
MICROPROCESSOR
THE INSIDERS’ GUIDE TO MICROPROCESSOR HARDWARE

REPORT

F E B R U A R Y 1 5 , 1 9 9 3V O L U M E 7 N U M B E R 2
By Brian Case

The latest revision of the SPARC architecture—ver-
sion 9—incorporates an impressive number of improve-
ments. V9 makes SPARC a much richer architecture, and
as a result, it is a stronger competitor to other RISCs.

In addition to a 64-bit linear address space, 64-bit
integers, and the changes needed specifically to accommo-
date them, V9 adds several new classes of instructions, an
enhanced trap model, a revamped privileged register set,
and a “relaxed-memory-order” memory model. These
changes will require considerable modifications to operat-
ing systems, but V9 is upward compatible with V8 for
application programs.

SPARC-V9 is the result of work done by SPARC
International’s architecture committee, and, in the words
of the committee, it is designed to be a peer to V8 for
higher-performance systems, not a replacement. Al-
though Sun Microsystems contributed significantly to V9
through the efforts of several contributors—including
Dave Ditzel as the committee chair—V9 appears to have
been influenced by a variety of companies.

The most influential company was undoubtedly HaL
Computer Systems, which chose SPARC because HaL
was, through SPARC International, able to have consid-
erable influence on its evolution. In effect, HaL chose
SPARC for what it could be, not for what it was. HaL prob-
ably will be the first with a SPARC-V9 system, and its
first systems will use a microprocessor of HaL’s own
design. A future version of TI’s SuperSPARC will imple-
ment V9, but it is probably two years from completion.

V9 Overview
The effort to define SPARC-V9 probably began as a

response to rumors of 64-bit linear addressing capabilities
of competing architectures like MIPS-III (R4000) and
Alpha, but V9 is much more than a 64-bit SPARC.

The foundation of the 64-bit architecture is three-
fold: all integer registers are expanded to 64 bits, an extra
set of condition codes records the outcome of ALU opera-
tions across all 64 bits, and new conditional branch

SPARC V9 Adds Wea
64-Bit Extensions Supplemented by Ne
SPARC V9 Adds Wealth of New Features Vol. 7, No. 2, February 1
instructions test the 64-bit condition codes. The V9 docu-
mentation claims that there is no “32-bit mode” bit, but
this claim is only partially true.

Many of the new instructions in SPARC-V9 go
beyond what is required for a modeless 32-bit/64-bit envi-
ronment. New branches, which can test either the old or
new condition codes, also encode a static prediction bit. As
in Alpha, there are instructions that perform conditional
register-to-register moves. A new class of prefetch instruc-
tions allows software to improve performance in sophisti-
cated implementations.

The privileged register set of V9 is dramatically dif-
ferent from that of earlier versions. Some privileged reg-
isters are deleted, some registers in V8 that contained two
or more fields have been expanded into separate registers,
and many new registers have been added. In particular,
the windowed register file is now managed by several reg-
isters instead of just two.

Trap handling is significantly different in V9.
Instead of a single level of trap handlers, at least four
levels are available in all implementations. This allows a
degree of recursive trapping and improves performance,
since trap handlers can process their own work without
first taking precautions to prevent all other possible trap
conditions. Trap handlers can be coded for the common
case of no additional traps, resulting in higher perfor-
mance. A few new instructions have been added to accom-
modate these changes.

Privileged Registers
V9 implements a large number of special registers,

partly because fields in pre-V9 registers are broken out
into separate registers. Figure 1 shows the pre-V9 proces-
sor state register (PSR) and many of the V9 special regis-
ters. The V8 PSR is replaced by the five V9 registers shown
in gray: PSTATE, processor interrupt level (PIL), version
(VER), integer condition codes (CCR), and Current Window
Pointer (CWP).

The PSTATE register holds several new bits. The MM

field selects the memory model used, which determines
the ordering for memory references (memory models are

lth of New Features
w Instructions, Revamped Trap Model
5, 1993 © 1993 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

discussed below). AM (address mask) is a mode bit that
determines whether data and instruction addresses are
masked to 32 bits. AG (alternate globals) selects one of two
sets of eight global registers.

