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Abstract 
 

The need to process multimedia data places large 
computational demands on portable/embedded devices.  
These multimedia functions share common 
characteristics: they are computationally intensive and 
data-streaming, performing the same operation(s) on 
many data elements.  The Reconfigurable Streaming 
Vector Processor (RSVPTM) is a vector coprocessor 
architecture that accelerates streaming data operations.  
Programming the RSVP architecture involves describing 
the shape and location of vector streams in memory and 
describing computations as data-flow graphs.  These 
descriptions are intuitive and independent of each other, 
making the RSVP architecture easy to program.  They are 
also machine independent, allowing binary-compatible 
implementations with varying cost-performance tradeoffs. 

This paper presents the RSVP architecture and 
programming model, a programming case study, and our 
first implementation.  Our results show significant 
speedups on streaming data functions.  Speedups for 
kernels and applications range from 2 to over 20 times 
that of an ARM9 host processor alone. 
 
1. Introduction 

Portable/embedded devices will find their way into 
many varied products in the future.  These products will 
include image/video capture devices (image finishing), 
and portable computation/communication devices 
(handwriting recognition, voice recognition and synthesis, 
and graphics).  The underlying algorithms for these tasks 
share common characteristics.  These characteristics arise 
because the data that is being processed is streaming in 
nature.   

What we mean by streaming is that the data is 
produced/acquired as a stream of elements, each of which 
is relevant for a short period of time, and each of which 
undergoes the same computation or set of computations.  
When these computations are complete, the result is 
stored/displayed, and the data elements that fed this 

calculation are not used again.  The characteristics of the 
data stream are that elements have a high degree of spatial 
locality, but relatively poor temporal locality. 

In addition to having basic spatial locality, the data 
access patterns for these applications is such that entire 
input and output sets can be completely described prior to 
the calculation.  These characteristics allow prefetching of 
data ahead of the computation, thus hiding memory 
latency.  What’s more, these access patterns can be 
described by a small set of characteristics.  These simple, 
intuitive descriptions define arrays of data elements or 
vectors. 

The problem that we solve with the Reconfigurable 
Streaming Vector Processor (RSVP) is: how to efficiently 
process streaming vector data while at the same time 
presenting a simple, intuitive programming model.  The 
solution we arrived at was to design: 

• A coprocessor to operate synchronously with an 
existing host CPU 

• A programming model that separates the 
description of data from computation 

o Data described by location and shape in 
memory 

o Computation described by data-flow 
graph [1] 

The location of the data vectors is a pointer (address), 
and vector shape is a simple rule for calculating the next 
address given the current element address.  The data-flow 
graph describes a set of ordered, dependent computations 
applied to each element in the vector.  These 
straightforward descriptions provide the ease of 
programming desired, while at the same time enabling a 
wide range of implementations having different 
cost/performance tradeoffs. 

We have implemented a complete system on chip 
(SoC) including an ARM9 processor and an RSVP 
processor.  In addition, our chip contains a complete set 
of peripherals for multimedia system design.  In support 
of this chip, we provide a set of APIs for programming 
the RSVP processor, a complete software development 
tool-chain, a set of libraries for commonly used 
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multimedia kernels, and a multimedia system 
development board.  This complete SoC package is 
targeted at low-power portable/embedded multimedia 
platforms.  The chip is fabricated in TSMC 0.18um 
CMOS technology, and will be discussed in more detail 
in the Implementation section of this paper. 

The next section presents the motivation for the RSVP 
design.  Following this is a description of streaming 
computation, the RSVP programming model, and the 
architecture it implies.  Next, a description of the first 
RSVP implementation is discussed.  Finally, benchmark 
results are presented for both kernel-level code and 
complete applications showing significant speedups. 
 
2. Motivation 

Vector machines have played an important role in the 
supercomputer arena for over 25 years [2].  Recently a 
resurgence of interest in a type of vector processing 
architecture has occurred, but targeting multi-media 
rather than the traditional problem domain of the 
supercomputer.  These architectures are exemplified by 
the MMX extensions to the Intel IA32 architecture [3,4], 
and the AltiVec extensions to the PowerPC architecture 
[5,7].  In the design of the RSVP architecture, we’ve 
taken an approach that differs from this current trend 
because it results in an architecture that is more efficient, 
is capable of a wider range of compatible 
implementations, and is easier to program. 

