc does not cause any pipeline
stalls or delay subsequent instructions.

Another common sequence is a series of PUSH or POP

instructions. The M1 can issue two PUSH or two POP in-
structions together, even though both modify the stack
pointer; special hardware detects and resolves this situ-
ation. Both compare-and-branch and PUSH/POP are also
handled as special cases by Pentium.

One drawback to the longer M1 pipeline is an in-
creased address-generation interlock. This interlock oc-
curs when a value needed for an address calculation is
being calculated in the execute stage of the previous in-
struction, for example:

ADD BX, DX; MOV AX, [BX].
5, 1993 © 1993 MicroDesign Resources

r clock
redict branch

ariable-length
 instruction stream

ctions
ible pipe

o addresses
enaming

ache access
aging checks

 ALU operations
n to FPU

gister file
ffers (to cache)

Instruction Fetch

Decode and Issue

Address Calc

Execute

Writeback

Address Calc

Execute

Writeback

IF

D1

D2

EX

WB

U-Pipe V-Pipe

to FPU

Pentium Pipeline

In Pentium, all cache accesses and ALU ops
occur in the EX stage. "Simple" instructions can
spend one, two, or three cycles in the EX stage
depending on the number and type of cache
accesses.

M
is

pr
ed

ic
te

d
B

ra
nc

h
P

en
al

ty

nd arithmetic calculations, while Pentium does both operations in its

MOV DX, [mem]

MOV AX, [BX]

ADD [mem], CX

D2 AC1 AC2 EX WB

ADD AX, DX

ADD BX, DX

D2 AC1 AC2 EX WB

D2 AC1 AC2 EX WB

D2 AC2 EXAC1 AC1 AC1

D2 AC1 AC2 EX WB
M I C R O P R O C E S S O R R E P O R T

As shown in Figure 2, this sequence causes the MOV to be
held up for two cycles (actually three, if the instructions
are paired). These sequences, however, occur less fre-
quently than the r-a-w dependencies. In fact, the flexible
addressing of the x86 architecture can eliminate the de-
picted situation entirely; most compilers would code that
sequence with a single instruction, MOV AX, [BX+DX].

Pentium has a single-cycle address-generation in-
terlock that is half as long as the M1’s penalty. Most
RISC processors, using a fetch-execute-load pipeline, do
not have any address-generation interlock. The M1 de-
signers accepted the address-generation penalty to elim-
inate the more common cache-access (load-use) penalty.

Memory Bypassing Prevents Stalls
Memory bypassing is a third technique that helps

reduce the effects of the limited register set and prevent
pipeline stalls. Like most processors, the M1 will route
data that has been calculated (or loaded) in a previous
cycle to a current operation, bypassing the register file.
The new design goes beyond other implementations by
performing this bypass even if the data is stored in mem-
ory rather than the register file.

Memory bypassing is useful in an x86 processor be-
cause the small register set forces the compiler to keep
many variables in memory. Sequences such as:

ADD [mem], CX; SUB DX, [mem]

are fairly common when dealing with memory values. In
this example, CX is being added to the value stored at
[mem], and the result is being subtracted from DX. The M1
design detects that the address represented by [mem] is
the same for both instructions and bypasses the result of
the first calculation directly to the SUB instruction.

Although the instructions in this example cannot be
executed in parallel, they will execute in successive cy-
cles in the M1, as depicted in Figure 2. Other processors,
including Pentium, have to wait for the memory update
to complete before the second instruction can begin to
load its operand. This sequence takes four cycles to exe-
cute on a Pentium.

Memory bypassing can be complicated. It’s rela-
tively easy to compare 3-bit register descriptors to detect
a match; to bypass memory, the complete memory ad-
dress must be compared. Also, care must be taken for
memory-mapped I/O addresses and other non-cacheable
areas; these addresses must not be bypassed. Cyrix’s
Herubin said that the M1 design correctly handles these
situations, but she did not provide additional details.

