
Futurebus+ Offers I
Silicon Support Emergin

By John Theus
TheUs Group, Sherwood, OR

In the previous two articles of this series (see µPR
5/27/92, p. 17 and 6/17/92, p. 17), we took a high-level
look at Futurebus+ and its protocols and profiles. In the
first part of this final article, some of the more significant
Futurebus+ technologies—packet mode, cache coher-
ency, and BTL—are described in greater detail. The last
part of this article reviews the announced transceiver
and protocol silicon.

Packet Mode
The Futurebus 1987 standard provided a compelled

data transfer mode where every word transferred re-
quired a handshake between the master and slaves.
While this protocol makes for very reliable transfers
and is technology independent, it is also slower than
required for many of today’s applications. The develop-
ment of a non-compelled protocol went through many
stages of design and review—including its final name of
packet mode. All of the approaches had a common fea-
ture in that they were source synchronous—the sender
of the data provided the synchronization. The first pro-
posal added a clocking signal to send with the data.
While this approach eliminated the delays due to the
handshake, analysis showed that performance was still
inadequate.

An improvement on the first proposal was to use a
clock per byte. This approach limited the skew to a sin-
gle byte-wide transceiver chip, but it added lots of new
signals and was a solution based on the day’s technol-
ogy. The next stage looked at embedding a clock in each
bit in the data stream. While this approach is common
on serial links with long blocks of data, the amount of
logic to do this on a parallel bus along with the problem
of extracting the clock when a data block is only a couple
of words long made it impractical.

The breakthrough was realizing that it is not neces-
sary to send a clock at all. The everyday example is a
UART. As long as both ends know the clocking rate,
start and stop bits are sufficient control information to
transfer a stream of data. To solve the clock rate prob-
lem, a system’s boot software uses the compelled data
transfer mode to configure the hardware. Two clock
speeds are allowed on an operating backplane, and a
choice is made on a transaction-by-transaction basis. A
slow speed is chosen that is the lowest common speed,
and a higher speed can be selected for a subset of the

M I C R O P R O C E S S O R R E P O R T

	

	

1 6 	 	
nnovative Protocols
g from Three Vendors

modules. Modules must provide an internal clock with
0.01% accuracy.

A packet is transmitted by clocking a normal regis-
ter at the agreed-upon frequency. The data is preceded
by a start bit and is encoded as NRZI. The data is fol-
lowed by a stop bit that returns the signal to its quies-
cent state and acts as a longitudinal parity bit. The
transmitter is allowed to introduce skew across the
word and edge-to-edge jitter into the data stream up to
specified maximums. Packets are limited in length to 64
words so that the error introduced by the difference in
internal clock frequencies does not become a problem.

The front end of the receiver treats each signal that
makes up the data word independently. The start bit on
each signal is phase compared with the internal clock
and the difference recorded. This difference is then used
to set the sampling window for the subsequent data
bits. When all the bits across a word have arrived, the
word is clocked out of the receiver into a normal regis-
ter.

Although an individual packet is limited in size,
multiple packets can be sent during a single transac-
tion. The main restriction is that packets must occupy
an ascending contiguous address space. When a packet
transfer is started, the compelled data handshake sig-
nals are used for controlling the request and ap-
proved/denied protocol for the subsequent packets. This
protocol runs asynchronously with respect to the packet
transfer and is allowed to run ahead so it can build up a
queue of packets to send. This multiple-packet-mode
protocol can be used for both cached and non-cached
data.

Hierarchical Cache Coherency
When the parallel protocols for Futurebus were

being designed in the mid-1980s, copyback (writeback)
cache coherency was not a design goal. A year later,
cache coherency became a major issue, and the decision
was made to add it. However, its late addition into the
parallel protocols resulted in several kludges. Future-
bus+ was designed from day one to support cache coher-
ency, and therefore it has a cleanly-integrated set of
coherency protocols.

Although that first implementation left a lot to be
desired, the underlying foundation—laid in 1986—was
a major advancement in understanding cache coher-
ency. Prior to this work, there were many competing
proposals for coherency protocols, and they all looked
very different from one another. The major discovery
J U L Y 8 , 1 9 9 2

Receiver

Driver

C = 1 to 2 pFD

C = 1 to 2 pFR

Bus

Vol = 0.6V Max

Noise Margin = 200mV

Noise Margin = 400mV

Vth = 0.8V to 2.0V

Voh = 2.4V to 5V

0.6V
0.8V

2.0V

2.4V

Vol = 0.75 to 1.2V

Noise Margin = 460mV
Vth = 1.55V±50mV

0.75V

1.6V
1.5V

Noise Margin = 300mV
1.2V

2.14V
2.06V

VT = 2.1V ±2%

TTL BTL

Figure 2. TTL vs. BTL signal levels.

