Comparing the New 64-Bit RISCs

Transition to 64-Bit Addressing Allows Architectural Update

By Brian Case

In the mid 1980s, computer architecture began a
transition from CISC to RISC. Since that time, RISC has
supplanted CISC only in some markets, and one of the
reasons is that RISC processors do not provide any
unique capabilities aside from greater price/perfor-
mance. (Of course, price/performance is very important.)
The next computer architecture transition, which is just
now upon us, is the expansion of address space from 32
bits to 64 bits. Unlike RISC, 64-bit architectures do offer
something unique: a linear virtual address space larger
than 4 gigabytes.

At this point, the need for more than 32 bits of
address is driven by only a few programs, such as large,
interactive data bases, integrated circuit layout, and
numerically-intensive time-series analysis. For example,
today’s high-end microprocessor designs are already too
big to simulate in a 32-bit address space. While some
observers question the widespread push to 64-bit
addressing, applications like those just mentioned are of
high strategic importance to business and technical
users, and an architecture that lacks a 64-bit address
space may lose out in a corporate buying decision even
though the vast majority of the corporation’s users do not
need 64-bit addressing. Also, just as with the transition
from 16 bits to 32 bits, the vast majority of uses for the
increased address space are not yet obvious.

With any transition in computer architecture comes
an opportunity for new players in the market. DEC has
used this transition period to make a move from its aging
VAX architecture to its new 64-bit Alpha RISC. Vendors
of existing architectures are using the transition period
to update their instruction sets. Three to six years of
experience with optimizing compilers and real applica-
tions have given architects some hard data with which to
justify a few basic architectural changes.

The architectures that have been updated so far
during this transition period are MIPS, SPARC, and
POWER. The new 64-bit architectures are called MIPS-
III, SPARC V9, and PowerPC. The R3000 implemented
the MIPS-I architecture, the ECL R6000 is the sole
implementation of MIPS-II, and the R4000 is the first
MIPS-III processor. Current SPARC chips are either V7
or V8, and Hal's proprietary processor design is
expected to be the first V9 implementation. The first
PowerPC chip is the IBM/Motorola 601, but it does not
incorporate the 64-bit extensions. The 620, still at least a
year away, will be the first 64-bit PowerPC.

It is widely expected that Intel’s P7 implementation
of the 486 architecture will incorporate 64-bit linear
addressing, as well as significant architectural changes.
Intel is, of course, not saying anything official about the
processor, and it will be a couple of years before it could
be on the market in any case.

HP’s PA-RISC is not included here because it is not
a true 64-bit architecture. While it allows for virtual
addresses greater than 32 bits, they are segmented. HP
is planning a 64-bit upgrade to PA-RISC, but no details
have been released.

In addition to the architectural changes associated
with 64-bit linear addressing and improvements to the
instruction sets, there are very important language, ABI
(application binary interface), and API (application pro-
gramming interface) issues as well. Once an architecture
is capable of 64-bit operations and addressing, compiler
writers must decide how to expose the new capabilities in
existing languages. For example, in C, what should be
the sizes of short, int, and long?

A great many programs make assumptions about
the sizes of primitive language types that are rooted in
the characteristics of 32-bit architectures. If the transi-
tion is not handled carefully, old programs could be diffi-
cult to maintain and recompile. For this reason, system
vendors are planning to continue to offer existing 32-bit
development environments. Other sticky issues, such as
how to handle 64-bit vs. 32-bit libraries and system calls,
arise as well.

General Architectural Philosophy

SPARC V9, MIPS-III, PowerPC, and Alpha all pro-
vide a true 64-bit architecture with 64-bit registers and
linear addressing, but each architecture takes a slightly
different approach.

MIPS-III, the earliest 64-bit architecture, supple-
ments the 32-bit MIPS-II architecture with 64-bit
instructions for memory references, integer arithmetic,
and shifts. These and other new instructions are avail-
able only when the processor is in 64-bit mode; in 32-bit
mode, they cause illegal instruction traps, just as for a
MIPS-I or MIPS-II processor. Thus, MIPS-III truly has
distinct instruction subsets and modes.