M1 Design Uses Long Pipeline
Cyrix calls the M1 superpipelined, a term which is

also used by MIPS and Alpha with little technical mean-
ing. Is it really superpipelined, or just complicated? One
thing we can all agree on is that the M1 pipeline is long:
its seven stages are two more than those found in most
3 Cyrix Describes Pentium Competitor Vol. 7, No. 14, October 25
x86 or RISC processors. The M1 pipeline is comparable
in length to the seven-stage Alpha or eight-stage R4000
pipelines.

The M1 design uses two pipeline stages for instruc-
tion decode and dispatch, an undeniably complex task in
a superscalar x86 processor due to the variable-length
instructions. Pentium jams most of this operation into a
single pipeline stage. Cyrix also spreads the segmen-
tation checks across the AC1 and AC2 stages. By using
two stages for these complex tasks, the M1 may be able
to attain higher clock rates than Pentium.

The classic problem with long pipelines is the ex-
tended branch penalty. As shown in Figure 1, the branch
penalty can be as long as five cycles in the M1 if a Jcc re-
solved in the writeback stage must change the instruc-
tions entering the first decode stage. If the Jcc is resolved
in the execute stage, the penalty will be four cycles. Be-
cause of the dual pipelines, up to ten instruction slots can
be lost on a branch.

Cyrix employs branch prediction to reduce the num-
ber of these long pipeline stalls. The M1 design includes
a branch target buffer (BTB) nearly identical to Pen-
tium’s. The four-way set-associative BTB stores the tar-
get address of conditional branches. It uses the same
four-state prediction algorithm as Pentium (see
070402.PDF). If the history bits predict that the branch
will be taken, its target address is read from the BTB and
used as the next fetch address. Thus, if the branch is cor-
rectly predicted, there will be no pipeline delays.

The Cyrix design goes beyond Pentium by imple-
menting a separate target address stack for RET instruc-
tions. These instructions cannot be handled through the
BTB because their target address can change. When a
CALL instruction is encountered, its return address is
pushed onto the address stack; it can then be popped
when the corresponding RET is executed, which results in
no branch penalty for the RET. While a similar feature is
defined in the Alpha architecture, it has not yet been im-

SUB DX, [mem] D2 AC1 AC2 EX WBEX

Figure 2. The first example shows how data bypassing allows a load
operation and an add to execute in parallel. The second example
shows the two-cycle address-generation interlock. The third
demonstrates memory bypassing.
, 1993 © 1993 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

plemented in any Digital (or other) microprocessor.
For the programs in the SPEC89 suite, Intel claims

that Pentium correctly predicts 75% to 85% of the dy-
namic branches, including non-taken branches that miss
the BTB. Herubin would not reveal the size of the M1’s
BTB or return stack, but said that the BTB is “at least as
large” as Pentium’s. Thus, with its extra return stack,
the M1 should exceed the prediction rate of Pentium. An
improvement of about 5% would balance out the extra
penalty cycle (compared with Pentium) that the M1 in-
curs on mispredicted branches.

The M1’s prefetch buffer helps reduce the mispre-
dicted branch penalty. As shown in Figure 3, the prefetch
buffer passes instructions into the dual integer units. It
has room for up to four predicted code streams, as well as
the four code streams that are not predicted. Thus, even
if the branch is mispredicted, the required instructions
can be obtained from the prefetch buffer, eliminating one
cycle of delay.

Dual Instruction Dispatch
The M1 is a two-way superscalar design. Like Pen-

tium, the Cyrix design can pair most simple instructions
but must execute complex, multi-cycle operations seri-
ally. Each of these processors uses both pipelines to
speed the execution of these multi-cycle operations.

The two M1 pipelines, which Cyrix calls the X-pipe
and the Y-pipe, are not totally symmetric: the X-pipe is
the only one that can handle branches and floating-point
instructions. The two pipelines can swap instructions
after the decode stage, as shown in Figure 1, allowing the
processor to avoid most instruction-issue restrictions.