Most of these recent vector architectures define a 
RISC-like, load-store programming model with wide, 
fixed-sized vector registers.  These “wide-word SIMD” 
(WW-SIMD) machines offer a set of instructions that 
perform operations on all the “vector” elements in a 
register independently and in parallel.  The level of 
abstraction of these architectures is low, and to achieve 
maximum performance with the WW-SIMD approach is a 
difficult programming problem.  The burden is on the 
programmer to tune the code and data so that it matches 
the size, alignment, and memory characteristics of each 
implementation of the architecture.  Another consequence 
of the low architectural abstraction level is the difficulty 
in scaling the WW-SIMD architecture to produce 
implementations at different price/performance points.  
Additionally, WW-SIMD machines produce speedups on 
benchmark code that are less than their wide maximum 
issue-width suggests [6].   

The increasing performance gap between memory and 
processing is something else designers must contend with.  
The earliest memory-to-memory vector architectures [8], 
allowed designers to hide the mismatch between memory 
latency and computation delay prevalent in the 
technology of the day (magnetic cores).  The application 
of hierarchical memory systems caused later vector 

machine designs to follow the RISC register-to-register 
trend [9,10].  Currently, however, the gap between 
memory latency and processing has been increasing due 
to fast on-chip ALUs and slow (relatively speaking) off-
chip memory [11].  Memory designers have done a 
fantastic job of increasing the bandwidth of modern 
memory systems (SDRAM, DDR, RDRAM), but the 
latency of memory is constrained by natural laws.  For 
this reason, much recent research has gone into the area 
of streaming architectures [12,13,14,15,16]. 

 
3. A Streaming Computation Model 

The RSVP architecture utilizes a stream-oriented 
approach to vector processing, which is described in this 
section.  Our architecture decouples and overlaps data 
access and data processing and eliminates the need for 
programmers to explicitly schedule memory accesses.  
We define several independent load/store units, which 
take advantage of the nature of multimedia data.  They 
prefetch vector data from long-latency, wide memory and 
turn it into narrow, high-speed streams of vector 
elements, which communicate with the processing units 
via interlocked FIFO queues.  A consequence is that 
vector alignment and size, and memory access scheduling 
(issues in WW-SIMD machines) become irrelevant to the 
programmer. 

A streaming architecture offers three opportunities for 
improving performance by increasing parallel processing: 

• Decoupled operand fetch 
• Deep pipelining (function unit chaining) 
• SIMD processing 

These opportunities can be applied independently and 
concurrently. 

Memory
Subsystem

Processing
Unit

Input Streams

Output Stream

 

Figure 1, Decoupled operand prefetch allows data to 
be fetched ahead of the computation. 

The decoupling of operand fetches separates the data 
access and data processing into independent units that 
operate asynchronously.  The operand access units, called 
vector stream units (VSUs), and the processing unit, 
communicate via interlocked FIFO queues (see Figure 1).  
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This allows the stream units to take advantage of 
available memory bandwidth to prefetch the data and 
have it ready for processing before it is needed.  This 
form of dynamic scheduling is more effective and simpler 
than static scheduling performed by a programmer or 
compiler. 

AltiVec has stream units, which implement a 
decoupled operand prefetch to cache.  However, the 
operands must still be moved from cache to a register by 
explicitly programmed load instructions, and prefetching 
doesn’t guarantee the data will be in the cache when 
fetched [17]. 

Deep pipelining is possible because instructions in the 
vector loop are treated as a data-flow graph of 
interconnected stream and function units.  In a fully 
pipelined implementation, each instruction is mapped to a 
function unit, and each operand is mapped to a 
communication resource, with one or more results 
produced every clock cycle (after a pipeline fill interval).  
Our RSVP pipeline implementation splits the Processing 
Unit block in Figure 1 into an N-stage pipeline by 
chaining multiple function units together.  This allows 
RSVP implementations with higher clock frequencies and 
increased resource utilization. 

In addition, many vector operations work on elements 
of the datastream independently, providing additional 
opportunities for parallelism in the form of SIMD 
processing.  Placing multiple taps on each of the stream 
units allows vector elements to be processed in SIMD 
fashion.  This is similar to WW-SIMD architectures with 
one important difference.  In WW-SIMD machines, the 
amount of SIMD parallelism is determined ahead of time 
by the width of the programmer-visible SIMD registers.  
In the RSVP architecture the speedup is limited only by 
resource limitations, algorithm characteristics, and dataset 
(vector) size.  RSVP programs are specified in a way that 
allows scheduling tools to exploit both pipeline and 
SIMD parallelism concurrently.   

