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Well-known supercomputer architect Boris Babaian—
often called the Seymour Cray of Russia—has disclosed a
new processor that his company, Elbrus International, is
developing. The E2k processor uses EPIC (explicitly parallel
instruction computing) techniques similar to those Intel
and HP will use in their upcoming Merced. According to
Babaian, however, the E2k will deliver higher performance
with lower power and less silicon.

The Elbrus team has the credentials and experience
to deliver. The core of the team has been together for over
40 years, developing supercomputers for the Soviet Union’s
defense establishments (see sidebar on following page). The
company has developed computers based on superscalar,
shared-memory multiprocessing, and EPIC techniques, long
before papers on those subjects appeared in the West. Lacking
state-of-the-art semiconductor technology and access to the
funds available in capitalist nations, however, Elbrus super-
computers have never quite matched the performance of
their Western counterparts. So it shall be for the E2k, unless
the company can find a partner or other source of capital.

Even if the E2k never sees the light of day, it is a fascinat-
ing device on technical grounds, and it could be a harbinger of
things to come in processors such as Transmeta’s rumored
x86-compatible VLIW engine and Intel’s Merced.

Impressive Performance Claims 
Babaian’s claims for the E2k would seem unbelievable, if not
for the credibility of the Elbrus team. In a 0.18-micron six-
layer-metal process, he says, the E2k will run at 1.2 GHz and
deliver 135 SPECint95 and 350 SPECfp95, yet it will require
only 35 W of power and 126 mm2 of silicon (with 256K of
on-chip L2 cache). We project that in a similar process Mer-
ced will operate at 800 MHz and deliver 45 SPECint95 and
70 SPECfp95 in 300 mm2 of silicon at 60 W. Merced, however,
is ahead of the E2k in development by at least a year.

Even more amazing, Babaian claims the E2k processor
will be x86 binary compatible and, after a few tweaks, IA-64

The Russians Are Co
Supercomputer Maker Elbrus Seeks to J
(Merced) compatible as well. To achieve this feat, Elbrus will
rely on binary compilation assisted by emulation hooks in the
processor, a strategy which, not coincidentally, is similar to the
tack that Transmeta is apparently taking (see MPR 12/7/98,
p. 9). The similarity might arise from the fact that Transmeta
cofounder and CEO Dave Ditzel spent several years at Sun
working with Elbrus. Babaian believes, however, that his com-
pany’s binary-compilation technology is more advanced than
any other on the planet.

Admittedly, the E2k is only an executable Verilog data-
base at this time, so Babaian’s claims are not completely
tested. The E2k architecture, however, is based on many
techniques that were proved in the Elbrus-3 processor,
which was fabricated in 1991. That design, based on an
ancient process, utilized 15 million transistors in about
3,000 LSI and MSI chips and delivered twice the perfor-
mance of a Cray Y-MP.
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Figure 1. The E2k data path is divided into two clusters (A and B),
with duplicate copies of the register files and L1 caches to provide
a large number of fast ports for ultrahigh operand bandwidth.
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Adding to our skepticism about Elbrus’s claims is the
fact that the company has been unable to afford the CAD
tools to simulate the E2k down to the transistor level. But
the 366-person Elbrus team is resourceful, developing many
of its own CAD tools. Babaian also points out that the E2k’s
microarchitecture is conceptually simple, which allowed his
team to handcraft every critical path in the processor and to
verify the timing of each with HSPICE—a time-consuming
procedure for sure, but in post-cold-war Russia, engineering
time is more plentiful than rubles for computer-simulation
farms.

Elbrus Selects EPIC, Shuns Superscalar
In 1978, almost 15 years ahead of Western superscalar proces-
sors, Elbrus implemented a two-issue out-of-order processor
with register renaming and speculative execution. Disap-
pointed with the performance/complexity tradeoff of that
design, in 1986 the company began developing architectures
based on explicit fine-grain parallelism and wide instruction
words—concepts that today are collectively called EPIC.
Since finishing Elbrus-3, which was based on these concepts,
Babaian’s team has been refining the architecture, circuit
techniques, and compilers for the E2k.

As Figure 1 shows, the E2k has some features in com-
mon with IA-64, notably a very large general register file and
a predicate register file to support predicated execution. The
two designs both employ mechanisms to avoid the code inef-
ficiency of traditional VLIW machines, which required NOPs
to fill unused execution slots. The E2k, however, is different
from Merced in its details and has features that are either not
in that chip or have not yet been disclosed.