The version register contains much more informa-
tion than the V8 PSR field. This register holds the proces-
sor’s manufacturer number, implementation number,
mask revision, maximum number of trap levels, and max-
imum number of register windows.

The register-window management registers—
WSTATE, CWP, CANSAVE, CANRESTORE, OTHERWIN, and CLEAN-

WIN—help make register window operations more effi-
cient, and are discussed below.

The FP state register has been expanded to 64 bits in
a compatible way. The lower 32 bits are unchanged from
V8, so a 32-bit program will see what it expects in the low
32 bits of a register after a RDFPSR instruction. The upper
32 bits allow a 64-bit program to access the additional FP
condition codes.

Non-Privileged Registers
The non-privileged integer register set is unchanged

in SPARC-V9. Eight fixed, global registers are shared by
all subroutine contexts, and each subroutine context has
access to 24 registers in the windowed register file. As
before, the particular 24 registers that are accessed is
determined by the Current Window Pointer.
2 SPARC V9 Adds Wealth of New Features Vol. 7, No. 2, Februa

PILEFECreservediccverimpl

SPARC-V8 Processor State Register

SPARC-V9 Registers

MM RED PEF AM PRIV IE AG

PSTATE

zeromaskimplmanuf

Version

31

7

63

0

C32

Integer Condition Codes

7 0

V32Z32N32C64V64Z64N64

Processor Interru

3

PIL

Current Window Pointer

4 0

CWP

CANSAVE

4 0

CANSAVE

C

OTHERWIN

4 0

OTHERWIN

CLEANWIN

4 0

CLEANWIN

Window

5

O

Trap Base Address

Trap Base Address (TBA)

63

reserved
63

FP State Register (high 32 bits)

31

FP State Register (low 32 bits)

fcc0Uqnefttverres.NSTEMuRD

Figure 1. Most of the SPARC V9 special registers. The single V8 P
replaced by five separate registers (shown in gray). The FP State
same as in V8; the high 32 bits has been added to hold the additio
There are two sets of global registers instead of the
single set in earlier versions of the architecture, although
only one set is active at a time. The AG (alternate global)
bit in the PSTATE register determines which set is active.
The second set of globals can give trap handlers access to
scratch registers without having to disturb the registers of
the interrupted process. If the globals of the interrupted
process must be accessed, the AG bit can simply be com-
plemented.

In contrast to the integer register set, the floating-
point register file has been expanded for non-privileged
code. The pre-V9 SPARC architecture specified 32 single-
precision floating-point registers that could be combined
to form 16 double-precision registers or 8 quad-precision
registers. V9 doubles the number of available double- and
quad-precision registers with a clever encoding scheme.

Table 1 shows how register numbers in instruction
words are mapped into register-file addresses. For single-
precision operands, the mapping is as expected. Luckily
for the V9 committee, the original SPARC architects
required that double- and quad-register operands be
aligned within the register file. As a result, the low regis-
ter-number bit for doubles and the low two register-num-
ber bits for quads must be zero in pre-V9 SPARC imple-
mentations. This allows V9 to use these bits to encode the
high bits of extra register numbers. Note that a future ver-
sion of SPARC can double the number of quad registers.

There is a growing trend in
application and operating-sys-
tem design toward multi-
threading, which requires
“light-weight” process switches
between threads. With so many
FP registers, saving and restor-
ing them all on a thread switch
can be time consuming. The FP
Registers State register shown
in Figure 1 is non-privileged to
help software reduce unneces-
sary FP register saving. DU and
DL are “dirty bits” for the upper
and lower half of the FP register
file, respectively. When a refer-
ence is made to an FP register,
the appropriate dirty bit is set.
On a thread switch, these bits
can indicate how many registers
to save.