Additionally, since the code for a streaming 
architecture is independent of any fixed hardware data 
size, the same program can execute on a wide range of 
implementations, providing the potential for binary 
compatibility and ease of software reuse.   

Finally, the RSVP architecture is an enhancement to an 
embedded general-purpose processor (i.e., the host).  It is 
a “co-processor” that operates synchronously with the 
host processor instruction flow, presenting a familiar 
single-core programming model.  It augments the data 
processing instructions of that processor, but does not 
participate in the control flow. Therefore an RSVP 
processor depends on the host processor for conditional 
branches, subroutine calls, etc.  The RSVP architecture 
does provide a mux-like select operation for simple 
predicated execution of dataflow graphs.  Most 

microprocessors can be used as a host to an RSVP 
processor. 

 
4. Architecture and Programming Model 

In creating the RSVP programming model, we chose a 
model for which it was easy to express parallelism at the 
level of "C" operators.  The natural choice was 
Synchronous Data-flow (SDF) graphs [1] with DMA-like 
sources and sinks.  Programming the RSVP architecture 
consists of describing the input and output vectors and 
scalar values for a particular computation, and describing 
the computation itself as a data-flow graph. 

 
4.1. Describing Data 

RSVP data is described as scalar values, accumulator 
initialization values, and vectors.  Figure 2 shows the 
programmer-visible data description registers in the 
RSVP architecture.  These registers are accessed via host 
coprocessor instructions mapped to the RSVP processor. 
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Figure 2, Describing RSVP data involves setting 
accumulator and scalar values, and describing the 

location and shape of vector data in memory. 

Vectors to be processed reside in memory, and are 
handled by vector stream units (VSUs) in the RSVP 
architecture.  Their description consists of a pointer to the 
first element in each vector and a description of the vector 
shape.  The shape of the vector consists of three scalar 
values: stride, span, and skip.  Stride describes the 
spacing between each fetched/stored element (inclusive of 
the element).  Span describes how many elements to 
fetch/store at stride spacing before applying the second-
level skip offset.  Stride and skip may be positive or 
negative, but span is always positive. 

This set of parameters allows the programmer to: 
describe a two-dimensional sub-array within a larger two-
dimensional array, uniformly sub-sample an array, and 
create a circular (modulo) access to memory using a 
negative skip value.  Some examples of this are shown in 
Figure 3. 

Scalar data for the RSVP architecture is defined to be 
any data that is loop invariant, and is described by its 
value.  Two 64-bit accumulators and 16 32-bit 
scalar/tunnel registers make up the programmer-visible 

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) 
0-7695-2043-X/03 $17.00 © 2003 IEEE 



scalar state in the RSVP architecture (tunnels will be 
described in more detail in the following section).  Scalar 
values may also be specified as immediate values in an 
RSVP program. 

Contiguous vector (stride = 1)

Striding  vector (stride = 2)

Subarray (2x4 in 8x8, row order) (stride = 1, span = 2, skip = 6 )

Repeating vector (stride = 1, span = 5, skip = -5)

Subarray (column order) (stride = 3, span = 5, skip = -14)

 

Figure 3, The skip, span, and stride shape descriptors 
allow a range of vector shapes to be specified. 

The above structures are accessible via a C API that 
we have implemented for an RSVP processor plus an 
ARM9 host processor.  This API hides the host processor-
to-RSVP communications details from the programmer, 
and is implemented as inline assembly functions that 
execute load/store or coprocessor instructions depending 
upon the registers being accessed.  This reduces the host 
setup overhead while still providing a comprehensive 
interface.  Examples of this API are shown below.   

• VSU setup examples 
o specify address of an input vector of byte 

elements 
void _vibyte( int vsu_num, void 
*addr); 

o specify output vector shape 
void _voshape( int vsu_num, short 
stride, unsigned short span, short 
skip); 

• Accumulator and constant interface examples 
o get/set a scalar/tunnel value 

void _vsetz( int scalar_num, long 
val); 
long _vgetz( int scalar_num); 

o clear the contents of an accumulator 
void _vclra( int acc_num); 

o get an accumulator value shifted and saturated 
to a word 
long _vgetaw( int acc_num, int 
shift_amt); 

 
4.2. Describing Computation Using Dataflow 
Graphs 

RSVP programs use a “Data-flow Graph” (DFG) 
language to express vector operations in a machine-
independent manner.  In this DFG language, all 
dependencies are explicitly stated to facilitate parallel 

execution.  Each node in the DFG is denoted by a 
descriptor, which specifies: 

• Input operands. The input operands are specified 
as relative references to previous nodes rather 
than named registers.  This feature helps 
eliminate the unnecessary contention for named 
registers as well as the overhead associated with 
register re-naming. 