To improve code efficiency, IA-64 uses fixed-length
(128-bit) instruction bundles, each containing three instruc-
tions. Each bundle has a template field that specifies which in-
structions in current or future bundles can execute in parallel.
The E2k solves the problem with a variable-length instruction
format, as Figure 2 shows. Each E2k instruction consists of a
header syllable followed by one to fifteen 32-bit instruction
syllables (the architecture is extensible to 32 syllables).

The header field specifies the length of the instruction,
thus avoiding the need to decode it to determine its length, a
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problem with most variable-length instruction sets. Subse-
quent syllables specify operations that can all be executed in
parallel. The syllables not only control execution-unit func-
tion and operand selection but also predicate processing,
branch/predicate conditions, literal constants, and movement
of data from the array prefetch buffer (described later).

Lots of Registers, Lots of Ports
Architecturally, the E2k uses a unified 256-entry register file,
whereas IA-64 uses separate 128-entry integer and floating-
point files. Babaian says that the unified file reduces data
shuffling and eliminates fragmentation loss (not enough of
one type of register or the other), increasing the effective reg-
ister namespace over a split-file approach. A large namespace
is crucial for avoiding false dependencies in machines with-
out dynamic register renaming.

The unified register file also offers a symmetry that
Elbrus finds useful for delivering uniformly high operand
bandwidth to its execution units. Operands are delivered
through 30 register ports—20 read and 10 write—supply-
ing an operand bandwidth of up to 288 Gbytes/s (at
1.2 GHz).

E2k’s register file is scoreboarded to interlock the pipe-
line. The compiler uses its knowledge of the pipeline for
optimal scheduling only; the hardware ensures that results
are logically correct, even in the face of unpredictable delays,
such as cache misses. Lack of this feature contributed to the
failure of earlier statically scheduled machines, such as Multi-
flow’s VLIW (see MPR 2/14/94, p. 18), Floating Point Sys-
tems’ array processor, and Intel’s i860.

Register Window Speeds Context Switch
Large register files require considerable time to save and
restore across procedure and program boundaries. The E2k
solves the problem with register windowing. The approach,
however, is different than SPARC’s fixed-size register win-
dows: in the E2k, the register file is treated as a circular
buffer with a single variable-sized window (up to 192 regis-
ters) positioned by a base register. Register addressing
within each procedure context is relative to the current
base.

On a procedure call, the window is advanced by adding
to the base. If the register file overflows, hardware spills regis-
ters to the stack in memory to make room for the new win-
dow. Similarly, hardware fills the register file from the stack
when underflow occurs on a procedure return. Registers are
moved to or from memory in the background, overlapping
spill/fill traffic with instruction execution.

The windowing mechanism is not free. The cost is the
time to add the base offset to each operand specifier before
accessing registers. The extra time requires an additional
pipeline stage, which, although it does not impact the perfor-
mance of straightline code, does penalize branch perfor-
mance. The E2k deals with the additional pipeline delay with
its branch-preparation capability, as we shall see later.
Header ALU... Cntrl... AAL... Move... Literal... Pred... Cond...

Header: length and structure info (1)
ALU: execution unit function (6)
Cntl: prepare to branch control (3)
AAL: additional ALU function for chained operations (2)
Move: move data from array prefetch buffer to register (4)
Literal: supply literal constant to execution unit (4)
Pred: predicate logic calculations (3)
Cond: predicate and execution-unit mask (3)

32 bits 2–16 Syllables

Figure 2. The E2k uses a variable-length VLIW format with up to
sixteen 32-bit instruction syllables describing operations that the
CPU is free to execute in parallel. The header specifies the number
and types of syllables in a given VLIW instruction. Maximum num-
ber of each type of syllable is shown in parentheses. (Source: Elbrus)
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Predicated Execution Removes Branches
Elbrus goes to great lengths either to avoid branches or, when
that is unavoidable, minimize their effects. To avoid branches,
the E2k uses the same technique used by IA-64: predicated
execution. The details are different, but the ideas similar.

The E2k has a 32-entry predicate register file, with each
predicate available in either its true or complement form. A
single VLIW instruction can generate up to four predicates
(via compare operations), and it can also make logical combi-
nations of up to four predicates, returning three. Like the gen-
eral register file, the predicate file has register windowing.