The biggest difference between the M1 and Pentium
dispatch rules is that the Cyrix chip will combine many
4 Cyrix Describes Pentium Competitor Vol. 7, No. 14, October 2

FP Queue

FPU

Branch
Prediction

X-Pipe Y-Pipe

Fetch and Decode

Prefetch Buffer

Instruction
Line Cache

Register
File

Write
Buffers

MMU

Dual-Port
Unified
Cache

A
dd

re
ss

Address

Load Data

64

64

2 × 32

Store Data

/
256

128

128

32

32 32

32

FP Instr

FP Instr

64

Addr

Figure 3. In the M1 design, instructions flow from the unified cache
to the smaller instruction line cache and then into the prefetch buffer
before being decoded and dispatched.
dependent instruction pairs that must be issued serially
in Pentium. This advantage comes from the M1’s deeper
pipeline and register-renaming abilities described ear-
lier. The performance difference will be most pronounced
on code that has not been recompiled for Pentium.

There are a few minor differences between these
two processors’ dispatch rules. Pentium cannot pair a
branch instruction with its successor; the M1 design can
handle this case. Also, the M1 has a shift unit in both
pipelines, while Pentium has only one.

The M1 design can issue only one FP instruction per
cycle. It does not pair floating-point operations with FXCH

instructions, as Pentium does. On the other hand, the
Cyrix design can pair floating-point instructions with in-
teger instructions, while Pentium cannot. Thus, while
the Intel processor will have an edge on code that has
been recompiled to take advantage of FXCH pairing, the
M1 will do well on existing binaries.

Bursting Pipeline Bubbles
After pairs of instructions are issued, “bubbles” can

be created in the pipeline if the two instructions do not
flow through the processor at the same rate. This is typ-
ically caused by instructions that take several cycles to
execute, such as floating-point math operations and
loads with cache misses. Pentium creates additional bub-
bles because it takes two or three cycles to execute ALU
operations with operands in memory.

Cyrix’s honed M1 design eliminates many of these
bubbles, which improves the processor’s efficiency. A sig-
nificant savings comes from the added pipeline stages,
which handle loading and storing memory operands.

For example, an instruction such as ADD [BX], AX re-
quires the processor to load data from memory, add to it
the value of AX, then store the result to memory. Pentium
takes three cycles to execute this instruction; the second
pipeline usually sits idle for two of these cycles. In the M1
design, the load occurs in the operand stage, the add
takes place during the execute stage, and the store hap-
pens in the writeback stage; the second pipeline can be
fully utilized during this process.

A more serious problem occurs during long-latency
operations such as floating-point math or a cache miss.
The M1 design handles the former case using the FP
queue shown in Figure 3. Although its floating-point unit
is not pipelined, it will queue up to four FP operations;
integer instructions continue to execute in both pipelines
as long as the queue does not overflow.

Precise exceptions are maintained by checkpointing
the processor as each FP instruction is queued. Check-
pointing saves most of the processor state in shadow reg-
isters; if an exception occurs, the processor state can be
restored quickly by loading from the shadow registers.

The M1’s large physical-register file avoids the need
for shadowing the general registers; during a checkpoint,
5, 1993 © 1993 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

the current registers are locked, and future writes are
mapped to different physical registers via renaming. The
segment registers and a few control registers are not
shadowed; writes to these registers force a stall until the
FP queue is drained.

Out-of-Order Execution
The Cyrix design is unusual in its ability to continue

dispatching instructions while a cache miss is processed.
Digital’s Alpha chips and HP’s PA7100 also accomplish
this feat, but Pentium and most others do not.

If a cache miss occurs on a load, the M1 will con-
tinue executing instructions using the other integer unit.
Execution will continue until:
• An instruction requires the data being loaded.
• A complex instruction requires both

pipelines.
• A non-shadowed register is written.
• An instruction requires access to the

external bus.
• A branch is encountered (if the miss

is in the X-pipe).
• An FP op is encountered (if the miss

is in the X-pipe).
The dispatch logic will attempt to route
memory instructions to the Y-pipe to
avoid the latter two situations.

