
The Reconfigurable Streaming Vector Processor (RSVPTM)1

Silviu Ciricescu, Ray Essick, Brian Lucas, Phil May,
Kent Moat, Jim Norris, Michael Schuette, and Ali Saidi†

Motorola Labs, Motorola, Schaumburg, IL
The Mitre Corporation, Bedford, MA†

phil.may@motorola.com

1 RSVPTM is a trademark of Motorola Inc. Other product or service names are the property of their respective owners.

Abstract

The need to process multimedia data places large
computational demands on portable/embedded devices.
These multimedia functions share common
characteristics: they are computationally intensive and
data-streaming, performing the same operation(s) on
many data elements. The Reconfigurable Streaming
Vector Processor (RSVPTM) is a vector coprocessor
architecture that accelerates streaming data operations.
Programming the RSVP architecture involves describing
the shape and location of vector streams in memory and
describing computations as data-flow graphs. These
descriptions are intuitive and independent of each other,
making the RSVP architecture easy to program. They are
also machine independent, allowing binary-compatible
implementations with varying cost-performance tradeoffs.

This paper presents the RSVP architecture and
programming model, a programming case study, and our
first implementation. Our results show significant
speedups on streaming data functions. Speedups for
kernels and applications range from 2 to over 20 times
that of an ARM9 host processor alone.

1. Introduction

Portable/embedded devices will find their way into
many varied products in the future. These products will
include image/video capture devices (image finishing),
and portable computation/communication devices
(handwriting recognition, voice recognition and synthesis,
and graphics). The underlying algorithms for these tasks
share common characteristics. These characteristics arise
because the data that is being processed is streaming in
nature.

What we mean by streaming is that the data is
produced/acquired as a stream of elements, each of which
is relevant for a short period of time, and each of which
undergoes the same computation or set of computations.
When these computations are complete, the result is
stored/displayed, and the data elements that fed this

calculation are not used again. The characteristics of the
data stream are that elements have a high degree of spatial
locality, but relatively poor temporal locality.

In addition to having basic spatial locality, the data
access patterns for these applications is such that entire
input and output sets can be completely described prior to
the calculation. These characteristics allow prefetching of
data ahead of the computation, thus hiding memory
latency. What’s more, these access patterns can be
described by a small set of characteristics. These simple,
intuitive descriptions define arrays of data elements or
vectors.

The problem that we solve with the Reconfigurable
Streaming Vector Processor (RSVP) is: how to efficiently
process streaming vector data while at the same time
presenting a simple, intuitive programming model. The
solution we arrived at was to design:

• A coprocessor to operate synchronously with an
existing host CPU

• A programming model that separates the
description of data from computation

o Data described by location and shape in
memory

o Computation described by data-flow
graph [1]

The location of the data vectors is a pointer (address),
and vector shape is a simple rule for calculating the next
address given the current element address. The data-flow
graph describes a set of ordered, dependent computations
applied to each element in the vector. These
straightforward descriptions provide the ease of
programming desired, while at the same time enabling a
wide range of implementations having different
cost/performance tradeoffs.

We have implemented a complete system on chip
(SoC) including an ARM9 processor and an RSVP
processor. In addition, our chip contains a complete set
of peripherals for multimedia system design. In support
of this chip, we provide a set of APIs for programming
the RSVP processor, a complete software development
tool-chain, a set of libraries for commonly used

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

multimedia kernels, and a multimedia system
development board. This complete SoC package is
targeted at low-power portable/embedded multimedia
platforms. The chip is fabricated in TSMC 0.18um
CMOS technology, and will be discussed in more detail
in the Implementation section of this paper.

The next section presents the motivation for the RSVP
design. Following this is a description of streaming
computation, the RSVP programming model, and the
architecture it implies. Next, a description of the first
RSVP implementation is discussed. Finally, benchmark
results are presented for both kernel-level code and
complete applications showing significant speedups.

2. Motivation

Vector machines have played an important role in the
supercomputer arena for over 25 years [2]. Recently a
resurgence of interest in a type of vector processing
architecture has occurred, but targeting multi-media
rather than the traditional problem domain of the
supercomputer. These architectures are exemplified by
the MMX extensions to the Intel IA32 architecture [3,4],
and the AltiVec extensions to the PowerPC architecture
[5,7]. In the design of the RSVP architecture, we’ve
taken an approach that differs from this current trend
because it results in an architecture that is more efficient,
is capable of a wider range of compatible
implementations, and is easier to program.