Unlike MIPS-III, Alpha is not an extension of an
existing architecture. Since the Alpha architects were
aware of the impending need for more than 32 address
bits, they simply defined Alpha as a 64-bit-only architec-
ture. There are no mode bits, but there are a few 32-bit
arithmetic instructions to simplify code sequences when

Comparing the New 64-Bit RISCs Vol. 7, No. 3, March 8, 1993

© 1993 MicroDesign Resources

MICROPROCESSOR REPORT

compilers and VAX code translators must provide 32-bit
operations for backward compatibility.

SPARC V9 and PowerPC are 64-bit extensions to
existing 32-bit architectures, and like Alpha, the entire
instruction sets are always available—there is no mode
bit for two instruction subsets. SPARC V9 and PowerPC
do, however, have a bit that forces virtual addresses to be
truncated to 32 bits.

SPARC V9 and PowerPC are condition-code archi-
tectures, which causes them to take a different approach
from MIPS-III. SPARC V9 simply defines an extra set of
“64-bit” condition codes to record the outcome of opera-
tions across all 64 bits, which allows the same arithmetic
instructions to be used for 32-bit and 64-bit operations.
For MIPS-III, which has no explicit overflow bit, sepa-
rate instructions for 32-bit and 64-bit add and subtract
that check overflow were needed.

PowerPC does not define a new set of 64-bit condi-
tion codes because it actually has eight sets that fill an
entire 32-bit special register. Instead, it has a mode bit
that determines whether the condition codes reflect 32-
bit or 64-bit results. Thus, PowerPC and MIPS-III are
similar in that they both have mode bits, but the effect of
the mode bit is different on each architecture.

Alpha, designed without major compatibility con-
straints, is naturally the cleanest 64-bit architecture.
Though Alpha is cleaner, MIPS-III, PowerPC, and
SPARC V9 are by no means messy or “CISCy.” It can be
argued that the mode bits make MIPS-III and PowerPC
less clean than SPARC V9’s modeless instruction set, but
this is at most a minor point.

In terms of instruction-set philosophy, MIPS and
Alpha are the most alike. Both use compares that gener-
ate values in registers instead of condition codes; both
have the overflow trap for integer add and subtract spec-
ified in the opcode (as opposed to a condition-code bit or
an overflow-detect mode bit in the processor status reg-
ister); and both use load-locked/store-conditional as the
primitive for mutual exclusion in operating systems and
multiprocessor programs.

True 64-Bit Architectures

The qualifying characteristics of a 64-bit architec-
ture are the ability to easily operate on 64-bit integers
and to use all 64 bits of an integer as an address.
Generally, all four of these architectures provide similar
capabilities for manipulating 64-bit data and linear
addresses because they have 64-bit integer registers and
use all 64 bits in loads, stores, and indirect branches.

Some early implementations, though, will trap
addresses above predetermined limits. For example, the
R4000 implements “only” a 40-bit (1024-gigabyte) user
virtual address space, and the first Alpha has “only” a 43-
bit (8192-gigabyte) space. Addresses with any non-zero
bits above these limits will cause run-time traps, which

prevents the incompatible use of upper address bits for
miscellaneous address tag information. This is a lesson
learned from IBM’s trouble moving from the 24-bit 360
to the 31-bit 370 and from Apple’s transition from 24 to
32 bits in the Macintosh.

PowerPC is unique in that all 64 bits of virtual
address will be significant in the first implementations:
the MMU will translate the full address width. This may
require a little more circuitry in the MMU, but it lets
programmers experiment with ways of using the full
address space. Hal’'s SPARC V9 processor is also ex-
pected to support the full address width.

Being a 64-bit architecture from its inception, Alpha
naturally has a full set of basic arithmetic, logical, and
shift instructions for 64-bit operands.

For MIPS, SPARC, and POWER, some instructions
work correctly regardless of operand size, while in other
cases, new instructions were needed in the 64-bit archi-
tectures because backward compatibility required that
no changes be made to existing opcodes. Bit-wise logical
operations work as expected regardless of register width
and so can be used by either 32-bit or 64-bit programs.
For right shifts, however, it is necessary to specify the
width of the operand in the instruction so that zero
extension or sign extension can start at either bit 63 or
31. New, 64-bit shifts are a part of MIPS-I1I, SPARC V9,
and PowerPC.