Each operation in a VLIW instruction can be separately
enabled or disabled based on the value of up to six different
predicates that are specified by conditional syllables.

IA-64’s 64-predicate register file provides similar capa-
bilities to the E2k’s 32 registers, since IA-64 stores the true and
complement forms of each predicate in separate registers.
IA-64’s ability to specify different predicates for every instruc-
tion in a VLIW bundle is slightly more flexible than the E2k’s
scheme, but Babaian says that the additional flexibility is
rarely useful and uses more instruction-encoding bits.

When in Doubt, Go Both Ways
When a branch condition can be calculated ahead of the
branch, the compiler can often use predicated execution to
eliminate the branch. In cases where the condition cannot be
resolved ahead of the branch, the compiler invokes the E2k’s
explicit speculative-execution mechanism. Using this mech-
anism, the condition can be removed from the critical path
and, in some cases, the branch itself eliminated.

To invoke this feature, the compiler “unzips” the code,
causing the hardware to execute both paths leading from the
branch simultaneously (each path getting a portion of the
machine resources). While the condition remains unre-
solved, instructions are issued speculatively, the appropriate
results being selected after the condition is resolved. If both
paths can be completed before the condition is resolved, the
branch need not be executed at all.

Speculative execution is invoked by an opcode bit in
each operation syllable. Speculative instructions have no side
effects. In the case of an exception, the results are tagged
invalid and recovery information is written to the result reg-
ister. Nonspeculative instructions trap if they access an
invalid operand. This provides the same capability as
Merced’s speculative load but in a more general way.

Prepare to Branch
If speculative execution is still under way when the condition
resolves, control is transferred to the correct path, so
machine resources are not wasted on irrelevant code. For the
pipeline, the situation is similar to a branch misprediction in
a traditional processor, as it must be flushed and refilled with
instructions on the correct path.

To shorten this delay, the E2k uses a branch-preparation
operation that fetches the target of the branch from the cache
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(or prefetches it into the cache if necessary) and moves it
through the first four stages of the pipeline. Since branch
preparation doesn’t depend on the branch condition, it can be
moved up in the code sequence, well ahead of the branch.
Thus, when the branch is reached, the target instruction
stream has already partially executed, effectively shortening
the pipeline, as Figure 3 shows. The E2k allows three branch
preparation operations to be in progress at the same time.

With predication, unzipping (speculative execution),
and branch preparation, the E2k is able to accomplish nearly
all control transfers without penalty. The result is that the
critical path through the code is limited only by data de-
pendencies (at least for integer code, which typically lacks
parallelism, leaving enough machine resources to execute
A  B r i e f  H i s t o r y  o f  E l b r u s

1957–59: M-40, the first
Elbrus computer; built with vac-
uum tubes.

1964–69: 5E92b, ran the
first Russian antimissile system
protecting Moscow; transistor
construction.

1973–79: Elbrus-1, super-
scalar RISC processor with out-
of-order execution, specula-
tive execution, and register
renaming. Capability-based security with dynamic type
checking. Ten-CPU shared-memory multiprocessor.

1977–84: Elbrus-2, ten-processor supercomputer, ran
critical applications for the Soviet government, including
the Russian missile-defense system.

1983: Binary-compiler work started.
1985–1991: Elbrus-3, an EPIC-based VLIW CPU.

Sixteen-processor shared-memory multiprocessor.
1991–1999: Low-voltage CMOS. Worked with Sun

Microsystems on OS, compilers, and MediaLib. Also
worked with Compass (now Avant!) on CAD tools.

1994–1999: Developed E2k architecture to Verilog
RTL stage, compilers, and binary-compilation software.

Russian supercomputer
architect Boris Babaian
1 2 3 4 5 6

7 8 9

F0 ScatterF1 ScbdDec Ex

Addr DC

7 8 9 10 N
FX0 FX1 FX2 FX3

Integer

Floating Point

Control Transfer Delay = 4 cycles

Load Use = 2 cycles (L1 hit)

Read

7 8
WB

WB

FXn

• • •

Loads

Branch Preparation

Figure 3. For a high-frequency processor, the E2k uses a remark-
ably short pipeline, which is effectively made even shorter by its
branch-preparation capability.
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multiple control paths). These features should contribute
greatly to the E2k’s SPECint95 performance.