By continuing to execute past a
cache miss, instructions can be com-
pleted out of order. Most processors do
not allow out-of-order execution be-
cause of the complexities of data de-
pendencies and of maintaining precise
exceptions. Dependency checking is
simplified in the M1 by allowing only a
single instruction to be stalled; each out-of-order instruc-
tion must check only one dependency.

Even when instructions are executed out of order,
the Cyrix design ensures that everything appears in
order from a software standpoint. The processor is check-
pointed before beginning out-of-order execution, so even
an unexpected trap will not disturb the in-order model.
To avoid confusing external devices, bus cycles will al-
ways be issued in order.

Dual-Ported Unified Cache
The M1 designers chose a unified on-chip cache be-

cause it has a higher hit rate than a split cache of equal
total size. The drawback of a unified cache is the poten-
tial conflict between data accesses and instruction
fetches. The Cyrix design adds a small instruction-line
cache to ease these conflicts. Like Pentium, it also uses a
dual-ported design to allow two load/stores per cycle.

A complex algorithm allocates bandwidth among
multiple uses. If an instruction fetch misses the prefetch

Peggy Herubin of C
M1 microarchitectur
5 Cyrix Describes Pentium Competitor Vol. 7, No. 14, October 2
buffer, it directly accesses the unified cache with the
highest priority, using both ports; Cyrix estimates that
this situation will consume only 2% of all cache cycles
due to the high hit rate in the prefetch buffer. Data loads
are second priority, followed by data stores; write buffers
queue stores until adequate bandwidth is available. Fi-
nally, excess bandwidth is allocated to instruction pre-
fetching using one or both ports to deliver up to 32 bytes
per cycle.

The cache itself is not truly dual-ported but uses a
banked structure similar to Pentium’s data cache.
Herubin would not disclose the number of banks but said
that the organization will be “better than Pentium’s” for
existing code.

The unified TLB design is fully dual-ported to gen-
erate two independent physical ad-
dresses per cycle. The unified cache is
virtually indexed, allowing the cache
access to proceed in parallel with the
address translation. Herubin would
not reveal the sizes of the cache,
buffers, or TLB, but said that the M1
TLB will have more entries than the
combined 96 entries in Pentium’s split
TLBs.

More Details to Come
Herubin’s Microprocessor Forum

presentation covered only the M1
microarchitecture, and she would not
discuss the details of future Cyrix
products. Exact performance informa-
tion, cache sizes, power consumption,
and die size will not be available until
these future parts are officially an-

nounced. Herubin also did not describe the bus interface
other than to say that it is 64 bits wide.

Cyrix did confirm that the M1 core will fit onto a sin-
gle chip, and that the number of transistors will be
roughly comparable to the two million used by Pentium,
although the Cyrix design uses more on the integer side
and fewer on the floating-point unit. (This reflects the
company’s view that, for most markets, integer perfor-
mance is more important than floating-point.) Given a
similar core size, it’s unlikely that M1-based chips will be
able to fit more than 16K of on-chip cache, and Cyrix may
go to an 8K cache to reduce its manufacturing cost.

Herubin presented some performance simulations
comparing the M1 to Pentium. At the same clock rate,
she says that the M1 will be about 40% faster on the
Power Meter benchmark and 110% faster on Norton SI.
These are 16-bit DOS programs in binary form, so these
figures should be representative of the M1’s performance
on code that has not be recompiled for Pentium. Cyrix
admits that on recompiled benchmarks, such as SPEC,

yrix describes the
e.
5, 1993 © 1993 MicroDesign Resources

For More Information
The M1 microarchitecture is not a product. Cyrix ex-

pects that processors implementing the M1 design will
be available in 2H94. For more information, contact
Cyrix at 2703 N. Central Expressway, Richardson, TX
M I C R O P R O C E S S O R R E P O R T

Pentium’s performance will be much closer to the M1’s at
the same clock speed.

Assuming that the M1 design achieves the perfor-
mance indicated by these simulations, the key question
is, will it be able to match Pentium in clock speed? Cyrix
claims that the M1 is designed to operate at 100 MHz in
initial products, with higher clock speeds in the future.
Pentium, on the other hand, is limited to 66 MHz today
but should be close to 100 MHz by the time the M1 be-
gins shipping. Thus, if Cyrix achieves its design goals,
M1 should be faster than the fastest Pentium.