Register Windows
The V9 integer register file

implements the same circular
buffer of overlapping register
sets as in earlier SPARC ver-
sions, but the new architecture

CWPETPSS

maxwinmaxtl zero

0

00

pt Level

0

ANRESTORE

4 0

CANRESTORE

 State (WSTATE)

0

THER NORMAL

zero
001415

FP Registers State

2 0

DUFEF DL

Trap Level

2 0

TL

fcc1
32

fcc2fcc3

0

cexcaexc

SR (top of figure in gray) is
register low 32 bits is the
nal FP condition codes.
ry 15, 1993 © 1993 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

w7 outs

w7 locals

w7 ins
w6 outs

w6 locals

w5 outs

w5 locals

w5 ins

w4 outs w4 locals

w4 ins

w3 outs

w3 locals

w3 ins

w0 outsw0 locals

w0 ins

w6 ins

w1 outs

w1 locals

w1 ins

w2 outs

w2 locals

w2 ins

CWP=0

SAVE RESTORE

OTHERW
IN=2

C
A

N
S

AV
E

=3

C
A

N
R

E
S

TO
R

E
=1

Single 0 ra4 ra3 ra2 ra1 ra0

Operand
Type

6-bit Register-File Address Register Number Encoded
In Instruction Word

ra4 ra3 ra2 ra1 ra0
has significantly changed the hardware support for the
windows to increase performance in environments where
process switching is frequent. In typical UNIX worksta-
tion environments, register windows are a net win
because the performance boost during process execution
more than compensates for the extra time spent swapping
registers when a process switch is required.

In other environments, such as transaction process-
ing, process switching can be very frequent. With frequent
switches, the time spent saving registers can limit perfor-
mance because a process often needs to execute only a
small number of instructions before relinquishing control
of the processor. The result is more time spent switching
processes than executing them. One solution is to leave
some or all of the register contents for a deactivated
process valid in the register file, but this requires isolating
the windows of the old process from those of the new
process.

Another performance-robbing situation occurs in
secure environments when a process is finished executing
and exits. In secure environments, it is necessary to clean
(zero) the windows of the old process before allowing the
new one to use the windows to make sure that the new
process has no access to sensitive data. Unfortunately,
clearing all the registers can be nearly as time consuming
as saving them.

The solution in each case is to defer the work of sav-
ing or clearing registers until it is absolutely necessary.
Deferring the work requires remembering which windows
belong to the old process and which to the new.

Register-file sharing is facilitated in V9 by five, 5-bit
special support registers: CWP, CANSAVE, CANRESTORE, OTH-

ERWIN, and CLEANWIN. These registers keep track of which
windows are available to the currently running program
and which have some other program’s data. Figure 2
shows an eight-window register file and possible values of
the support registers.

CANSAVE and CANRESTORE tell how many consecutive
subroutine calls and returns, respectively, can be done
before causing a spill or fill trap. As before, the SAVE and
RESTORE instructions, respectively, are used to enter and
exit subroutines. (These instructions are not new to V9, but
their semantics have been changed to manipulate the new
support registers.) SAVE increments CWP and CANRESTORE

and decrements CANSAVE; RESTORE does the opposite.

Table 1. FP register mapping for the three different precisions
(rax = register address bit x). This mapping from the actual bits
encoded in the instruction (right side) to the bits used to
address the register file (middle) allows programs to access 32
single-precision registers, 32 double-precision registers, or 16
quad-precision registers.

Double
Quad

ra5
ra5

ra4
ra4

ra3
ra3

ra2
ra2

ra1
0

0
0

ra4
ra4

ra3
ra3

ra2
ra2

ra1
0

ra5
ra5
3 SPARC V9 Adds Wealth of New Features Vol. 7, No. 2, Februa
In V8, the window-mask register held a bit for each
window; if a bit was set, the corresponding window was
unavailable to the current process. When CWP equalled
the number of a bit that was set, a spill or fill trap occurred
depending on whether the SAVE or RESTORE instruction
caused CWP to equal that number. In V9, register spill and
fill trap routines are invoked when a SAVE is executed and
CANSAVE is zero or when a RESTORE is executed and CAN-

RESTORE is zero.
OTHERWIN keeps track of which windows have valid

data belonging to a different process. If OTHERWIN is not
zero when a spill or fill occurs, the window to be spilled or
filled contains valid data for a different process. The
WSTATE register shown in Figure 1 holds two 3-bit fields
that select the appropriate trap handler for each situation
(also see Figure 4).