Most of these recent vector architectures define a
RISC-like, load-store programming model with wide,
fixed-sized vector registers. These “wide-word SIMD”
(WW-SIMD) machines offer a set of instructions that
perform operations on all the “vector” elements in a
register independently and in parallel. The level of
abstraction of these architectures is low, and to achieve
maximum performance with the WW-SIMD approach is a
difficult programming problem. The burden is on the
programmer to tune the code and data so that it matches
the size, alignment, and memory characteristics of each
implementation of the architecture. Another consequence
of the low architectural abstraction level is the difficulty
in scaling the WW-SIMD architecture to produce
implementations at different price/performance points.
Additionally, WW-SIMD machines produce speedups on
benchmark code that are less than their wide maximum
issue-width suggests [6].

The increasing performance gap between memory and
processing is something else designers must contend with.
The earliest memory-to-memory vector architectures [8],
allowed designers to hide the mismatch between memory
latency and computation delay prevalent in the
technology of the day (magnetic cores). The application
of hierarchical memory systems caused later vector

machine designs to follow the RISC register-to-register
trend [9,10]. Currently, however, the gap between
memory latency and processing has been increasing due
to fast on-chip ALUs and slow (relatively speaking) off-
chip memory [11]. Memory designers have done a
fantastic job of increasing the bandwidth of modern
memory systems (SDRAM, DDR, RDRAM), but the
latency of memory is constrained by natural laws. For
this reason, much recent research has gone into the area
of streaming architectures [12,13,14,15,16].

3. A Streaming Computation Model

The RSVP architecture utilizes a stream-oriented
approach to vector processing, which is described in this
section. Our architecture decouples and overlaps data
access and data processing and eliminates the need for
programmers to explicitly schedule memory accesses.
We define several independent load/store units, which
take advantage of the nature of multimedia data. They
prefetch vector data from long-latency, wide memory and
turn it into narrow, high-speed streams of vector
elements, which communicate with the processing units
via interlocked FIFO queues. A consequence is that
vector alignment and size, and memory access scheduling
(issues in WW-SIMD machines) become irrelevant to the
programmer.

A streaming architecture offers three opportunities for
improving performance by increasing parallel processing:

• Decoupled operand fetch
• Deep pipelining (function unit chaining)
• SIMD processing

These opportunities can be applied independently and
concurrently.

Memory
Subsystem

Processing
Unit

Input Streams

Output Stream

Figure 1, Decoupled operand prefetch allows data to
be fetched ahead of the computation.

The decoupling of operand fetches separates the data
access and data processing into independent units that
operate asynchronously. The operand access units, called
vector stream units (VSUs), and the processing unit,
communicate via interlocked FIFO queues (see Figure 1).

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

This allows the stream units to take advantage of
available memory bandwidth to prefetch the data and
have it ready for processing before it is needed. This
form of dynamic scheduling is more effective and simpler
than static scheduling performed by a programmer or
compiler.

AltiVec has stream units, which implement a
decoupled operand prefetch to cache. However, the
operands must still be moved from cache to a register by
explicitly programmed load instructions, and prefetching
doesn’t guarantee the data will be in the cache when
fetched [17].

Deep pipelining is possible because instructions in the
vector loop are treated as a data-flow graph of
interconnected stream and function units. In a fully
pipelined implementation, each instruction is mapped to a
function unit, and each operand is mapped to a
communication resource, with one or more results
produced every clock cycle (after a pipeline fill interval).
Our RSVP pipeline implementation splits the Processing
Unit block in Figure 1 into an N-stage pipeline by
chaining multiple function units together. This allows
RSVP implementations with higher clock frequencies and
increased resource utilization.

In addition, many vector operations work on elements
of the datastream independently, providing additional
opportunities for parallelism in the form of SIMD
processing. Placing multiple taps on each of the stream
units allows vector elements to be processed in SIMD
fashion. This is similar to WW-SIMD architectures with
one important difference. In WW-SIMD machines, the
amount of SIMD parallelism is determined ahead of time
by the width of the programmer-visible SIMD registers.
In the RSVP architecture the speedup is limited only by
resource limitations, algorithm characteristics, and dataset
(vector) size. RSVP programs are specified in a way that
allows scheduling tools to exploit both pipeline and
SIMD parallelism concurrently.