To keep pace with data-dependency-limited execution,
the E2k provides enormous instruction-cache bandwidth. Its
64K four-way set-associative instruction cache can deliver
four maximum-length (64-byte) VLIW instructions per cycle
(2,048 bits!). The instruction-cache line is a long 256 bytes,
allowing only 256 lines in the cache. Although the instruction
cache can fill at a peak rate of 32 bytes per cycle, instructions
must come all the way from memory, as the on-chip L2 holds
only data, not instructions. Such long lines, so few entries, and
such long fill latency will either be a performance problem or
a testament to the compiler’s ability to linearize code.

Supercomputer Background Evident
The E2k provides two features that are obvious descendants
of Elbrus’s supercomputer history: loop overlapping and an
array prefetch buffer.

Loops are the basic construct that signals the presence
of parallelism in a program. But exploiting the parallelism in
a loop isn’t easy—especially without dynamic register renam-
ing to prevent the loop from stalling on register-name reuse
between iterations. The traditional approach, and the one
likely to be used in Merced, is loop unrolling with software
renaming. That technique, however, results in considerable
code expansion, which reduces instruction-cache efficiency
and increases memory-bandwidth requirements.

To circumvent these effects, the E2k provides a simple
hardware-renaming scheme. Using the same mechanism
used for register windowing, the compiler sets up rotating
bases for the general and predicate-register files. Within the
loop, register addressing is relative to this base. On each
iteration, the base is advanced, supplying a new set of regis-
ters. With a different set of registers for each iteration, loops
are free to be overlapped to the maximum extent supported
by the machine resources.

A related feature is the E2k’s support for loop startup
(prologue) and termination (epilogue). The E2k allows these
functions to be provided within the loop itself by disabling
instruction side effects (e.g., memory stores) during initial
loop iterations and disabling some operations (e.g., memory
loads) on the final iterations. The code savings can be sub-
stantial, especially in long floating-point loops.

To speed access to array elements—the most common
type of loop data—the E2k provides an array prefetch buffer.
This buffer is filled by an asynchronous hardware prefetch
engine that runs ahead of the main loop, overlapping long
memory accesses with loop execution. Organized as a FIFO
queue, the array prefetch buffer linearizes array elements
that are often scattered on various strides across memory. In
addition, the array prefetch buffer prevents array elements
from polluting the data cache and significantly reduces pres-
sure on the register file.

The 4K array prefetch buffer provides up to 64 prefetch
areas. The buffer is dual banked, and each bank is dual
© M I C R O D E S I G N R E S O U R C E S F E B R U A R Y
ported, allowing up to four 64-bit reads every cycle. The
E2k’s loop overlapping and array-prefetching features con-
tribute significantly to performance on highly parallel code,
as attested to by its impressive 350-SPECfp95 estimate.

Clusters Keep Signal Paths Short
From the start, Elbrus’s objective was a high clock rate. That
objective was one of the motivations behind the selection of
an EPIC architecture, which moves the complex job of
instruction scheduling from runtime (hardware) to compile
time (software). Beyond architecture, however, Elbrus has
taken implementation steps to further boost frequency.

To minimize wire lengths and limit the loading on crit-
ical circuits, Elbrus split the microarchitecture into two
nearly identical clusters, similar to the approach used by the
Alpha 21264 (see MPR 10/28/96, p. 11). In the E2k, each
cluster contains half of the execution units as well as its own
copy of the register file and the L1 data cache. Each copy of
the register file has 10 read and 10 write ports, for a total of
20 read and 10 write ports. Data must be written to both files
to keep them coherent, as is the case for the L1 caches.

The time-critical register-bypass circuits, which for-
ward data directly from one instruction to the next to mini-
mize latency, are also split to increase their speed. This
partitioning minimizes the latency of data flowing within a
cluster, trading off an additional cycle of latency for data
crossing between clusters. The compiler is aware of this haz-
ard and is careful to allocate operations to the appropriate
cluster, so the delay rarely stalls the pipeline.

Like the register file, the L1 data cache is split into two
identical halves that always contain the same data. The L1
cache halves were kept small (8K), direct-mapped, and write-
through to minimize latency. Both halves are dual ported and
have a latency of two cycles. Being fully pipelined, the L1 can
deliver a total load bandwidth on hits of over 38 Gbytes/s.
The L1 is fed from a common 256K L2 data cache, which, like
the L1, is nonblocking. The L2, however, has a longer latency
of eight cycles and is two-way set-associative, copyback, and
interleaved four ways. The E2k’s memory access unit can sup-
port either one or two 256-bit concurrent memory buses.