• The operation to be performed by the node. 
• The minimum precision of its output value.  This 

can be derived from the precision of the input 
operands and from the operation performed by 
the node. However, implementations are allowed 
to use more precision if that is easier.  

• The signedness of the node. 
In addition to data dependencies, the data-flow graph 

may also express limited iteration-to-iteration 
dependencies.  The results that are passed between 
iterations are indicated by node descriptors that access the 
accumulators or a small set of named FIFOs called 
“tunnels”.  Tunnel nodes save the result of an operation in 
the current iteration while providing the result produced 
in the previous iteration (i.e., the source and the sink of 
the data-flow is the same).  This greater overlapping of 
multiple iterations since the data from one iteration can be 
efficiently passed to the next iteration.  In the case of loop 
unrolling, tunnels between unrolled iterations become 
dataflow graph arcs, with tunneling occurring only 
between the larger unrolled iterations.  The same is not 
true for DFG nodes accessing the accumulators, because 
the source and the sink accumulator nodes are separate 
and are located at different points in the DFG limiting the 
degree of iteration overlap. 

Order dependencies are the last type of dependencies 
that might be present in a data-flow graph. This type of 
dependency is present when multiple node descriptors 
refer to the same VSU (i.e., when multiple elements of a 
vector are processed in one iteration, there is an implied 
order between successive queue access operations).  The 
sequential execution of the nodes that form the DFG 
provides a reference result, which must be matched by 
any parallel execution of the DFG nodes on any 
implementation.  This sequential list of nodes is known as 
the linear form or linear DFG.  Simply stated, the linear 
form of the DFG is an ordered list of node operators, the 
sequential execution of which defines the DFG’s 
behavior. 

The DFG is mapped onto our current hardware 
implementation by a micro-architecture aware scheduler, 
which is part of a larger set of tools that form our DFG 
compiler.  An example of a linear DFG appears in a 
following section (Quant Programming Example). 

The API for the RSVP processor supports execution of 
data-flow graphs.  The programmer must specify the 
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location of the DFG in memory and the number of 
iterations that the DFG should execute (after having setup 
the data descriptions).  The RSVP processor responds by 
taking control of execution flow and memory, retrieves 
the specified DFG from memory, and executes it for the 
specified number of iterations.  When it has completed, 
control is returned to the host processor.  Examples of this 
API are shown below. 

• load DFG at graph_addr 
void _vload( void *graph_addr); 

• execute previously loaded DFG for cnt iterations 
void _vrepeat( int cnt); 

• load DFG at graph_addr and execute for cnt 
iterations 
void _vloop( void * graph_addr, int 
cnt); 

 
4.3. Scheduling and Binary Compatibility 

The binary form of the linear data-flow graph is the 
form that all implementations of the RSVP architecture 
must execute.  For many RSVP implementations, 
however, there will be a binary form that is more suitable 
for direct execution on the hardware, and that form may 
not be the linear DFG.  For these cases the RSVP 
architecture specifies “universal fat binaries” (UFBs). 

UFBs contain more than one binary form of a data-
flow graph.  UFBs may contain, in addition to the linear 
form of the DFG (which is mandatory), one or more 
optimized forms.  Our DFG compiler, which has 
complete knowledge of the underlying hardware, creates 
these optimized forms.  The input to this compiler is the 
linear DFG form.  All forms contained in the UFB are 
structured as a linked list with the linear DFG form 
appearing last in the list.  This list is walked by the RSVP 
hardware, and the first instance that it can execute is used 
(each list element is marked with an implementation ID).  
If no custom instances are found, the linear DFG form is 
used as a default.  One way to achieve this is to employ a 
just-in-time compiler that allows direct execution of 
RSVP dataflow graphs at the system level. 

 
4.4. Quant Programming Example 

As an example of the transformation of an operation 
from the original C code to an RSVP program, and for an 
example of linear DFG programming, consider the 
"Quant" algorithm.  Quant compresses video images 
through quantization.  It appears in multiple standards 
such as: JPEG, MPEG, and H.263.  It is a good candidate 
for execution on an RSVP processor because its input is a 
vector and each element can be independently processed. 
Figure 4 shows the C code for Quant.  