CLEANWIN (not shown in Figure 2) comes into play
when a window that belongs to a dead process needs to be
allocated for a SAVE. When CLEANWIN is equal to CANRE-

STORE during a spill trap, a clean_window trap is taken
instead of a regular spill trap. The clean_window handler
does not need to save the window but only to zero the reg-
isters to prevent a nosy process from getting access to data
from a dead process.

Preventing access to the register contents of a dead
process is important for absolute security in commercial,

(overlap)

Figure 2. Register windows and possible values for window
management special registers. In this example, two windows
have data for a deactivated but live process (OTHERWIN=2).
The current window is zero, and one RESTORE (subroutine
return) or three consecutive SAVEs (subroutine calls) can be
executed without causing a spill or fill trap (since
CANRESTORE=1 and CANSAVE= 3).
ry 15, 1993 © 1993 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

4 SPARC V9 Adds Wealth of New Features Vol. 7, No. 2, Febru

Table 2. New or changed instructions in SPARC-V9.

LDSW[A]
LDX[A]
STX[A]
LDXFSR
STXFSR
LDFA
LDDFA
STFA
STDFA
SLLX
SRAX
SRLX

Load signed 32-bit word [alternate address space]
Load 64-bit word [alternate address space]
Store 64-bit word [alternate address space]
Load all 64 bits of Floating Status Register
Store all 64 bits of FSR
Load floating single, alternate address space
Load floating double, alternate address space
Store floating single, alternate address space
Store floating double, alternate address space
64-bit shift left logical
64-bit shift right logical
64-bit shift right arithmetic

DONE
RETRY
RETURN
SAVED
RESTORED
RDPR, WRPR

Return from trap, skip trapped instruction
Return from trap, retry trapped instruction
Return from user trap handler (branch + RESTORE)
Adjust register window control registers
Adjust register window control registers
Read/write privileged registers

BPcc
BPr
MOVcc
MOVr
FBPfcc
FMOVcc
FMOVr
CASA
CASXA
MULX
SDIVX
UDIVX
FLUSHW
POPC
LDQF[A]
STQF[A]
PREFETCH[A]
MEMBAR

Predicted branch on integer condition code
Predicted branch on integer reg. contents
Move integer register on condition code
Move int. register on int. register contents
Predicted branch on FP condition code
Move FP register on int. condition code
Move FP register on int. register contents
Compare and swap 32-bit, alternate address space
Compare and swap 64-bit, alternate address space
Generic 64-bit multiply
Signed 64-bit divide
Unsigned 64-bit divide
Flush all register windows
Population count of 64-bit value
Load quad-precision FP [alternate address space]
Store quad-precision FP [alternate address space]
Prefetch data [alternate address space]
Memory barrier

FCMP
FCMPE
LDFSR, STFSR
RDASR, WRASR
LDUW
SETHI
Ticc

FP compare
FP compare, exception if unordered
Load/store low 32 bits of FP status register
Read/write ancillary state register
Load unsigned word (same as LD in V8)
Set high 22 bits, clear upper 32 bits
Trap on either 32-bit or 64-bit int. cond. codes

All coprocessor loads and stores
RDTBR, WRTBR
RDWIM, WRWIM
RDPSR, WRPSR
RETT
STDFQ

TBR no longer exists
WIM no longer exists
PSR no longer exists
Return from trap (DONE/RETRY instead)
Store double from FP queue (RDPR FQ instead)

Old Instructions With Modified Behavior

64-bit Addressing & Shift

Support For New Trap Model

Support For Higher Performance

Deleted instructions

F[sdq]TOx
FxTO[sdq]
FMOV[dq]
FNEG[dq]
FABS[dq]

Convert FP to 64-bit integer
Convert 64-bit integer to FP
FP move, double & quad
FP negate, double & quad
FP absolute value, double & quad

New FP Operations
“big system” environments where, for example, financial
data might be manipulated and relatively public access is
allowed. The window management of V9 provides this
security without significant degradation of process-switch
latency.