Like the caches, the E2k’s data TLB uses a two-level
hierarchical organization with split single-cycle 16-entry fully
associative level-one TLBs that are backed by a common two-
cycle 512-entry four-way set-associative level-two TLB. The
TLB hierarchy can translate addresses for two simultaneous
accesses to the L2 data cache (or memory). While the L2
cache is physically indexed and tagged, the L1 is virtually
indexed and tagged, so it does not require TLB accesses.

Massive Potential ILP
Each of the E2k’s clusters comprises three execution-unit
pipelines; each unit takes three register-source operands and
returns a single result operand to the register file. The two
clusters are symmetric except for division, which is restricted
to the B cluster. Execution units within each cluster, however,
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are not symmetric. One of the execution units in each cluster,
for example, provides two cascaded ALUs that implement a
combined-integer capability that allows two chained-integer
operations to be issued to one execution unit. Table 1 shows
the maximum issue rates, latencies, throughput, and struc-
tural hazards for a few of the E2k’s common operations.

The E2k can issue a maximum of 14 operations per cycle
on scalar integer code and 16 ops/cycle on floating-point
scalar code. In loop mode, the E2k can issue at a whopping
23 ops/cycle, including loop counters and address incre-
menters. The operation mix, data dependencies, and memory
latency rarely allow these rates to be sustained, although the
E2k’s ability to execute two paths in parallel keeps the units
highly utilized, even on integer code with little parallelism.

Circuit Design Boosts Frequency
The E2k’s circuit-design innovations are as impressive as its
microarchitecture. In its current state, the E2k uses 10 gates
(equivalent fan-in-2 fan-out-3 NAND gates) in its worst-
case paths. Elbrus’s 1.2-GHz claim, however, is made assum-
ing 12 gates, providing a 20% safety margin in its estimates.

For much of the logic, Elbrus uses standard static-
CMOS design to permit automatic synthesis. For its high-
speed paths, however, Elbrus implements self-reset logic.
These circuits have some advantages over the dynamic cir-
cuits used in most modern high-performance processors,
including the current record speed holder, the 21264.

To achieve high speed, self-reset gates, like conventional
dynamic gates, use distinct evaluate and reset (precharge)
phases. Self-reset gates, however, do not use a clock. In
Elbrus’s design, a wave of data is propagated through the
chain of logic gates, with the falling edge of the output pulses
serving as the reset for subsequent gates. Without the resis-
tance of a clock transistor in the input-transistor stack, the
load charges faster, speeding the gate over traditional
dynamic gates—by 10–15%, according to Elbrus. Logic
design can be trickier with self-reset gates and in some cases
can require more transistors. The transistors, however, are
generally smaller, so there is usually no net die-size penalty.

Self-reset gates also save power, because only the gates
logically needing precharge get it. In addition, without clocks
on the gates, the clock tree is significantly lighter, so it con-
sumes less power. In the Alpha, for example, clock amplifiers
consume about 40% of the chip power; Babaian says that
self-reset logic could reduce this by a factor of five or more.
Furthermore, without all the gates evaluating and precharg-
ing on a common clock, the switching noise is more distrib-
uted and the noise margin improved. As with most modern
processors, active clock gating is used to power-down idle
execution units, saving additional power.

Taking a page from Cray’s book, Elbrus uses a clock
scheme that maximizes the portion of the cycle that is avail-
able to perform logic. The Elbrus system uses a single-phase
clock driving an alternating sequence of active-high and
active-low latches with self-reset logic between. The Elbrus
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clock system suffers little from the effects of clock skew
and latch setup-time requirements, recovering most of the
10–15% of the cycle that is lost to these overheads in conven-
tional microprocessor clocking systems. Elbrus’s unique
clock scheme also lends itself to time borrowing, a feature
that can avoid increasing the cycle time to accommodate a
circuit that just barely misses a clock edge.

Low-Swing Signals for Long Lines
To reduce power, noise, and transmission-line delay on long
lines, such as buses and global routing, Elbrus uses low-
voltage signaling, reminiscent of ECL days. The E2k uses a
separate 0.7-V supply to power its low-swing bus drivers. The
drivers operate differentially, swinging above and below this
reference voltage by 100 mV. At the receiving end, the low-
level signals are amplified to single-ended digital signals by
high-speed sense amplifiers. According to Elbrus, this tech-
nique dissipates 75% less dynamic power than conventional
long-line drivers, and it is used extensively throughout the
E2k, most notably in its speed-critical register-bypass buses.