Additionally, since the code for a streaming
architecture is independent of any fixed hardware data
size, the same program can execute on a wide range of
implementations, providing the potential for binary
compatibility and ease of software reuse.

Finally, the RSVP architecture is an enhancement to an
embedded general-purpose processor (i.e., the host). It is
a “co-processor” that operates synchronously with the
host processor instruction flow, presenting a familiar
single-core programming model. It augments the data
processing instructions of that processor, but does not
participate in the control flow. Therefore an RSVP
processor depends on the host processor for conditional
branches, subroutine calls, etc. The RSVP architecture
does provide a mux-like select operation for simple
predicated execution of dataflow graphs. Most

microprocessors can be used as a host to an RSVP
processor.

4. Architecture and Programming Model

In creating the RSVP programming model, we chose a
model for which it was easy to express parallelism at the
level of "C" operators. The natural choice was
Synchronous Data-flow (SDF) graphs [1] with DMA-like
sources and sinks. Programming the RSVP architecture
consists of describing the input and output vectors and
scalar values for a particular computation, and describing
the computation itself as a data-flow graph.

4.1. Describing Data

RSVP data is described as scalar values, accumulator
initialization values, and vectors. Figure 2 shows the
programmer-visible data description registers in the
RSVP architecture. These registers are accessed via host
coprocessor instructions mapped to the RSVP processor.

Address

Skip

Count

Stride

Address

Skip

Count

Stride
Address

Skip

Count

Stride

Address

Skip

Count

Stride
Address

Skip

Count

Stride

Address

Skip

Count

Stride
Address

Skip
Span
Stride

Address

Skip
Span
Stride

Stream Units (VSUs)

(OVSU0, IVSU1, IVSU2, IVSU3)

Scalars/Tunnels (Z0, Z1, …, Z15)

Accumulators (A0, A1)

Vector Location

Vector Shape

Scalar Data

Figure 2, Describing RSVP data involves setting
accumulator and scalar values, and describing the

location and shape of vector data in memory.

Vectors to be processed reside in memory, and are
handled by vector stream units (VSUs) in the RSVP
architecture. Their description consists of a pointer to the
first element in each vector and a description of the vector
shape. The shape of the vector consists of three scalar
values: stride, span, and skip. Stride describes the
spacing between each fetched/stored element (inclusive of
the element). Span describes how many elements to
fetch/store at stride spacing before applying the second-
level skip offset. Stride and skip may be positive or
negative, but span is always positive.

This set of parameters allows the programmer to:
describe a two-dimensional sub-array within a larger two-
dimensional array, uniformly sub-sample an array, and
create a circular (modulo) access to memory using a
negative skip value. Some examples of this are shown in
Figure 3.

Scalar data for the RSVP architecture is defined to be
any data that is loop invariant, and is described by its
value. Two 64-bit accumulators and 16 32-bit
scalar/tunnel registers make up the programmer-visible

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

scalar state in the RSVP architecture (tunnels will be
described in more detail in the following section). Scalar
values may also be specified as immediate values in an
RSVP program.

Contiguous vector (stride = 1)

Striding vector (stride = 2)

Subarray (2x4 in 8x8, row order) (stride = 1, span = 2, skip = 6)

Repeating vector (stride = 1, span = 5, skip = -5)

Subarray (column order) (stride = 3, span = 5, skip = -14)

Figure 3, The skip, span, and stride shape descriptors
allow a range of vector shapes to be specified.

The above structures are accessible via a C API that
we have implemented for an RSVP processor plus an
ARM9 host processor. This API hides the host processor-
to-RSVP communications details from the programmer,
and is implemented as inline assembly functions that
execute load/store or coprocessor instructions depending
upon the registers being accessed. This reduces the host
setup overhead while still providing a comprehensive
interface. Examples of this API are shown below.