For add and subtract, SPARC V9 and PowerPC
take an approach different from MIPS-III because of
their different conditional-branch architectures. Since
SPARC has one set of integer condition codes, SPARC V9
simply defines a new set of condition codes for 64-bit
operands. The old 32-bit condition codes get set correctly
by add and subtract instructions regardless of the dou-
bled register width. When a program needs it, overflow
detection for integer arithmetic is done by explicitly test-
ing the appropriate overflow condition code with a sepa-
rate instruction. Thus, SPARC V9 does not define a new
set of add and subtract instructions.

Similarly, PowerPC has condition codes, but the
eight sets made it impractical to define a separate set of
64-bit condition codes. Instead, PowerPC has a mode bit
to determine whether the condition codes reflect 32-bit or
64-bit results. As with SPARC V9, there is one set of inte-
ger arithmetic instructions, and overflow is checked with
a separate instruction if required.

MIPS, on the other hand, optionally detects and
traps integer overflow as a function of its add and sub-
tract instructions. To differentiate between 32-bit and
64-bit overflow thus requires separate opcodes.

Load/Store Facilities

MIPS-III, SPARC V9, and PowerPC have new
instructions to load and store full 64-bit values in a sin-
gle instruction. SPARC has always had doubleword

2 Comparing the New 64-Bit RISCs

Vol. 7, No. 3, March 8, 1993

© 1993 MicroDesign Resources

MICROPROCESSOR REPORT

Architecture Characteristic Alpha MIPS-III PowerPC SPARC V9
32/64 mode bit no yes yes no (but AM bit)
Address bits in current chips 43 40 64* 64*
Byte/halfword load/store no yes yes yes
Condition codes no no yes yes
Conditional moves yes only in TFP no yes
Delayed branches no yes no yes
Overflow checking in opcode in opcode trap instruction trap instruction
Multiply support 64-bit result 128-bit result 64-bit 64-bit result
Divide support no 128-bit result 64-bit 64-bit result
FP double-precision registers 32 16 or 32 32 32
FP precisions single, double single, double, quad single, double single, double, quad
FP formats IEEE, some DEC IEEE IEEE IEEE
Prefetch instructions data no data data, relative branch
Prefetch hints many some branch predict branch predict bit branch predict bit
Memory models weak strong weak 3 levels
Trap model imprecise precise 2 levels 3 levels

Table 1. Comparison of key features in 64-bit architectures (*expectations for first implementation).

loads and stores, but these instructions are defined to
operate on a pair of 32-bit registers and thus do not load
a full-width value into a 64-bit register. These three
architectures add an instruction to load a 32-bit value as
a sign-extended 64-bit value; to be compatible with 32-bit
semantics, the existing 32-bit load zero-extends to 64 bits
in each architecture.

With the new instructions, MIPS-III, SPARC V9,
and PowerPC provide a complete set of load-signed, load-
unsigned, and store instructions for all important
operand sizes: byte, halfword (16 bits), word (32 bits),
and doubleword (64 bits).

Alpha, on the other hand, provides instructions for
only two operand sizes: 32 and 64 bits. Loads and stores
for smaller operands are synthesized with appropriate
sequences of load, store, extract, and insert instructions.
Thus, a byte load requires a minimum of two instruc-
tions, and a byte store requires a minimum of three
instructions.

The rationale for this approach is a desire for imple-
mentation simplicity and high performance. The multi-
plexing and shifting hardware required to perform byte
and halfword loads and stores is in the logic path
between the processor execution units and the first-level
caches, which is nearly always the most critical timing
path in a processor implementation.

Furthermore, first-level caches that maintain ECC
(error-correction) bits and use a write-back policy are an
important feature in the large, high-performance sys-
tems that DEC typically sells. These caches, however,
implement ECC across at least a full 32-bit word; thus,
any write smaller than a word to an ECC cache requires
the cache to perform a read-modify-write cycle to cor-
rectly set the new ECC information. Such sequencing
logic can complicate the cache design and slow cache
access. Since cache access time has a first-order effect on
overall performance, anything that increases access time

must either be avoided or win back huge performance
benefits in other ways.