64-Bit Architecture
The SPARC architecture makes the transition from

32 bits to 64 bits in much the same way that the MIPS
architecture did: all integer registers are widened to 64
bits and all integer ALU computations operate on all 64
bits. Programs written for the 32-bit pre-V9 versions of
SPARC will still operate correctly because of the nice
property of two’s-complement arithmetic: a 64-bit ALU
computes the low 32 bits the same as a 32-bit ALU.

One difference between 64-bit MIPS-III and SPARC-
V9 is that the MIPS-III architecture has mode bits that
enable the new 64-bit instructions; if a mode bit is not set,
the new instructions cause illegal-instruction traps as
they would on prior versions of the MIPS architecture. In
contrast, the new SPARC-V9 instructions are always
enabled.

For this reason, the SPARC-V9 specification claims
that there is no 32-bit/64-bit mode bit. This is not quite
true, however, because the AM (address mask) bit in the
PSTATE register is intended to be set for applications (i.e.,
pre-V9 binaries) that use 32-bit addressing. (Another
approach is to set up the MMU mapping tables to have the
same effect, but the AM bit is a far better solution.) The AM

bit causes the upper 32 bits of data and instruction
addresses to be masked to zero before they are sent to the
MMU and caches.

V9 adds several new instructions to implement 64-
bit functions within the context of the 32-bit base SPARC
architecture. Table 2 shows a list of all the major instruc-
tion-set changes for V9.

The new instructions that specifically address the
64-bit architecture features are loads, stores, shifts, and
the new conditional branches. Even though SPARC
already had load/store double-word instructions, the
semantics for these instructions specified a pair of 32-bit
registers. Since all the old semantics must be maintained,
new loads and stores for 64-bit values in a single register
(LDX[A], STX[A]) and for sign-extending a 32-bit value to 64
bits (LDSW) have been added.

As with the MIPS-III and PowerPC 64-bit exten-
sions, V9 had to add new 64-bit shift instructions. SRLX

and SRAX operate on all 64 bits of a register. (SLLX has
exactly the same effect as SLL: it shifts all 64 bits left.)

Although all the old conditional branches are still
implemented for compatibility, the V9 specification dis-
courages their use in new software. Of course, the old
branches test only the 32-bit condition codes. All the new
conditional instructions (BPcc) can test either the 32-bit or
64-bit condition codes, and then encode a static prediction
ary 15, 1993 © 1993 MicroDesign Resources

22-bit displacement

 format

0

1 0

19-bit displacement

 w/ predict format

0

0 1 cc p

low 14 bits of 16-bit displacement

r contents

0

1 1 d16hi p reg

software trap #

ndition codes w/ immediate

0

1 1 0 1 0 reg 1
bit as well. The prediction bit
helps boost performance with a
very small hardware cost. More
costly, dynamic techniques are
still possible.

The cost for the added fea-
tures is a reduction in the size of
the branch displacement, as
shown in Figure 3. The cc field
determines whether the instruc-
tion tests the old 32-bit or the new
64-bit condition codes.

One interesting detail is
that there are no 64-bit “with-
carry” versions of the add and
subtract instructions. Thus,
while algorithms that implement
multiple-precision integer arith-
metic cannot benefit from the 64-
bit architecture, this should be of
little concern since such pro-
grams are probably rare.

New Instructions & Semantics
Several new categories of instructions have been

added to SPARC-V9 that are not a direct result of the 64-
bit architecture.

To allow optimizing compilers to eliminate condi-
tional branches in simple code sequences, V9 offers condi-
tional move instructions for both integer and floating-point
registers. Conditional moves must be proving their worth
because they have shown up in new architectures includ-
ing Alpha, PowerPC, and TFP (Silicon Graphics’ high-end
MIPS processor) (see 070202.PDF). These instructions help
reduce pipeline bubbles by eliminating some branches.
The move can be based either on integer condition codes or
on the value in an integer register. If the value of a regis-
ter is used, only comparisons against zero are available:
equal-to zero, less-than-or-equal-to zero, less-than zero,
not zero, greater-than zero, and greater-than-or-equal-to
zero.