• VSU setup examples
o specify address of an input vector of byte

elements
void _vibyte(int vsu_num, void
*addr);

o specify output vector shape
void _voshape(int vsu_num, short
stride, unsigned short span, short
skip);

• Accumulator and constant interface examples
o get/set a scalar/tunnel value

void _vsetz(int scalar_num, long
val);
long _vgetz(int scalar_num);

o clear the contents of an accumulator
void _vclra(int acc_num);

o get an accumulator value shifted and saturated
to a word
long _vgetaw(int acc_num, int
shift_amt);

4.2. Describing Computation Using Dataflow
Graphs

RSVP programs use a “Data-flow Graph” (DFG)
language to express vector operations in a machine-
independent manner. In this DFG language, all
dependencies are explicitly stated to facilitate parallel

execution. Each node in the DFG is denoted by a
descriptor, which specifies:

• Input operands. The input operands are specified
as relative references to previous nodes rather
than named registers. This feature helps
eliminate the unnecessary contention for named
registers as well as the overhead associated with
register re-naming.

• The operation to be performed by the node.
• The minimum precision of its output value. This

can be derived from the precision of the input
operands and from the operation performed by
the node. However, implementations are allowed
to use more precision if that is easier.

• The signedness of the node.
In addition to data dependencies, the data-flow graph

may also express limited iteration-to-iteration
dependencies. The results that are passed between
iterations are indicated by node descriptors that access the
accumulators or a small set of named FIFOs called
“tunnels”. Tunnel nodes save the result of an operation in
the current iteration while providing the result produced
in the previous iteration (i.e., the source and the sink of
the data-flow is the same). This greater overlapping of
multiple iterations since the data from one iteration can be
efficiently passed to the next iteration. In the case of loop
unrolling, tunnels between unrolled iterations become
dataflow graph arcs, with tunneling occurring only
between the larger unrolled iterations. The same is not
true for DFG nodes accessing the accumulators, because
the source and the sink accumulator nodes are separate
and are located at different points in the DFG limiting the
degree of iteration overlap.

Order dependencies are the last type of dependencies
that might be present in a data-flow graph. This type of
dependency is present when multiple node descriptors
refer to the same VSU (i.e., when multiple elements of a
vector are processed in one iteration, there is an implied
order between successive queue access operations). The
sequential execution of the nodes that form the DFG
provides a reference result, which must be matched by
any parallel execution of the DFG nodes on any
implementation. This sequential list of nodes is known as
the linear form or linear DFG. Simply stated, the linear
form of the DFG is an ordered list of node operators, the
sequential execution of which defines the DFG’s
behavior.

The DFG is mapped onto our current hardware
implementation by a micro-architecture aware scheduler,
which is part of a larger set of tools that form our DFG
compiler. An example of a linear DFG appears in a
following section (Quant Programming Example).

The API for the RSVP processor supports execution of
data-flow graphs. The programmer must specify the

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

location of the DFG in memory and the number of
iterations that the DFG should execute (after having setup
the data descriptions). The RSVP processor responds by
taking control of execution flow and memory, retrieves
the specified DFG from memory, and executes it for the
specified number of iterations. When it has completed,
control is returned to the host processor. Examples of this
API are shown below.

• load DFG at graph_addr
void _vload(void *graph_addr);

• execute previously loaded DFG for cnt iterations
void _vrepeat(int cnt);

• load DFG at graph_addr and execute for cnt
iterations
void _vloop(void * graph_addr, int
cnt);

4.3. Scheduling and Binary Compatibility

The binary form of the linear data-flow graph is the
form that all implementations of the RSVP architecture
must execute. For many RSVP implementations,
however, there will be a binary form that is more suitable
for direct execution on the hardware, and that form may
not be the linear DFG. For these cases the RSVP
architecture specifies “universal fat binaries” (UFBs).

UFBs contain more than one binary form of a data-
flow graph. UFBs may contain, in addition to the linear
form of the DFG (which is mandatory), one or more
optimized forms. Our DFG compiler, which has
complete knowledge of the underlying hardware, creates
these optimized forms. The input to this compiler is the
linear DFG form. All forms contained in the UFB are
structured as a linked list with the linear DFG form
appearing last in the list. This list is walked by the RSVP
hardware, and the first instance that it can execute is used
(each list element is marked with an implementation ID).
If no custom instances are found, the linear DFG form is
used as a default. One way to achieve this is to employ a
just-in-time compiler that allows direct execution of
RSVP dataflow graphs at the system level.