What Alpha does, in effect, is force the byte and
halfword multiplexing and read-modify-write sequenc-
ing to be performed by software in the integer execution
units with sequences of Alpha instructions. This can, of
course, lead to excessively long instruction sequences,
but they are subject to compiler optimization.

Alpha does, however, have both 32-bit and 64-bit
loads and stores, which requires an ECC cache to main-
tain ECC information across 32-bit words. Eliminating
the 32-bit loads and stores from the Alpha instruction set
would allow the cache to keep ECC information across
64-bit doublewords. This larger ECC word size would
have the benefit of requiring fewer total ECC bits for a
given cache size, but in practice, 32-bit loads and stores
are so frequent in both new and old programs that it
makes sense to pay a cost in the cache so that frequent
instruction sequences can be shorter.

Integer Arithmetic Instructions

These architectures all have similar support for 32-
bit and 64-bit add and subtract. Although there is some
convergence in architectural support for multiply and
divide, this is still an area of significant difference.

Originally, SPARC had no divide support and mul-
tiplication was supported with a single-bit multiply-step
instruction. In V8, eight instructions were added—
signed and unsigned multiplication and division with
and without setting the condition codes. In SPARC V9,
these eight instructions, still very new to SPARC, plus
the multiply-step are “deprecated,” which means they
should not be used in new software (because there are
better 64-bit instructions).

To replace the V8 instructions, SPARC V9 defines
three new ones: MULX, SDIVX, and UDIVX. None of these
modifies any condition codes. MULX can be used for either

3 Comparing the New 64-Bit RISCs Vol. 7, No. 3, March 8, 1993

© 1993 MicroDesign Resources

MICROPROCESSOR REPORT

signed or unsigned multiplication.

The MIPS architecture has integer multiply and
divide instructions predicated on an implementation
having an autonomous multiply/divide unit. Unlike
other architectures, the result of a multiply or divide is
returned in two special registers—HI and LO—instead
of general registers. This makes it much simpler for an
implementation to return all computed product or quo-
tient/remainder bits without requiring two write ports
into the general register file or register scoreboarding.

MIPS-III and Power PC each define four new
instructions for 64-bit multiply and divide in signed and
unsigned versions. In MIPS-III, these instructions follow
the strategy of returning results in HI and LO, which are
expanded to 64 bits. Consequently, MIPS-III provides
128-bit results for multiply and divide.

Alpha has good multiply support but no direct
divide support at all. Its 32-bit multiply instruction uses
only the low 32 bits of its source registers, truncates the
result to 32 bits, and sign extends it in the destination
register. The 64-bit multiply uses all 64 bits and trun-
cates the result to 64 bits. If needed, the high 64 bits of
the full 128-bit product are generated separately with
the unsigned-multiply-high (UMULH) instruction.

For division, UMULH can be used to divide a variable
by a constant very easily (using multiplication by the rec-
iprocal), but division of two variables must be performed
with a subroutine. The strategy of using a subroutine,
which uses table lookup and UMULH for small values,
probably yields good performance in most cases, but it is
not as amenable to hardware performance tuning as a
single divide instruction.

In the original 32-bit POWER architecture, there is
an MQ register to provide full 64-bit results for multiply
and divide. In PowerPC, MQ is eliminated and there are
separate instructions that return the low and high 64
bits of multiply and divide results. In this way, PowerPC
is similar to Alpha except that PowerPC directly sup-
ports division.

MIPS-III and PowerPC provide the most flexible
support for multiplication and division (although the
MIPS-IIT HI and LO registers can be a nuisance for
aggressive implementations). All except MIPS-III re-
quire extra instructions to generate a full 128-bit product
or quotient/remainder. SPARC V9 has good divide sup-
port but cannot generate the upper 64 bits of a full prod-
uct as easily as even Alpha. In defense of Alpha and
SPARC V9, they have adequate support for the seman-
tics of most languages.