A new set of conditional-branch-on-register instruc-
tions eliminates the need for an explicit compare instruc-
tion in many common cases. These instructions use the
same set of six “against-zero” conditions used by the con-
ditional-move-on-register instructions. As shown in
Figure 3, these instructions sacrifice some offset bits for
the register field and predict bit.

The population-count instruction is a primitive not
found in other RISC architectures. This function is useful
for cryptography and compression. Without this instruc-
tion, a population count requires a loop or sequence of
instructions that is an order of magnitude slower. In addi-
tion, population count enables the “find-first-one” func-
tion—common in other RISCs—to be implemented with

M I C R O P R O C E S S O R R E P O R T

Figure 3. Some SPARC ins
the new conditional branch
The middle shows the bran
The bottom shows the old a
of the cc field creates the p

cond0

SPARC-V8 conditional branch

31

0 a 0

cond0

SPARC-V9 conditional branch

31

0 a 0

rcond0

SPARC-V9 branch on registe

31

0 a 00

cond1

SPARC-V8 trap on integer co

31

0 ig 1

SPARC-V9 trap on integer co

31

cond1 0 ig 1
5 SPARC V9 Adds Wealth of New Features Vol. 7, No. 2, Februa
only four instructions, which is reasonably fast.
The prefetch instructions allow software and hard-

ware to work together to improve performance. When a
program can anticipate the addresses of data it will soon
be referencing, it can issue prefetch instructions for those
addresses. Armed with the addresses, hardware can bring
the data into cache before its expected use. There are sev-
eral variants of the prefetch instruction so that a program
can give hardware a good idea of how the data will be
used. These variants are prefetch for several reads,
prefetch for one read, prefetch for several writes, prefetch
for one write, prefetch page, and “implementation-depen-
dent” prefetch.

For example, a prefetch-for-several-reads instruction
might be used for a record in a data base, while a prefetch-
for-one-read instruction might be used for a long array of
data in a scientific calculation. Prefetch instructions allow
TLB and cache miss processing to start early; then, when
the data is actually accessed, it is either already available
or it will be available sooner than it would have been with-
out the prefetch instruction. Thus, even though a prefetch
instruction adds to the instruction stream length and
costs an instruction “opportunity” (only a fraction of a
cycle in a superscalar machine), it can have a net savings
of many cycles in overall program execution time.

For instruction prefetching, the branch-never-with-
prediction instruction is used. This instruction never
causes a transfer of control, but compiler writers and
processor implementors are told to use it as a hint of a pos-
sible upcoming branch with the same target.

One change in instruction semantics from V8 to V9
creates a possible incompatibility for old binaries. The
trap-on-integer-condition-codes instruction (Tcc) with the
trap number specified in an immediate field is shown in

truction formats. The top compares old conditional branches to
es, which encode condition-code selection (cc) and prediction (p).
ch-on-register format, which has an even shorter displacement.
nd new trap formats; the placement

ossibility of a compatibility problem (see text).

ndition codes w/ immediate

0

software trap #1 1 0 1 0 reg 1 cc ignored
ry 15, 1993 © 1993 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

Figure 3. In V8, the format specified a 13-bit trap number
even though the hardware only used the lower seven bits.
In V9, the upper two bits of that immediate field have
been redefined to encode which set of integer condition
codes to use.

If by some chance a V8 program used a negative soft-
ware trap number in a Tcc instruction (which could be
used to convey information to the trap handler), it would
cause a V9 processor to use the 64-bit condition codes
instead of the 32-bit condition codes, which would likely
result in incorrect program execution.

The V9 architects have found no occurrences of such
an incompatible Tcc instruction in any programs, and in
fact, they are forbidden in the SPARC ABI, but this is
exactly the kind of incompatibility that architects typi-
cally regret.

Traps
On pre-V9 SPARC implementations, traps are han-

dled by allocating a new register window and saving the
PC and next PC in two registers of that window; other crit-
ical state bits are saved in shadow copies in the PSR. In V9,
state is saved on small internal stacks of shadow regis-
ters, and no register window movement occurs.