The low-swing technique is also used in the E2k’s regis-
ter file, allowing the use of common word and bit lines for
read and write operations and enabling a read and a write on
every cycle. Register reads occur in the first half of each clock
cycle, with data propagating to the execution units in the sec-
ond half. Register writes occur in the second half of the cycle,
with data propagating from the execution units to the regis-
ter file in the first half.

A clever trick is used to save power in the register file:
when multiple ports target the same register, only a single
bit-line is activated, with the value distributed to multiple
destinations through the register-bypass circuits.

Hardware Only Half the Story
Building fast EPIC hardware is one thing; getting good perfor-
mance, another. With EPIC, performance is at the mercy of
the compiler, which has the sole responsibility for scheduling
Issue
Operation Rate Latency Thruput 0 1 2 3 4 5
Integer ALU 6 ops 1 cycle 1 cycle • • • • • •
Int Combined 2 ops 2 cycle 1 cycle • •
Load/Store L1 4 ops 2 cycles 1 cycle • • • •
Load/Store L2 4 ops 8 cycles 1 cycle • • • •
FP Add (32/64) 4 ops 4 cycles 1 cycle • • • •
FP Add (80) 4 ops 5 cycles 2 cycles • • • •
Multiply (32/64) 4 ops 4–5 1 cycle • • • •
FP Mul (80) 4 ops 6–7 2 cycles • • • •
FP Madd (32/64) 4 ops 8–9 1 cycle • • • •
Divide (32) 1 op 10–13 2 cycles •
Divide (64) 1 op 10–17 2 cycles •
FP Div (32/64) 1 op 11/14 2 cycles •
MMX Mul/Shift 2 ops 2 cycles 1 cycle • •
MMX Add/Sub 2 ops 1 cycle 1 cycle • •

Each Operation Cluster A Cluster B

Table 1. With the combined-integer feature, eight integer opera-
tions can be issued every cycle. With FP multiply-add, the E2k can
achieve a peak issue rate of 23 operations per cycle while looping.
(Source: Elbrus)
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machine resources to maximize performance. Elbrus appears
no less adept on this front than on architecture or circuits.

Like most EPIC compilers, the Elbrus compiler per-
forms all the classical high-level optimizations, such as inter-
and intraprocedural data-flow analysis and transformations,
global register allocation, hyperblock construction, and loop
splitting. The key to the Elbrus compiler, however, is its abil-
ity to exploit the E2k’s architectural features.

For example, the compiler aggressively applies the E2k’s
speculative execution and loop overlapping. For these, the
compiler splits the code into regions of high parallelism and
limited parallelism. In high-parallelism regions, the compiler
schedules code to maximize throughput, then applies loop
overlapping to minimize the code size and to maximize the
register usage in order to fully load the execution units.

In the limited-parallelism regions, the compiler identi-
fies critical paths and schedules the code to maximize execu-
tion speed. For this, it moves the calculation of control-flow
conditions off the critical path by unzipping the code and
applying speculative execution (executing both paths simulta-
neously). The compiler then uses profile-driven code motion
and scheduling to stitch the regions back together efficiently.

Simulations show the E2k and its compiler to be effec-
tive, currently achieving 3.6 operations per cycle on SPEC-
int95, about twice the IPC of the 21264. The Elbrus compiler
team expects to boost that figure to 4.5 ops/cycle soon. On
SPECfp95, the compiler is now achieving 10 ops/cycle,
almost three times that of the 21264, with a goal of 11.5.

Binary Compiler the Only Hope for Success
Elbrus long ago realized that its chances of successfully
bringing its EPIC technology to market as a new architecture
were nil. Therefore, it set a goal to be x86 compatible, a feat
the company intends to achieve with a binary compiler
assisted by emulation features built into the E2k hardware.

Binary compilers are not new to Elbrus. The company
began work on the technology in the early 1980s, and it has
now matured to the point that Elbrus feels confident in
boasting of the best binary compiler in existence. In simula-
tions, Elbrus has demonstrated emulated x86 and SPARC
performance that is 70–90% the speed of native E2k code
on SPECfp.