Floating Point

In the early days of RISC architectures, 32 single-
precision floating-point registers seemed like a large
number. Unfortunately, such a register file can only
accommodate 16 double-precision operands, and double-

precision floating-point arithmetic has grown in impor-
tance (at least in benchmark programs). The difference
between 16 and 32 registers is significant for compiler
optimization and parameter passing between floating-
point subroutines.

As a 64-bit-only architecture, Alpha defines 32 float-
ing-point registers that can hold either single-precision or
double-precision operands. As a descendant of POWER,
PowerPC also has 32 double-precision registers.

The early versions of MIPS and SPARC both had
only 32 single-precision registers that could be paired for
double-precision operands. For MIPS-III and SPARC V9,
however, the architects found ways to double the number
of double-precision registers. MIPS-III has a mode bit in
its processor status register that determines whether the
additional 16 double-precision registers are enabled. In
SPARC V9, a clever register addressing scheme is used
to address the additional registers in a fully backward-
compatible way (see 070201PDF).

SPARC and MIPS support floating-point operations
for single-, double-, and quad-precision IEEE operands;
Alpha and PowerPC support only single- and double-pre-
cision IEEE arithmetic, but Alpha can also handle most
of the proprietary VAX floating-point formats.

Both Alpha and MIPS have conditional-branch
architectures that store branch conditions as data in any
general register. One of the benefits of this conditional-
branch architecture is that branch conditions—either
floating-point or integer—can be computed well before
their use because the only constraint on the number of
pending conditions is the number of available registers.

The need for more than one pending branch condi-
tion arises most often in floating-point code, where com-
plex loops are typically unrolled to reveal maximum
operation overlap and pipeline utilization. This was the
motivation for the multiple condition-code fields in
POWER and PowerPC. To address this issue, SPARC V9
adds three new sets of floating-point condition codes for
a total of four sets. This is fewer than the eight sets
offered by PowerPC, but those eight are shared by inte-
ger and floating-point conditions.

Performance Instructions

All of these architectures have been influenced by
recent experience with optimizing compilers and how
real programs actually behave. As a result, new instruc-
tions have been included that combine operations but
still fit in the RISC mold.

The most obvious examples are the Alpha and
SPARC V9 conditional move instructions. These instruc-
tions combine the effect of a conditional branch and a
register-to-register copy by testing a condition and then
moving a source register to a destination register if the
relationship is satisfied. Since no branch is actually exe-
cuted, pipeline utilization is potentially increased.

4 Comparing the New 64-Bit RISCs

Vol. 7, No. 3, March 8, 1993

© 1993 MicroDesign Resources

MICROPROCESSOR REPORT

Conditional moves are not currently part of the
MIPS architecture, but the TFP processor being devel-
oped by SGI will implement them.

Another area ripe for performance improvement is
branches. Branches can have a significant negative
effect on the performance of advanced implementations
because so much prefetching is required to keep multiple
execution units fully occupied. Anything that can be done
to warn instruction-fetch logic of the target of an upcom-
ing branch will improve performance.

SPARC V9 needed a new class of branches to test its
new 64-bit condition codes anyway, so the architects
decided to make major changes to the branch architec-
ture. The new branches can compare a register with zero
or test either the 32-bit or 64-bit condition codes. In addi-
tion, a static branch prediction bit has been added.
PowerPC has a similar prediction bit in its branches. By
contrast, Alpha branch prediction is based on the direc-
tion of the branch: forward is predicted unlikely while
backward is predicted likely.

An obvious differentiating factor between these
architectures is delayed branches: SPARC and MIPS
have them, while Alpha and PowerPC do not. Delayed
branches are an advantage for simple RISC pipelines
because they allow greater pipeline utilization with very
little hardware cost. For a superscalar implementation,
the situation is different because a superscalar processor
has a sophisticated instruction-fetch unit. The I-fetch
unit must follow branch targets ahead of time and
attempt to fetch multiple instructions per cycle. Delayed
branches are a special case that makes these tasks more
complex to implement.