As can be seen from the C code, Quant consists of a 
small number of calculations followed by a loop that is 

executed for n iterations.  To implement Quant using an 
RSVP processor, the host executes the preliminary 
calculations and the RSVP processor executes the loop.  
Figure 5 shows the code to execute the preliminary 
calculations and to set up and initiate execution on the 
RSVP processor.  Lines 1-4 are identical to the original C 
code. Lines 5-8 utilize the API calls described above.  In 
this case, the API is used to initialize input VSU 1 with 
the address of the input vector, initialize output VSU 0 
with the address of the output vector, load the scalar 
registers with the values of b and rq, set the iteration 
count, and initiate execution on the RSVP processor.  The 
stride, span, and skip parameters of the VSU's are not set.  
The default values for these parameters are used, which 
configure the VSUs to access a one-dimensional 
contiguous vector. 

 
void quant(short *out, short *in, int n, 
short qp) 
{   long rq, b, c; 
    rq = ((1 << 16) + qp) / (qp << 1); 
    b = qp - !(qp & 1); 
    while (--n >= 0) 
    {   c = *in++; 
        if (c < 0)         c += b; 
        else if (c > 0)    c -= b; 
        *out++ = (c*rq) / (1 << 16); 
    } 
} 

Figure 4, Original quant routine written entirely in C. 

void quant(short *out, short *in, int n, 
short qp) 
{   long rq, b, c; 
    rq = ((1 << 16) + qp) / (qp << 1); 
    b = qp - !(qp & 1); 
    _vihalf1(in); 
    _vohalf0(out); 
    _vset(1, rq); 
    _vset(2, b); 
    _vloop(&rsvp_quant, n) 
} 

Figure 5, Rewritten routine setting up the RSVP 
processor to execute the inner loop using our provided 

API. 

Figure 6 shows the equivalent data-flow graph for the 
operation performed within the loop and the linear form 
of the DFG, which is an ordered sequence of node 
descriptors for the DFG (the current RSVP toolset 
operates on this syntax).  The first descriptor, Q1, makes 
the next element in the input VSU queue its output and, 
thus, available for access by the other descriptors. Q2 
tests the output of Q1 and outputs 1 if it is >0, 0 if equal 
to 0, and -1 if it is <0. Q3 & Q4 make the scalars 1 and 2 
(b and rq) their output.  The next four descriptors perform 
the equivalent of the setting of c based on the sign of the 
input vector element, multiplication of c by rq, and 
shifting of that value.  Q10 places the result of Q9 in the 
output queue of output VSU 0.  This completes a single 
iteration of the loop. 
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vscalar S2

vld V1

vsign

vmul

vsub

vscalar S1

vmul vimm 16

vasr0

vst V0  
rsvp_quant: 
Q1:  vld.s16    (v1)   //c = *in++; 
Q2:  vsign.s16  Q1 
Q3:  vscalar    s2     //s2 is b 
Q4:  vscalar    s1     //s1 is rq 
Q5:  vimm       16 
Q6:  vmul.s16   Q2,Q3  //if (c<0) c+=b; 
Q7:  vsub.s16   Q1,Q6  //else if (c>0) c-=b; 
Q8:  vmul.s32   Q7,Q4  //c *= rq; 
Q9:  vasr0.s16  Q8,Q5  //*out++ = c/(1<<16); 
Q10: vst.s16    Q9,(v0) 

Figure 6, The loop code is described in an intuitive 
data-flow graph form (linear (text) form and graphical 

form shown). 

The speedups afforded by the RSVP architecture are 
realized by scheduling the linear form of the DFG (Figure 
6), optimizing the execution to the implementation.  For 
our first RSVP implementation, we provide a DFG 
compiler for this task.  After compilation, the DFG in 
Figure 6 executes as a pipeline, producing a result every 
clock cycle.  Each of the nodes in Figure 6 executes every 
clock cycle, but each is processing data from a different 
iteration.  This iteration/operation mapping is shown in 
Figure 7, with the stage numbering indicating in which 
pipeline stage the instruction has been scheduled. 

vld V1 vsign vscalar S1 vmul vsub vscalar S2 vmul vimm 16 vst V0vasr0

iter Niter N+1iter N+2iter N+3iter N+4iter N+5iter N+6

stage 1 stage 2 stage 3 stage 4 stage 5 stage 6 stage 7

 

Figure 7, A DFG compiler schedules the operations as 
a deep pipeline of chained function units, producing 

one result every cycle. 