4.4. Quant Programming Example

As an example of the transformation of an operation
from the original C code to an RSVP program, and for an
example of linear DFG programming, consider the
"Quant" algorithm. Quant compresses video images
through quantization. It appears in multiple standards
such as: JPEG, MPEG, and H.263. It is a good candidate
for execution on an RSVP processor because its input is a
vector and each element can be independently processed.
Figure 4 shows the C code for Quant.

As can be seen from the C code, Quant consists of a
small number of calculations followed by a loop that is

executed for n iterations. To implement Quant using an
RSVP processor, the host executes the preliminary
calculations and the RSVP processor executes the loop.
Figure 5 shows the code to execute the preliminary
calculations and to set up and initiate execution on the
RSVP processor. Lines 1-4 are identical to the original C
code. Lines 5-8 utilize the API calls described above. In
this case, the API is used to initialize input VSU 1 with
the address of the input vector, initialize output VSU 0
with the address of the output vector, load the scalar
registers with the values of b and rq, set the iteration
count, and initiate execution on the RSVP processor. The
stride, span, and skip parameters of the VSU's are not set.
The default values for these parameters are used, which
configure the VSUs to access a one-dimensional
contiguous vector.

void quant(short *out, short *in, int n,
short qp)
{ long rq, b, c;
 rq = ((1 << 16) + qp) / (qp << 1);
 b = qp - !(qp & 1);
 while (--n >= 0)
 { c = *in++;
 if (c < 0) c += b;
 else if (c > 0) c -= b;
 *out++ = (c*rq) / (1 << 16);
 }
}

Figure 4, Original quant routine written entirely in C.

void quant(short *out, short *in, int n,
short qp)
{ long rq, b, c;
 rq = ((1 << 16) + qp) / (qp << 1);
 b = qp - !(qp & 1);
 _vihalf1(in);
 _vohalf0(out);
 _vset(1, rq);
 _vset(2, b);
 _vloop(&rsvp_quant, n)
}

Figure 5, Rewritten routine setting up the RSVP
processor to execute the inner loop using our provided

API.

Figure 6 shows the equivalent data-flow graph for the
operation performed within the loop and the linear form
of the DFG, which is an ordered sequence of node
descriptors for the DFG (the current RSVP toolset
operates on this syntax). The first descriptor, Q1, makes
the next element in the input VSU queue its output and,
thus, available for access by the other descriptors. Q2
tests the output of Q1 and outputs 1 if it is >0, 0 if equal
to 0, and -1 if it is <0. Q3 & Q4 make the scalars 1 and 2
(b and rq) their output. The next four descriptors perform
the equivalent of the setting of c based on the sign of the
input vector element, multiplication of c by rq, and
shifting of that value. Q10 places the result of Q9 in the
output queue of output VSU 0. This completes a single
iteration of the loop.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

vscalar S2

vld V1

vsign

vmul

vsub

vscalar S1

vmul vimm 16

vasr0

vst V0
rsvp_quant:
Q1: vld.s16 (v1) //c = *in++;
Q2: vsign.s16 Q1
Q3: vscalar s2 //s2 is b
Q4: vscalar s1 //s1 is rq
Q5: vimm 16
Q6: vmul.s16 Q2,Q3 //if (c<0) c+=b;
Q7: vsub.s16 Q1,Q6 //else if (c>0) c-=b;
Q8: vmul.s32 Q7,Q4 //c *= rq;
Q9: vasr0.s16 Q8,Q5 //*out++ = c/(1<<16);
Q10: vst.s16 Q9,(v0)

Figure 6, The loop code is described in an intuitive
data-flow graph form (linear (text) form and graphical

form shown).

The speedups afforded by the RSVP architecture are
realized by scheduling the linear form of the DFG (Figure
6), optimizing the execution to the implementation. For
our first RSVP implementation, we provide a DFG
compiler for this task. After compilation, the DFG in
Figure 6 executes as a pipeline, producing a result every
clock cycle. Each of the nodes in Figure 6 executes every
clock cycle, but each is processing data from a different
iteration. This iteration/operation mapping is shown in
Figure 7, with the stage numbering indicating in which
pipeline stage the instruction has been scheduled.

vld V1 vsign vscalar S1 vmul vsub vscalar S2 vmul vimm 16 vst V0vasr0

iter Niter N+1iter N+2iter N+3iter N+4iter N+5iter N+6

stage 1 stage 2 stage 3 stage 4 stage 5 stage 6 stage 7

Figure 7, A DFG compiler schedules the operations as
a deep pipeline of chained function units, producing

one result every cycle.