Unlike other binary translators, such as Alpha’s FX!32
(see MPR 3/5/96, p. 11), Elbrus’s does not depend on any
characteristics of the emulated software environment. This
fact will allow it to achieve, theoretically, 100% binary com-
patibility for any x86 program on any OS. Emulation with
E2k will be completely transparent to the user, functioning
exactly like a real x86 processor even when debugging.

Elbrus uses a combination of static and dynamic binary
compilation, in contrast to Transmeta, which apparently will
rely on dynamic compilation. Elbrus, however, takes a simi-
lar approach to that revealed in the recent Transmeta patent
(see MPR 12/7/98, p. 9) by providing features in the E2k
hardware to improve the processor as a target for binary
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compilation. The E2k’s emulation features fall into two cate-
gories: generic assists and platform-specific assists.

Generic emulation-assist features include biendian
byte ordering, TLB hooks to detect self-modifying code, a
call/return cache, memory address disambiguation, and two
virtual-address spaces. The call/return cache improves
performance on switch tables, which the binary compiler
depends on to translate emulated indirect-jump addresses to
the E2k addresses in binary-translated code.

The binary compiler keeps memory stores in strict pro-
gram order, but it can hoist loads above stores to hide mem-
ory latency and boost performance. For this, the binary com-
piler utilizes the E2k’s disambiguation memory (DM), which
checks for address aliases at runtime. The DM disallows
offending stores and signals a fault that can be detected by a
check instruction placed at the original position of the load.

An important feature for achieving its goal of 100%
compatibility is the E2k’s dual virtual-address space. With
this feature, the E2k can maintain one address space exactly
as it would appear on the foreign machine and use the sec-
ond address space for emulation code. This firewall prevents
any disturbance of the emulated environment by the host, a
major source of incompatibility in existing emulators.

In addition to these generic emulation-assist features,
the E2k provides x86-specific features that include mirroring
of the x86’s address-translation architecture (segmentation,
page size, page-table layout, etc.), LOCK prefix implementa-
tion for multiprocessor interlocks, an 80-bit floating-point
data type (that uses two E2k registers), and ALU-primitive
compatibility with x86, including the MMX ALUs.

Due to the striking similarities between the IA-64
architecture and the E2k, Elbrus believes it will easily be able
to modify the E2k hardware to emulate both x86 and IA-64.
The difficulty of doing that, however, cannot be completely
assessed until the details of IA-64 are disclosed.

And Secure to Boot
A feature of the E2k that reveals its roots in the defense
industry is its air-tight security. Elbrus’s security model is
built on capabilities, an architecture that ended abruptly in
the West with the Intel 432 disaster. Unlike nearly all previ-
ous capability-based machines—which relied on capability
lists and suffered severe performance problems for it—the
E2k architecture is based on tagged data (two tag bits per
32-bit word). The last three generations of Elbrus supercom-
puters have all used this technique, and the Russian designers
have learned to implement it with no performance penalty.

The feature is more than an esoteric nicety for spooks.
The OS can use capabilities to provide ironclad protection
against virus propagation, although Microsoft is unlikely to
modify its OS to exploit the feature. But with tags, the E2k
also implements fully dynamic type checking in hardware, a
feature the compiler can use to provide runtime protection
against program errors, such as array indexes out of bounds,
accesses to uninitialized data, and dangling pointers. Elbrus
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designers tell the story of the first time they ran SPECint92
on Elbrus-3 and discovered 33 such errors in the code.

Very Low Power on the Horizon
Although 35 W is amazingly little power for a processor of the
E2k’s capability, it is not low enough for Elbrus. For several
years the company has been working on very low voltage
CMOS and believes it has discovered ways to avoid the basic
problems of poor noise immunity and transistor-speed loss
that have thwarted previous efforts. With its techniques, the
company thinks it can operate a processor on a 200-mV sup-
ply in SOI with little sacrifice in speed.

The proof, of course, is in the pudding, and the company
says it is a year away from verifying the concepts with a test
chip. Another year would be needed to complete the device
libraries and render the E2k in such a process. Elbrus has not
yet filed patents on its low-voltage techniques, so it isn’t will-
ing to disclose enough information for others to evaluate the
technology. The prospects, however, are tantalizing: think of a
true supercomputer-class microprocessor in your PDA.