4.5. Architecture 

The RSVP architecture dictates a required set of 
behaviors for any RSVP implementation, but does not 
mandate a particular implementation.  Software written 
for the RSVP architecture will be able to run on any 

implementation that satisfies these requirements.  It 
allows designers the freedom to optimize for their unique 
goals while preserving the ability to re-use application 
software.  The architecture that the preceding descriptions 
imply is diagrammed in Figure 8. 

Output
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Constants

Memory
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Input

VSUs

…

ControlAccumulators Scheduler

 

Figure 8, The RSVP architecture (white solid boxes), 
and supporting structures hidden from the 

programmer (gray boxes). 

The white blocks are the programmer-visible 
structures described previously.  The gray blocks 
represent the data-flow graph computation structures, 
which are implementation dependent and hidden from the 
programmer. 

The components labeled Input VSUs and Output VSUs 
are visible in the programming model as described in the 
previous section.  The number of output VSUs and input 
VSUs is defined architecturally to be a minimum of one 
and three respectively, and maximum of 64 each.  Their 
responsibility is to load/store elements of the input/output 
vector for which they are configured.  Each VSU handles 
all issues regarding loading/storing of the data to/from the 
host memory subsystem and presents the data to the 
datapath as elements in a queue.  This means a VSU must 
handle issues associated with byte alignment and byte 
ordering.  Each VSU converts memory accesses done in 
the width of the host's memory bus to/from a number of 
elements in its queue.  Finally, the output VSUs must 
flush any data in its queue at the time of loop termination 
in order to ensure memory coherence. 

Each input/output VSU performs all address 
generation involved in determining the location of the 
next vector element within the host memory, based on the 
parameters it was configured with by the host.  This 
address generation must not depend on the loop count or 
on results generated by the computation, so that it can 
proceed independently.  Upon termination of the loop, it 
must make available to the host, the address of the next 
element of the vector, analogous to the behavior of a 
pointer used to step through a vector in a C loop.  This is 
to be done regardless of any prefetching of data that may 
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cause the VSU to fetch data beyond the last element used 
in the vector.  In addition, each VSU must allow 
read/write access from the host to all of its other 
parameter-containing registers. 

The data-flow graphs used to specify RSVP 
computations may contain no more than 256 nodes, and 
may “reach back” no more than 63 nodes in the linear 
(text) form of the DFG for its input operands.  This puts a 
reasonable upper limit on the number of in-flight 
operands that an implementation is required to store, and 
the largest number of DFG instructions to be cached. 

The number of accumulators and scalar/tunnel 
registers is defined architecturally to be a minimum of 
two and 16 respectively, and maximum of 64 each.  Our 
first implementation of the RSVP architecture contains 
two accumulators and 16 scalar/tunnel registers.  The 
Accumulators block supports the accumulators, and the 
Constants block supports scalars and tunnels (as described 
above in Describing Computation Using Data-flow 
Graphs). 

The gray blocks in Figure 8 are not specified by the 
architecture.  The Scheduler (our DFG compiler) converts 
the data-flow graph computation description into a 
machine-dependent form.  The Control block implements 
the machine-dependent form of the data-flow graph (may 
be the direct linear form), orchestrating the actions of the 
Interconnect and Function Units.  The Function Units 
must support all operations allowed by data-flow graph 
node descriptors, and the Interconnect must support 
operand passing (arcs in the data-flow graph) as well as 
storage of intermediate results.  The RSVP architecture 
does not specify any named storage for intermediate 
results. 

Additionally, there are system-level programming 
structures to support register protection in an RSVP 
implementation, setting up trap/interrupt event masks, 
context switching, just-in-time graph compilation, and 
other behavior.  A debug interface also exists allowing 
programmers to set DFG address and iteration count 
breakpoints as well as allowing implementation-
dependent access to additional internal structures. 

 
5. Implementation 

The first implementation of the RSVP architecture is 
intended to be a low-cost, low-power solution for 
portable/embedded devices.  It is integrated into an 
ARM946-based SoC with a complete set of peripherals 
for a multimedia processor (image sensor interface, LCD 
controller, compact flash, etc.).  This chip is a testbed for 
the RSVP architecture and provides our customers with a 
development platform for testing their algorithms.  The 
chip is fabricated in TSMC 0.18um CMOS technology 
and appears in packaged form in Figure 9. 