There are four multi-level stacks of shadow registers
that save the two program counters, the trap type, and
trap state (condition code register, ASI register, PSTATE reg-
ister, and CWP register). The value in the TL register (see
Figure 1) determines which of the shadow copies in each
stack is active and accessible. Although four is the mini-
mum, the three-bit TL register allows a V9 implementa-
tion to implement up to seven interrupt levels (level zero
means normal, non-trap-mode execution).

When a trap occurs at the next to last level or when any of
the four possible software and hardware resets occurs, the
processor enters the “RED” mode (Reset, Error, Debug). If a
trap occurs while the processor is at the maximum trap level,
the processor enters Error mode and halts.

Traps in V9 are vectored through one of two tables
depending on whether TL is zero or not. Figure 4 shows
how a table vector entry is formed at trap time. Because
the low five bits of the vector address are zero, each table
entry is eight instructions long (table entries in V8 have
only four instructions). The trap type selects one of 512
entries, while the value of TL at trap time determines
which of the two tables will be used. The high 49 bits of the
Trap Base Address special register determine the location
of the tables in main memory.

The trap type for register window spill and fill activ-
ity is determined in a special way, as shown at the bottom
of Figure 4. The low two bits of the trap type are always
zero; this gives all spill and fill handlers room for 32
instructions within the table, which is often enough to
implement the entire routine. As explained earlier, since
part of the trap vector is determined by the state of OTH-
6 SPARC V9 Adds Wealth of New Features Vol. 7, No. 2, Februa
ERWIN, the register file can be shared easily without
requiring the spill/fill handlers themselves to check the
ownership of a window.

In SPARC-V8, trap routines were exited with the
RETT instruction. In V9, that instruction is replaced with
DONE and RETRY. The RETT instruction was used in the
delay slot of a branch to effect a proper return, but the
DONE and RETRY instructions perform all necessary state
restoration atomically. DONE is used to return from a han-
dler that needs to skip past the trapping instruction while
RETRY is used to return to the trapping instruction.

Memory Models
With simple RISC pipelines and caches, it is natural

for an implementation to issue and complete memory ref-
erences in exactly the order specified in a program. For
sophisticated superscalar processors with write buffers
and non-blocking caches, on the other hand, constraining
memory references to complete in program order—using
a so-called strongly ordered memory model—can waste
significant available performance by preventing the
exploitation of parallelism. For this reason, there is a
trend in new architectures (e.g., Alpha) toward weakly
ordered memory models.

SPARC-V8 specified two memory models: total store
ordering (TSO) and partial store ordering (PSO). SPARC-
V9 adds a third, relaxed memory order (RMO). The model
in force at a given time is determined by the MM field in the
PSTATE register (see Figure 1).

RMO essentially lets a processor re-order memory
references as it sees fit as long as self-consistency is not
violated, i.e., within a given processor, a load will see any
previously stored values to the same address.

The benefit of RMO is that an implementation is
allowed to re-order the completion of memory references
to take full advantage of superscalar execution, write
buffers, and non-blocking caches. With weak ordering, a
superscalar processor can group memory references for
simultaneous execution with much greater freedom. If a
store misses in the cache, a simultaneously grouped load
will be able to complete anyway because it can get its
value from the store buffer (if the store and load have the
same address) or from the non-blocking cache (if the store
and load have different addresses). Thus, weakly ordered
memory models are important for the full exploitation of
the sophisticated implementations that increasing tran-
sistor budgets will allow and encourage.

V9 provides both the V8 STBAR (store barrier) and the
new MEMBAR (memory barrier) instructions to allow pro-
grams to temporarily enforce stronger ordering (MEMBAR

uses the same opcode as STBAR and so is just a generaliza-
tion of it). Stronger ordering is required for interacting with
I/O devices and for multiprocessor synchronization. The
STBAR instruction simply forces the completion of all previ-
ous stores before a subsequent store can complete, but the
ry 15, 1993 © 1993 MicroDesign Resources