	

M I C R O P R O C E S S O R R E P O R T
was that all these protocols were built around a com-
mon model—a fact which had been obscured by the use
of inconsistent nomenclature.

The model, called MOESI (for the states: Modified,
Owned, Exclusive, Shared, and Invalid) describes the
attributes (valid vs. invalid, exclusive vs. shared, and
modified vs. unmodified), states, and permitted state
transitions for a cache line (see µPR 6/20/90, p. 12).
Many different cache coherency protocols are supported
by the model, all of which are coherent with one an-
other. (Note that some manufacturers have misappro-
priated the term MOESI to label their own five-state
coherency protocols.)

With the model in hand, a Futurebus five-state pro-
tocol for a single-bus system was developed that utilized
the new parallel protocols called intervention and re-
flection. Intervention occurs when a cache holding a
modified line intercepts a read request to memory, and
the cache supplies the line itself. The memory is not
involved in the data transfer protocol. Reflection is in-
tervention with the additional requirement that the
memory participate in the data transfer protocol and
receive and store the modified line.

Futurebus+ built upon the work done for Futurebus
by integrating and extending the coherency protocol to
work across a hierarchy of buses. The parallel protocol
supports split transactions, which are necessary for ef-
ficient communication across bus bridges. Intervention
was retained, but expanded to work with split transac-
tions. Reflection—which was difficult to implement—
was replaced by a more general protocol called snarfing.

Snarfing lets a bystander (neither the master or the
addressed slave) grab a transaction’s data as it passes
by. An example would be a cache that is waiting to win
the bus so it can request a line read. While waiting, the
cache is snooping bus traffic. If the cache sees the ad-
dress corresponding to its pending read, the cache
snarfs the data and retires its read request. While on
the surface this seems like a rare occurrence, around
hot spots, such as semaphores, snarfing can save sig-
nificant bus bandwidth.

Considerable work went into finding a protocol
within the MOESI model that was appropriate for a
hierarchy of caches across bus bridges. The resulting
four-state write-invalidate protocol is called MESI. The
owned (shared modified) state, write broadcast, and
partial-line writes were all excluded to reduce complex-
ity and lower cost. The exclusive unmodified state is
limited to single-bus systems so that bridges can always
see the transition to the modified state.

BTL
Backplane Transceiver Logic was the first signifi-

cant technology developed to solve a Futurebus need.
Before BTL, the only TTL-compatible transceivers

	

J U L Y 8 , 1 9 9 2 	 	
were either 74LS245-class devices, which had insuffi-
cient drive for backplane impedances, or 26S12-class
devices, which could sink sufficient current to drive the
center of a 50-ohm line but when used at every slot in a
backplane dropped the impedance of the line below 25
ohms. The end result was that neither could provide
incident wave switching—cleanly passing through the
threshold on the first signal edge, and never reentering
the threshold region due to subsequent reflections.

The obvious solution for an incident wave trans-
ceiver was to put bigger output transistors in the driver
to sink more current. Doing so increased the capaci-
tance of the output, however, which further depressed
the loaded backplane impedance, which then required
bigger transistors. The breakthrough solution in 1984
was to design an output stage that could sink high cur-
rent and still have a low capacitance when inactive.
This was accomplished by putting a Schottky diode in
series with an NPN output transistor in an open-collec-
tor structure, as shown in Figure 1. The very low capaci-
tance of the diode made the total capacitance of the out-
put in the 1 to 2 pF range.

The other design goals for BTL where to improve
the noise margin, lower the crosstalk potential, and re-
duce power consumption in the drivers and the termi-
nators. All of these led to a reduced-amplitude signal of
about 1 V and a very tightly controlled threshold (see

Figure 1. BTL interface circuits.
1 7

Vendor Part # Type Bits User I/O Functional Logic

National

DS3883 Data path 9 Bused Buffers only

DS3884A Control 6 Split Buffers only; 3 Programmable wire-OR glitch filters with both filtered and
non-filtered signals available

DS3885 Arbitration 9 Bused Competition latch and logic; Win and greater than detection; Parity checker; All
asserted detection

DS3886A Data path 9 Bused Driver has edge triggered latches; Receiver has transparent latches

Signetics
and TI

FB2031 Data path 9 Bused Buffered, registered and latched modes for both driver and receiver paths