In addition, we have a complete set of software 
development tools for this RSVP implementation.  These 
tools consist of: 

• Compiler, assembler, linker for ARM (gnu-
based) 

• Compiler for RSVP linear data-flow graphs 
• RSVP functional simulation library 
• Performance simulator (timing, profiling) 
• A set of multimedia routines tuned to our RSVP 

implementation 
• A gdb-based debugger for ARM9 + our RSVP 

implementation 

Prototype
RSVP SoC

 
Figure 9, The first implementation of the RSVP 

architecture on our multimedia development board. 

The structure of our implementation appears in Figure 
10.  Communication with the host processor is through 
the bus interface gasket (BIG) via either a memory-
mapped AHB bus interface or the ARM coprocessor 
interface.  The one output vector stream unit (V0) and the 
three input vector stream units (V1, V2, and V3) in this 
implementation access main memory through the BIG.  A 
memory-mapped 8kB Tile Buffer acts as a scratch 
memory, and provides significant speedups to algorithms 
that map their data there.  The Tile Buffer intercepts 
memory requests from the stream units if these requests 
address Tile Buffer memory.  The Tile Buffer 
delivers/accepts 128-bits of data each cycle, with a 
latency of two cycles. 

The datapath consists of a reconfigurable interconnect 
fabric and intermediate results store (Fabric and Queue) 
connecting the stream units, accumulators (Acc0 and 
Acc1), and constant storage (Constants & Tunnels) to a 
set of function units.  This interconnect fabric consists of 
20 links, each of which can transfer 16-bits of data from 
its source to its destination.  These links can be 
reconfigured every clock cycle. 

Each function unit is 64-bits wide and sliced on 16-bit 
boundaries.  These units can operate as four 16-bit units, 
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one 32-bit and two 16-bit units, two 32-bit units, or one 
64-bit unit.  In contrast to traditional wide-word SIMD 
implementations, each of the slices in this RSVP 
implementation has its own control, so the slices 
constitute a MIMD unit rather than a SIMD unit 
(although they can be scheduled as a SIMD unit by 
applying the same control to all slices).  All function units 
are fully pipelined with result latching (including the 
Fabric and Queue), allowing the units to be chained 
together to form deep reconfigurable pipelines 
customized to each application. 
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Figure 10, RSVP implementation block diagram. 

For 16-bit arithmetic, this implementation provides the 
following resources: 

• 4 multipliers 
• 8 adders 
• 4 logic/compare units 
• 4 shift/round units 
• routing and intermediate results storage 

o 20 routing links 
o 280 distributed intermediate storage 

locations (14/link) 
• Minimum number of architecturally specified 

sources and sinks 
o 3 input streams 
o 1 output stream 
o 2 accumulators 
o 16 tunnel/scalar registers 

We have also produced a synthesized macrocell for 
this RSVP implementation in TSMC 0.13um CMOS 
technology.  The area of this core is comparable to an 
ARM9 core plus 16kB instruction and 16kB data caches.  
In effect we are doubling the area of the processor, but 

with a much greater than 2x increase in performance as 
described in the next section.   

Our power simulations show that the power dissipation 
of our RSVP implementation is also on the same order as 
the ARM9 core.  Since the RSVP processor operates for 
shorter periods of time than the ARM9 for the same task 
(due to speedups), the system power is reduced when the 
RSVP processor is employed.  Since the ARM and RSVP 
cores dissipate the same power, and since we employ a 
synchronous programming model, gating the clock to one 
core while the other is operating provides a relative 
energy reduction equal to the algorithm speedup. 

 
6. Results 

We have done extensive benchmarking of our RSVP 
implementation as part of its design.  The benchmarks 
were selected from application areas ranging from image 
processing, video, audio, and signal processing driven by 
customer needs.  Some of the benchmarks are "kernels", 
small vector functions that can be completely executed 
within the RSVP processor. Others are "applications" for 
which only a portion can be executed within the RSVP 
processor.  A description of each benchmark is given 
below. 

Our benchmarking effort consists of running code on 
the ARM9 processor by itself, profiling the code, and 
then porting and compiling the vectorizable inner loops 
for the RSVP processor.  The new result (cycle count) is 
then compared against the original ARM-only result to 
obtain speedups. 