Prefetches and hints are another class of perfor-
mance instructions. SPARC V9, PowerPC, and Alpha
have prefetch (PowerPC calls them “touch”) instructions
that are intended to be used by programs to warn the
memory hierarchy of the addresses of upcoming data
accesses. The hardware is free to ignore the advice of the
prefetch instructions or to attempt to move the data at
the prefetch address into faster parts of the memory
hierarchy, such as a first-level cache.

SPARC V9 also has a prefetch instruction for the
instruction stream. Since the “branch-never-predicted”
instruction can never cause a branch, software may use
it to inform instruction fetch hardware of an upcoming
branch long before the fetch hardware can prefetch and
analyze it.

Alpha has special hints in its indirect branches to
facilitate prefetching. The hint can encode the low bits of
the likely target address, if known, which allows an
instruction-cache access to start before the instruction
has been dispatched. For indirect call and return, the hint
encodes information about the use of a hardware stack of
likely return addresses. Return addresses are pushed on
the stack when subroutines are called and popped when

subroutines are exited. This return stack can provide a
likely target address for the fetch logic very early, which
increases the effectiveness of instruction prefetching.

Memory and Trap Models

As processor implementations increase in sophisti-
cation, the intuitive, serial execution model of program
behavior becomes a hindrance to high-performance
hardware. What is preferable for implementations is to
allow memory references and exceptions to be reordered
arbitrarily.

As aresult, architectures are starting to incorporate
memory and trap models that sacrifice strict serial
behavior in favor of performance. For example, SPARC
V9 processors can implement three different memory
models. These models permit the hardware to reorder
memory references with varying degrees of freedom. The
Alpha and PowerPC architectures specify a weakly
ordered memory model for maximum freedom.

Alpha also explicitly specifies an imprecise arith-
metic trap model to reduce the complexity of implemen-
tations that issue multiple instructions per cycle and
potentially complete them out of order. SPARC V9 can
have an imprecise trap model as well.

Weakly ordered, imprecise memory and trap mod-
els have many implementation and performance impli-
cations, and they will be covered in more detail in an
upcoming article.

Software and ABI/API Considerations

There are several software issues surrounding the
transition from 32 to 64 bits. One of the first issues
encountered is deciding on the sizes of primitive data
types. The original C language manual, for example, rec-
ommended that “int” be the machine’s natural register
size so operations involving int will be as fast as possible.
Unfortunately, this advice is not very useful now, since
these 64-bit architectures have no speed difference
between 32- and 64-bit operands.

At one point, meetings between several architecture
groups, including representatives from DEC, HP, SGI,
MIPS, IBM, and Sun, convened to discuss potential sizes
for primitive data types. In the case of C, there are only
three useful combinations: long 32 bits, int 32 bits; long
64 bits, int 32 bits; and both 64 bits. A new data type,
“longlong,” has been proposed as a new, 64-bit data type.
In the end, the groups could not agree unanimously. An
Internet forum, C64, fosters discussions of these issues.

A very important concern is how primitive data
types affect the size of user-defined, aggregate data types
(records and structures). If basic integers and pointers
suddenly double in size, structures may double as well.
In some cases, this bloating is intolerable: many network
protocols are set in stone with packet headers that
encode routing information as 32-bit integers.

5 Comparing the New 64-Bit RISCs

Vol. 7, No. 3, March 8, 1993

© 1993 MicroDesign Resources

MICROPROCESSOR REPORT

Thus, there must be at least one primitive, 32-bit
data type. The most natural choice in keeping with the
ANSI standard for C is int, but there are also compelling
reasons for int to be 64 bits. According to the ANSI stan-
dard, intermediate results in complex expressions are
implicitly of int length. Also, int and address pointers are
usually assumed to be the same size. Consequently, it
makes no sense for int to be 32 bits on a 64-bit architec-
ture with a 64-bit compiler.

Yet another thorny issue is what interface libraries
should provide. Libraries provide access to commonly
used functions and serve as an interface to operating sys-
tem services. To take full advantage of 64-bit addressing,
the operating system needs to be a full 64-bit implemen-
tation. Unfortunately, a mixed environment requires at
least two sets of libraries: one to provide a 64-bit inter-
face to functions and services and one to translate
between the 64-bit operating system and 32-bit applica-
tions.