0TrapTypeTBA <63:15>

Trap Vector Address Format

63 00

0000

TL > 0

Value of TL
Before Trap

Trap Table
Contents Trap Type

WTYPE
0

0 0
8

if (OTHERWIN != 0)
 WTYPE = WSTATE.OTHER
else
 WTYPE = WSTATE.NORMALSet if OTHERWIN != 0

Trap Type for spill/fill

010 for Spill
011 for Fill

0x000..0x07F
0x080..0x0FF
0x100..0x17F
0x180..0x1FF

hardware traps
spill/fill traps
software traps
reserved
hardware traps
spill/fill traps
software traps
reserved

TL == 0

TL > 0

0x000..0x07F
0x080..0x0FF
0x100..0x17F
0x180..0x1FF
MEMBAR instruction is much more versatile. It allows a pro-
gram to encode the specific kind of temporary memory
ordering it needs. For example, a MEMBAR instruction can
specify that all loads issued prior to the MEMBAR instruction
complete before any subsequent stores; this could be used
under TSO to force temporary strong ordering.

Miscellaneous Changes
There are so many subtle implications of V9 it is

impossible to mention all the changes here, but a few more
are worth noting. As shown in Figure 1, the FP state reg-
ister has been extended with three extra sets of FP condi-
tion codes. They allow FP programs to compute compar-
isons ahead of the time they will be used and are reminis-
cent of the multiple condition codes implemented in IBM’s
POWER architecture.

In V8, the load and store instructions that use address
space identifiers are all privileged. In V9, half of the ASIS

(0x80–0xFF) are now available to non-privileged programs.
On previous SPARC systems, interrupts with prior-

ity level 15 were non-maskable. V9 makes them maskable
as well so that only catastrophic resets are not maskable.

Conclusions
SPARC-V9 has so many enhancements to V8 that it

almost seems like a different architecture. In absorbing
such dramatic changes, SPARC has attained the richness
of other high-end architectures such as Alpha.

While a committee may not be a suitable vehicle for
the original definition of an architecture, V9 is an exam-
ple that committees can successfully, and in a timely man-
ner, evolve architectures. PowerPC is another example.

This evolution of the SPARC architecture is happen-
ing now for several reasons. First, features such as condi-
tional moves are motivated by developments in super-
scalar and superpipelined implementation where
branches can significantly reduce performance. Second,
there is a trend toward bigger systems with multiple
processors where 64-bit linear addressing and weakly
ordered memory models can significantly improve perfor-
mance. Third, the technology constraints—such as 10K
gate arrays—that influenced the original SPARC archi-

M I C R O P R O C E S S O R R E P O R T
7 SPARC V9 Adds Wealth of New Features Vol. 7, No. 2, Februa
tecture are a dim memory. Increasing transistor budgets
encourage out-of-order, superscalar processors and large,
non-blocking caches. Judging by the enhancements in V9,
the committee clearly had big systems and aggressive
microprocessors in mind.

While it is conceivable that RISC detractors will say
that V9 makes SPARC “CISCier,” this is not true. The
new features satisfy the basic RISC criteria, e.g., the
instructions are fixed-length, have simple, consistent
encodings, and implement a load/store architecture.♦

Next issue, we’ll compare SPARC-V9 to other 64-bit
architectures (see 070302.PDF).

Figure 4. Trap vector formation and trap table layout. The
vector address is a combination of the trap base address, a bit
set on whether or not the current trap level is greater than zero,
and the trap type. There are two trap tables, one for traps that
occur when trap level is equal to zero and one for traps when
TL is greater than zero. The trap type for register window spill
and fill is determined specially to create different vectors for
different situations.
ry 15, 1993 © 1993 MicroDesign Resources

	SPARC V9 Adds Wealth of New Features
	V9 Overview
	Privileged Registers
	Non-Privileged Registers
	Figure 1. Most of the SPARC V9 special registers...
	Register Windows
	Table 1. FP register mapping for the three different precisions...
	Figure 2. Register windows and possible values for window …
	Table 2. New or changed instructions in SPARC-V9.
	64-Bit Architecture
	Figure 3. Some SPARC instruction formats...
	New Instructions & Semantics
	Traps
	Memory Models
	Miscellaneous Changes
	Conclusions
	Figure 4. Trap vector formation and trap table layout...