4.5. Architecture

The RSVP architecture dictates a required set of
behaviors for any RSVP implementation, but does not
mandate a particular implementation. Software written
for the RSVP architecture will be able to run on any

implementation that satisfies these requirements. It
allows designers the freedom to optimize for their unique
goals while preserving the ability to re-use application
software. The architecture that the preceding descriptions
imply is diagrammed in Figure 8.

Output

VSUs

Interconnect

Function

Units
Constants

Memory

Subsystem

Input

VSUs

…

ControlAccumulators Scheduler

Figure 8, The RSVP architecture (white solid boxes),
and supporting structures hidden from the

programmer (gray boxes).

The white blocks are the programmer-visible
structures described previously. The gray blocks
represent the data-flow graph computation structures,
which are implementation dependent and hidden from the
programmer.

The components labeled Input VSUs and Output VSUs
are visible in the programming model as described in the
previous section. The number of output VSUs and input
VSUs is defined architecturally to be a minimum of one
and three respectively, and maximum of 64 each. Their
responsibility is to load/store elements of the input/output
vector for which they are configured. Each VSU handles
all issues regarding loading/storing of the data to/from the
host memory subsystem and presents the data to the
datapath as elements in a queue. This means a VSU must
handle issues associated with byte alignment and byte
ordering. Each VSU converts memory accesses done in
the width of the host's memory bus to/from a number of
elements in its queue. Finally, the output VSUs must
flush any data in its queue at the time of loop termination
in order to ensure memory coherence.

Each input/output VSU performs all address
generation involved in determining the location of the
next vector element within the host memory, based on the
parameters it was configured with by the host. This
address generation must not depend on the loop count or
on results generated by the computation, so that it can
proceed independently. Upon termination of the loop, it
must make available to the host, the address of the next
element of the vector, analogous to the behavior of a
pointer used to step through a vector in a C loop. This is
to be done regardless of any prefetching of data that may

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

cause the VSU to fetch data beyond the last element used
in the vector. In addition, each VSU must allow
read/write access from the host to all of its other
parameter-containing registers.

The data-flow graphs used to specify RSVP
computations may contain no more than 256 nodes, and
may “reach back” no more than 63 nodes in the linear
(text) form of the DFG for its input operands. This puts a
reasonable upper limit on the number of in-flight
operands that an implementation is required to store, and
the largest number of DFG instructions to be cached.

The number of accumulators and scalar/tunnel
registers is defined architecturally to be a minimum of
two and 16 respectively, and maximum of 64 each. Our
first implementation of the RSVP architecture contains
two accumulators and 16 scalar/tunnel registers. The
Accumulators block supports the accumulators, and the
Constants block supports scalars and tunnels (as described
above in Describing Computation Using Data-flow
Graphs).

The gray blocks in Figure 8 are not specified by the
architecture. The Scheduler (our DFG compiler) converts
the data-flow graph computation description into a
machine-dependent form. The Control block implements
the machine-dependent form of the data-flow graph (may
be the direct linear form), orchestrating the actions of the
Interconnect and Function Units. The Function Units
must support all operations allowed by data-flow graph
node descriptors, and the Interconnect must support
operand passing (arcs in the data-flow graph) as well as
storage of intermediate results. The RSVP architecture
does not specify any named storage for intermediate
results.

Additionally, there are system-level programming
structures to support register protection in an RSVP
implementation, setting up trap/interrupt event masks,
context switching, just-in-time graph compilation, and
other behavior. A debug interface also exists allowing
programmers to set DFG address and iteration count
breakpoints as well as allowing implementation-
dependent access to additional internal structures.

5. Implementation

The first implementation of the RSVP architecture is
intended to be a low-cost, low-power solution for
portable/embedded devices. It is integrated into an
ARM946-based SoC with a complete set of peripherals
for a multimedia processor (image sensor interface, LCD
controller, compact flash, etc.). This chip is a testbed for
the RSVP architecture and provides our customers with a
development platform for testing their algorithms. The
chip is fabricated in TSMC 0.18um CMOS technology
and appears in packaged form in Figure 9.