The goal for development environments is to insu-
late programmers from multiple sets of libraries with one
set of universal interface definition files (the so-called
header or include files) and one set of documentation.

According to some who have already been dealing
with these problems, the POSIX UNIX standard is fairly
clean, with few “#ifdef 64BITS...” to chose between 32-bit
and 64-bit code during compiles. Network code is requir-
ing much more scrutiny and work since the protocols
must be bit-for-bit compatible. The implementors of
recent versions of the X Window system have already
had to deal with a lot of cross-platform issues, and it is
reported to be clean and portable.

As with the underlying architecture, system soft-

For More Information

The Alpha architecture is documented in the Alpha
Architecture Handbook published by DEC. This handbook
documents the user programming model and registers,
but leaves out some system-mode details. For a copy of
this document, call 800/DEC-2717 or 508/568-6868. (Also
see 060302.PDF).

All MIPS architectures, including MIPS-III, will be
fully documented in a forthcoming book from Prentice
Hall; it should be available a few weeks after the issue
date of this article. Information on specific MIPS proces-
sors is available directly from processor vendors. (Also see
PR 10/16/91, p. 10.)

SPARC V9 is documented in SPARC-V9 Architecture
Specification Release R1.2, which is available from
SPARC International. Contact Bob Smith at 415/321-
8699, extension 245. A book from Prentice Hall will also
be available later in the year. (Also see 070201.PDF).

Information on PowerPC is not yet available publicly.

ware architects are taking advantage of this transition
period to improve software protocols. For example, the
MIPS subroutine-calling convention uses a maximum of
four registers to pass parameters to subroutines. Since
the libraries and compilers need to be rewritten to some
extent anyway, the protocols are being revised. Years of
experience indicate that passing up to eight parameters
in registers can improve performance.

Conclusions

The transition from 32-bit to 64-bit architectures is
being motivated by a few large, existing applications and
the anticipation of new classes of “killer apps” that need
huge address spaces. The transition simultaneously causes
problems and provides opportunities. The problems are
mainly issues of backward compatibility with existing soft-
ware and language definitions. The opportunities are for
architectural improvements and new markets.

The key point about the transition from 32-bit to 64-
bit architectures is that architects seems to have learned
some lessons from the past: all four of the current 64-bit
architectures provide good support for 64-bit operations
and linear addressing. The folly of segmentation seems
to be understood, and all implementations are making
sure that software will not use unimplemented high
address bits in non-upward-compatible ways. These
architectures are all capable of delivering the full poten-
tial of a 64-bit address space.

Still, there are significant architectural differences,
summarized in Table 1. Alpha lacks loads and stores for
byte and halfword data and has no direct integer divide
support. MIPS-III has direct support for 128-bit multiply
and divide results. SPARC V9 has the most complete set
of conditional-branch instructions: with/without annul-
ling and predict true/false.

The 64-bit architectures will not have a significant
impact on markets until both 64-bit processors and 64-bit
operating systems are in place. Since a great deal of work
is required to update an entire environment, these oper-
ating systems will emerge slowly and have increasing lev-
els of 64-bit capability over time.

SGI already offers a machine with 16G of directly
addressable real memory, but it is interesting to note
that at current disk transfer rates (optimistically, 5
Mbytes/s), it would take approximately an hour just to
fill all 16G with information from disk (although disk
arrays with multiple controllers can dramatically
improve transfer rates).

It is still too early to tell what impact 64-bit archi-
tectures will have on computer applications. It is certain,
however, that by the end of the decade, microprocessors
and dense memory chips will result in desktop comput-
ers with huge memories and incredible performance. It is
up to software vendors to invent the applications that
will justify the hardware.+

6 Comparing the New 64-Bit RISCs

Vol. 7, No. 3, March 8, 1993

© 1993 MicroDesign Resources

	Comparing the New 64-Bit RISCs
	General Architectural Philosophy
	True 64-Bit Architectures
	Load/Store Facilities
	Table 1. Comparison of key features in 64-bit architectures...
	Integer Arithmetic Instructions
	Floating Point
	Performance Instructions
	Memory and Trap Models
	Software and ABI/API Considerations
	Conclusions

	For More Information