An Interesting Curiosity
Elbrus team members are understandably proud of their
baby. It is likely that their enthusiasm, as for most fathers, has
led to some inflated claims for the E2k. But the capability and
credibility of the Elbrus team does not permit the E2k to be
dismissed out of hand. There is little reason to suspect that
the team is overstating its processor’s capabilities by any
more than other competent design teams tend to when still a
year from tapeout. Even if Elbrus missed all its targets, as
listed in Table 2, by 20%, the E2k would still be 1 GHz,
110 SPECint95, 280 SPECfp95, 150 mm2, and 45 W—an
awesome chip by any standard.

We can only hope that someone will see fit to fund the
Elbrus team, so their ideas can be put to the test. It would
indeed be a shame if the talent of the Elbrus team and the
technology in the E2k and its compilers were lost for lack of
a few tens of millions of dollars. But the chances of Elbrus
ever seeing its pride and joy in silicon are, alas, slim. The free-
fall of the Russian economy has left little hope of finding
funds in the company’s homeland to launch an attack on
Intel. And venture capitalists in the States have little appetite
for funding anyone naive enough to consider competing
with Intel. (The poor Russians just don’t know enough to be
scared.) The company could look for refuge in the less chal-
lenging embedded space, but this would be a serious waste of
the processor’s technology and the team’s expertise.
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Regardless of Elbrus’s architectural prowess, it has little
chance of being successful without first-class process technol-
ogy. Although good architecture can be an advantage, it
cannot, over the long run, make up for lagging process tech-
nology. This suggests that Elbrus should try to partner with a
large semiconductor vendor: AMD, IBM, even Intel come to
mind. Those companies, however, have already chosen their
paths and would be reluctant to change course for schedule
reasons, never mind the NIH (not invented here) syndrome. A
partnership with such a company would certainly improve
Elbrus’s chances, as the company’s biggest weakness, aside
from lack of resources, is inexperience in implementing
multimillion-transistor chips in modern CMOS processes.

As a last resort, the company could license its technol-
ogy to an existing RISC vendor, such as Compaq, IBM, or
Sun, then just fade quietly into the Russian sunset. The com-
pany has several U.S. patents granted, several more pending,
and another 70 ready for filing. It also claims to be unen-
cumbered by any Intel intellectual-property rights.

Based on the Ditzel-Elbrus connection, it will be inter-
esting to see how many features Transmeta’s product ends up
having in common with the E2k. Even more interesting is the
IA-64 connection. Perhaps it is a coincidence—and perhaps
not—that the E2k has striking similarities to IA-64 and that
HP executive Peter Rosenbladt was in Moscow meeting with
Babaian on August 19, 1991, as the EPIC-based Elbrus-3
supercomputer was being fabricated (and tanks were rolling
through the Russian capital in the now-infamous coup d’état).

If nothing else, the E2k is a reminder—as damaging as
it may be to some egos—that computer architecture is not
the sole province of the West. Evidently, RISC, superscalar,
multiprocessing, fast ALUs, high-speed CMOS circuits, capa-
bilities, optimizing compilers, binary compilers, and perhaps
even EPIC were not such new ideas after all. The E2k also
demonstrates that not all good ideas in computer architec-
ture have yet been absorbed into microprocessors.— M
Table 2. Being a year from tapeout requires some derating of
Elbrus’s claims for the E2k, but its specifications are still impressive.
(Source: Elbrus)

Feature Elbrus E2k
Issue Rate (scalar, integer) 14 operations/cycle
Issue Rate (scalar, floating point) 16 operations/cycle
Issue Rate (loop, floating point) 23 operations/cycle
Clock Rate (in 0.18 µm, 6 LM) 1.2 GHz
Pipeline Length 8 stages (9 for loads)
Execution Units 6 ALU, 4 ld/st, 3 pred, 1 br
L1 Data Cache 8K, direct-mapped
L2 Data Cache 256K, 2-way, 4 banks
Data TLB 16 associative + 512/4-way
Array Prefetch Buffer 4K, 64 areas
Instruction Cache 64K, 4-way set-associative
Instruction TLB 64 entry, fully-associative
Register File 256 registers ×  64 bits
Register File Ports 20 read, 10 write
Transistors 28 million
Die Size (in 0.18 µm, 6 LM) 126 mm2

Power Dissipation 35 W
SPECint/fp95 (est at 1 GHz) 135/350
F o r  M o r e  I n f o r m a t i o n

For more information about Elbrus International
(Moscow) or the E2k processor, contact Boris Babaian at
650.618.1581 or send e-mail to boris.babaian@mcst.ru.
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