Clock frequency goals can be difficult to reach. Pen-
tium is rumored to have started life with a 100-MHz de-
sign goal but is still struggling to ship 66-MHz parts.
Herubin says that spreading the instruction decode
across two stages will allow higher clock frequencies, but
ALU operations and cache accesses must still complete
in a single cycle. Furthermore, Cyrix’s 0.65-micron
CMOS process appears to be potentially slower than the
0.6-micron BiCMOS process that Intel has planned for
future Pentiums.

Cyrix may find it difficult to match, much less ex-
ceed, the clock speed of Intel’s Pentium processors. If the
M1 can even come close, however, it could match Pen-
tium’s performance, particularly on unrecompiled code.

Competition For Pentium
The M1 design uses a variety of advanced tech-

niques to execute x86 code at high speeds. These tech-
niques are particularly advantageous for existing x86
code; Pentium, in contrast, loses 20–30% of its peak per-
formance unless programs are recompiled. Cyrix’s initial
performance simulations seem to demonstrate the supe-
riority of its approach.

The new design raises questions about Intel’s Pen-
tium, which is said to have cost as much as $100 million
to develop. Even with this enormous effort, Pentium
ended up being little more than two 486 pipelines glued
together, with a fast floating-point unit. Cyrix will spend
perhaps a tenth of that amount and has developed a
much more innovative design, using register renaming
and other advanced tactics to solve critical problems in
the x86 architecture.
6 Cyrix Describes Pentium Competitor Vol. 7, No. 14, October 2
Intel is rumored to be using similar techniques in its
next-generation P6 processor, which is expected to reach
the market 6–12 months after the M1. The P6 probably
will also dispatch three or four instructions per cycle, giv-
ing it a significant performance advantage over the M1.
Thus, even if Cyrix achieves a lead in performance, it
may not last for long.

Whether or not it outperforms Pentium, the M1
should provide a means for Cyrix to compete with Intel
up and down the product line. Until now, Intel has al-
ways had a lock on the high-performance products; the
x86 leader has thus placed a premium price on these
chips and used the profits to fund its massive R&D ef-
forts. By holding the key to maximum performance, Intel
has also been able to enforce the loyalty of its customers.

If, during 1995, Cyrix can offer processors similar to
Intel’s premium products, Intel may have to drop prices
on its high-end chips, jeopardizing its legendary prof-
itability. Alternatively, Intel could try to boost prices on
its 486 chips, or cut back on R&D or other spending. Ei-
ther of these tactics could open the door for other x86 chip
vendors. Furthermore, Cyrix could become a “one-stop
shopping” alternative to Intel.

Before this scenario can develop, Cyrix must move
M1 from a fancy design to a potent reality. The fabless
vendor must then demonstrate an ability to obtain
enough chips to make a dent in the overall market; while
Pentiums are in short supply today, Intel will probably
be shipping a million per quarter by the time the M1 is
available, raising the bar for Cyrix. Finally, the fledgling
company must withstand inevitable legal challenges.
While the recent revelations show that Cyrix has a tal-
ented and efficient design team, only time will tell
whether the M1 is truly a Pentium killer. ♦

75080; 214.994.8491, fax 214.994.8404.
5, 1993 © 1993 MicroDesign Resources

	Cyrix Describes Pentium Competitor
	Breaking the Register Bottleneck
	Pipelining “True” Dependencies
	Figure 1. The M1 pipeline contains separate stages …
	Pairing Dependent Instructions
	Memory Bypassing Prevents Stalls
	M1 Design Uses Long Pipeline
	Figure 2. The first example shows how data bypassing allows…
	Dual Instruction Dispatch
	Figure 3. In the M1 design, instructions flow from the unified cache …
	Bursting Pipeline Bubbles
	Out-of-Order Execution
	Dual-Ported Unified Cache
	More Details to Come
	Competition For Pentium

	For More Information