FB2032 Arbitration 9 Bused Competition latch and logic; Win detection

FB2033 Control or
data path 8 Split Buffered, registered and latched modes for both driver and receiver paths

FB2040 Control 8 Split Buffers only

FB2041 Control 7 Split Buffers grouped into a 3-3-1 arrangement; Groups have shared control signals

FB2042 Control 8 Split Non-inverted version of FB2040

FB2043 Control 7 Split Non-inverted version of FB2041

Signetics
FB2030 Data path 9 Bused Driver has buffered and latched modes; Buffered receiver path

FB2034 Control or 9 Split Buffe

M I C R O P R O C E S S O R R E P O R T

	

	

Figure 2), which was implemented using a voltage com-
parator and a band-gap reference.

Over the last couple of years, most of the develop-
ment work on BTL devices has centered on adding logic
functions, lowering propagation delay, lowering and
specifying inter- and intra-package skew, and solving
the problems of live insertion and withdrawal. This last
topic has two principal areas of interest. The first is the
more obvious: glitch-free operation when power is ap-
plied or withdrawn. The second is less obvious and in
many ways more critical.

At the instant a Futurebus+ board mates or de-
mates with the active bus signals, an impedance change
occurs as the bus slot goes from unloaded to loaded or
vice versa. This change does not occur on all signal lines
at the same time due to the mechanical tolerances. An
inserted signal line can present an additional problem
due to current inrush as the transceiver, board trace,
and connector pin charge themselves to match the bus
voltage. These problems are reduced in BTL devices by
using an input pin to bias the transceiver’s bus output
pins into the 1.62 to 2.1 V range prior to insertion. These
characteristics of BTL are now specified in IEEE
1194.1.

Transceivers
For several years, BTL transceivers have been the

only commercially-available integrated circuits for Fu-
turebus. National Semiconductor produced the first
generation of BTL, and they held the trademark for sev-
eral years. They relinquished their trademark rights
for the good of the industry. The first generation con-
sisted of two DIP packaged parts—an octal bidirec-
tional bus transceiver and a quad split-user-I/O trans-
ceiver. One unique aspect of the first generation was the
use of a resistor voltage divider connected to Vcc to set

data path

Table 1. BTL transceiver chips.
1 8 	 	
the threshold voltage.
National was also the first to produce a second gen-

eration part which had a quad split-user-I/O structure
that added a band-gap reference, PLCC packaging, and
separate logic, reference, and driver grounds. Texas In-
struments joined the BTL market by producing a func-
tionally equivalent part of their own design. During this
period, Philips Signetics was also producing BTL-like
parts for the IBM-specified Pi bus.

We are now well into the third generation. National,
Signetics and TI all produce a full line of BTL transceiv-
ers compliant with IEEE 1194.1, as shown in Table 1.
Signetics and TI signed a joint development/alternate
source agreement in October 1990. At that time Signet-
ics was well into the development of its own family of
chips, so some parts are unique to each company.

All three companies have divided their BTL parts
into three classes—data path with bused user I/O, con-
trol path with split user I/O, and a distributed arbiter
part. All the data path parts are 8 or 9 bits wide. Signet-
ics’ and TI’s parts offer more register, latch, and flow-
through options than do National’s.

National’s 6-bit control-path part is unique because
it includes three programmable wire-OR-glitch filters.
Placing these required filters in the transceiver lets
them see the runt pulses caused by the wire-OR effect,
without the distortions introduced by the off-chip TTL
buffers used in the Signetics/TI approach.

Both types of arbitration transceivers include the
arbiter competition logic—the speed of which is critical
to distributed arbitration performance—and where
Signetics and TI have a big performance advantage.
National picks up points by including parity error and
arbitration-number greater-than comparison logic on-
chip.

The National parts are offered in both 44-pin PLCC

red, registered and latched modes for both driver and receiver paths
J U L Y 8 , 1 9 9 2

	

and PQFP packages, while Signetics and TI use a 52-
pin PQFP. Four of the pins on these latter packages are
allocated for JTAG, but no JTAG functions have been
implemented other than wiring serial in to serial out.

Arbitration Controllers
National’s DS3875 Arbitration Controller imple-

ments the distributed arbitration protocol—requiring
an arbiter on each module—and has a fairly limited
feature set. This part was in design before the Future-
bus+ specifications had stabilized, and therefore it con-
tains facilities for dead protocols. The 896.1 distributed
arbitration specification was primarily written by a Na-
tional employee, so they’ve had the advantage of far
greater insight into this most-difficult-to-implement
Futurebus+ protocol (this complexity is not the fault of
the specification’s author).