The following is a subset of the kernel benchmarks we 
have studied: 

• RGB to YUV color-space conversion 
• Dot product on 29 element vectors 
• Finite impulse response filter  
• 1024-point complex FFT 
• Saxpy – add a scaled vector to another vector 

(400 element vectors) 
• Sort – order a vector of length 1001 
• Median – find median in 1001 element vector 
• Discrete cosine transform (H.263) 
• Quant – vector quantization (H.263) 
• Dequant – vector dequantization (H.263) 
• JPEG2000 wavelet transform 

Figure 11 shows the speedup results for these 
compiled RSVP kernels.  The RSVP processor versions 
of these kernels were run out of the tile buffer (8kB 
memory, 128-bits per cycle throughput) with the ARM9 
processor having 4kB I and D caches (same as the SoC 
we fabricated).  As the results show, most of these 
benchmarks saw a speedup of five to ten, with 
exceptional results for quant and dequant. 
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The magnitude of these speedups results from the large 
effective instruction issue width of our RSVP 
implementation.  The issue width that the RSVP 
processor is capable of is a result of its deep pipelines of 
chained function units and its asynchronous load/store 
units.  As an example, take the average issue width of the 
inner loop of the RGB to YUV benchmark.  For ARM9, 
the average issue rate is 0.78 instructions per cycle, and 
for our RSVP implementation, the average issue rate is 9 
instructions per cycle.  This highlights the shortcomings 
of using a single-issue embedded core for multimedia 
processing.   
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Figure 11, RSVP processor kernel speedups (operating 

out of tile buffer). 

Even with the currently available WW-SIMD 
extensions for portable/embedded platforms [18,19], the 
processor issue width reaches a maximum of four or eight 
(for byte values on a few instructions).  This maximum 
issue width, however, is not obtained for actual 
workloads. In fact the authors of [6] state that on average, 
no more than 12% of a SIMD unit’s peak throughput is 
achieved for the Media Bench benchmark suite.  This 
stems from the fact that in these SIMD processors, more 
than 75% of dynamic instructions are support/overhead 
related.  This makes these solutions less efficient than an 
RSVP processor, as well as being more difficult to 
program. 

For application benchmarking, we ran code both with 
SRAM memory (assuming that all data was available in 
single-cycle 128-bit wide memory), and with an SDRAM 
memory system (12-2-2-2 core-cycle burst access, with 
4kB instruction and data caches for ARM9 and the 8kB 
tile buffer for the RSVP processor).  The results highlight 
the ability of an RSVP processor to achieve significant 
speedups with realistic memory systems. 

The following programs are a sampling of our 
application benchmarking effort: 

• DSC IPC – complete digital still camera image 
processing chain 

• MPEG4 encode and decode 
• MP3 player 

Figure 12 shows the speedups achieved for ARM9 + 
our RSVP implementation over ARM9 alone.  Three of 
the benchmarks show speedups in the range of 2-4, with 
the image processing chain achieving a speedup of over 
10.  This speedup is due to this particular application 
being easy to tile, with over 90% of the load/store 
operations occurring in the tile buffer.  The other three 
benchmarks use the tile buffer to a lesser extent, and 
additional improvements are expected from these 
applications with more aggressive use of tiling. 
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Figure 12, RSVP application speedups (ideal memory 

and realistic memory). 

Interestingly, the performance of our RSVP 
implementation for these applications does not degrade 
appreciably when presented with an SDRAM memory 
system.  The RSVP architecture is designed to achieve 
greater performance than the host processor alone with 
any available memory system. 

 
7. Conclusions 

The RSVP architecture is a vector 
coprocessor/accelerator architecture that improves the 
performance of general purpose CPUs on streaming data 
functions.  It goes beyond most coprocessors/accelerators 
by improving time to market because of its ease of 
programmability, the elimination of hand-optimized 
assembly code, and support for software reuse through 
binary compatibility across multiple implementations. 

The performance of an RSVP processor is much 
greater than that available from any embedded core alone, 
including those with SIMD extensions.  The RSVP 
architecture makes efficient use of compute resources by 
chaining function units into deep pipelines, and the 
efficiency of these pipelines reduces system power. 

All this is done in a way that is hidden from RSVP 
programmers, allowing them to focus on system 
functionality and algorithm development.  The 
descriptions of computation and data are intuitive and are 
presented to RSVP programmers as a single-core 
programming model, providing a simple, familiar 
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paradigm that speeds software development, and reduces 
time to market.  Support for binary compatibility enables 
software reuse, which supports quick time to market and 
third party software development.  Our carefully 
partitioned vector coprocessor programming model and 
the separation of memory access from computation 
allows our tools to generate near optimal schedules 
automatically, which leads to the ability to scale up the 
hardware without modifying the dataflow graphs. 

Finally, a complete implementation of the RSVP 
architecture is currently available, including ARM9-based 
SoC, software development tools, libraries, and a 
development board. 
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