Signetics’ FB2012 Central Arbitration Controller
provides a single-chip implementation of the central ar-
biter function—only one central arbiter is required per
backplane. The chip has support for only two out of the
possible 256 priority levels, but most applications only
need two. Signetics has taken advantage of its pre-
viously existing asynchronous arbiter technology. This
technology resolves metastable conditions internally
before an output is allowed to switch. This part has a 6.5
ns propagation delay from a request to a grant.

TI has designed two arbiters—the TFB2010 Arbi-
tration Bus Controller and the TFB2011 Programmable
Central-Bus Arbiter. The TFB2010 is a distributed-ar-
bitration controller like the National part, but TI has a
far richer feature set. It supports two active program-
mable priority levels, selected through the request pins.
The part has a reasonable arbitration message imple-
mentation, and it has a JTAG boundary-scan port. The
TFB2011—a superset of the TFB2010—has both cen-
tral and distributed arbitration functions. With this
feature set, an application can use either distributed or
central arbitration. A system using distributed arbitra-
tion has a redundant central arbiter on every module,
and has all 256 central arbiter priorities available. It is
likely that many applications will never use the 2010’s
distributed arbiter functions included in the 2011.

Parallel and Cache Protocol Controllers
The DS3805 Protocol Controller is being codevel-

oped by National and Newbridge Microsystems
(Ottawa, Canada). This chip is targeted for Profile B,
which is for I/O applications, and it has no cache or
packet support. Split transactions are supported as re-
quired by Profile B, but only one outstanding split
transaction is permitted. The DS3805, along with 12
transceivers, implements a 64-bit Futurebus+ interface
on one side and a 32-bit synchronous user bus interface
on the other side.

	

J U L Y 8 , 1 9 9 2 	 	
The Signetics FB2000 Protocol Controller and the
FB2020 Packet Data FIFO are a part of the Signetics
building-block approach to the interface. These parts
implement the most difficult and most performance-
critical aspects of the parallel protocols, including maxi-
mum-length packet transfers. A user must supply addi-
tional protocol-related logic, but these parts don’t
prevent the user from implementing any set of features
needed, and therefore are not oriented to any specific
profile.

The 9-bit-wide packet part—the FB2020—contains
a packet encoder and decoder, a 64-deep transmit FIFO,
a 64-deep receive FIFO, and a 16-deep bypass FIFO.
Together with the FB2000, the queued multiple-packet
mode protocol can be executed, which yields the highest
possible Futurebus+ transfer rates.

TI will offer two different two-chip sets—one for I/O
applications and one for cache applications. The
TFB2002 I/O Controller and the TFB2022 Data Path
Unit make up the I/O chip set. The TFB2051 Data Path
for Cache Controller and TFB2055 Data Path for Cache
chip set is a superset of the I/O chip set. Each chip set
implements a nearly complete 64-bit interface between
the user bus and Futurebus+. Profile B is supported,
although outstanding split transactions are limited to
one, and the chip set can not initiate a split transaction.
Some of the protocols required by Profile F are not sup-
ported.

Packet mode is supported in the data path parts,
but packet length is limited to 32 words, and a single
FIFO is shared for both transmit and receive data. The
chip sets do not appear to support either multiple-
packet mode or queued multiple-packet mode (based
upon the preliminary data sheets).

The TFB2051/TFB2055 cache-coherent chip set im-
plements the required coherency protocols. The cache
tags snooped by the bus interface must be supplied by
the user.

Conclusions
While all three vendors have announced chip sets,

none has shipped a complete chip set, and in many cases
the available documentation is sketchy. A truly mean-
ingful evaluation of the different chip sets is therefore
not yet possible. On paper, each is targeted for a slightly
different set of applications. National/Newbridge is tar-
geting the low-end, turn-key market, while TI is target-
ing the mid-to-upper range turn-key market. Signetics
lets the knowledgeable user build whatever they need
at the price of more pieces of silicon.

It is likely that all three chip sets will have numer-
ous design bugs. Part of this will be due to complexity—
TI has the highest risk here—and part will be due to the
lack of previous Futurebus design experience, both at
the protocol level and the system level. ♦

M I C R O P R O C E S S O R R E P O R T
1 9

	Futurebus+ Offers Innovative Protocols
	Packet Mode
	Hierarchical Cache Coherency
	BTL
	Figure 1. BTL interface circuits.
	Figure 2. TTL vs. BTL signal levels.
	Table 1. BTL transceiver chips.
	Transceivers
	Arbitration Controllers
	Parallel and Cache Protocol Controllers
	Conclusions