In addition, we have a complete set of software
development tools for this RSVP implementation. These
tools consist of:

• Compiler, assembler, linker for ARM (gnu-
based)

• Compiler for RSVP linear data-flow graphs
• RSVP functional simulation library
• Performance simulator (timing, profiling)
• A set of multimedia routines tuned to our RSVP

implementation
• A gdb-based debugger for ARM9 + our RSVP

implementation

Prototype
RSVP SoC

Figure 9, The first implementation of the RSVP

architecture on our multimedia development board.

The structure of our implementation appears in Figure
10. Communication with the host processor is through
the bus interface gasket (BIG) via either a memory-
mapped AHB bus interface or the ARM coprocessor
interface. The one output vector stream unit (V0) and the
three input vector stream units (V1, V2, and V3) in this
implementation access main memory through the BIG. A
memory-mapped 8kB Tile Buffer acts as a scratch
memory, and provides significant speedups to algorithms
that map their data there. The Tile Buffer intercepts
memory requests from the stream units if these requests
address Tile Buffer memory. The Tile Buffer
delivers/accepts 128-bits of data each cycle, with a
latency of two cycles.

The datapath consists of a reconfigurable interconnect
fabric and intermediate results store (Fabric and Queue)
connecting the stream units, accumulators (Acc0 and
Acc1), and constant storage (Constants & Tunnels) to a
set of function units. This interconnect fabric consists of
20 links, each of which can transfer 16-bits of data from
its source to its destination. These links can be
reconfigured every clock cycle.

Each function unit is 64-bits wide and sliced on 16-bit
boundaries. These units can operate as four 16-bit units,

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

one 32-bit and two 16-bit units, two 32-bit units, or one
64-bit unit. In contrast to traditional wide-word SIMD
implementations, each of the slices in this RSVP
implementation has its own control, so the slices
constitute a MIMD unit rather than a SIMD unit
(although they can be scheduled as a SIMD unit by
applying the same control to all slices). All function units
are fully pipelined with result latching (including the
Fabric and Queue), allowing the units to be chained
together to form deep reconfigurable pipelines
customized to each application.

OVSU0

IVSU1

IVSU2

IVSU3

Acc0

Acc1

Seq

Fabric
and

Queue

Mult

Adder

Logic

Shifter

Status/
Control

BIG

master
vbus

slave
vbus

AMBA
AHB

Master

128

128

32

32

32

32

32

128

64

64

64
64

64

64

64

64

64

64

64

4

64

64

64

64

imm

er
ro

rs

512

1

Constants
&

Tunnels

32

32
32

32

imm_of

Adder
64

64

64

2

AMBA
AHB
Slave

Loop
Count

16

Coprocessor
Interface

watchdog

Code
Cache

slave
control

128
Tile

Buffer

master
control

st
at

us
co

nt
ro

l

Saturate
64

64

64

Figure 10, RSVP implementation block diagram.

For 16-bit arithmetic, this implementation provides the
following resources:

• 4 multipliers
• 8 adders
• 4 logic/compare units
• 4 shift/round units
• routing and intermediate results storage

o 20 routing links
o 280 distributed intermediate storage

locations (14/link)
• Minimum number of architecturally specified

sources and sinks
o 3 input streams
o 1 output stream
o 2 accumulators
o 16 tunnel/scalar registers

We have also produced a synthesized macrocell for
this RSVP implementation in TSMC 0.13um CMOS
technology. The area of this core is comparable to an
ARM9 core plus 16kB instruction and 16kB data caches.
In effect we are doubling the area of the processor, but

with a much greater than 2x increase in performance as
described in the next section.

Our power simulations show that the power dissipation
of our RSVP implementation is also on the same order as
the ARM9 core. Since the RSVP processor operates for
shorter periods of time than the ARM9 for the same task
(due to speedups), the system power is reduced when the
RSVP processor is employed. Since the ARM and RSVP
cores dissipate the same power, and since we employ a
synchronous programming model, gating the clock to one
core while the other is operating provides a relative
energy reduction equal to the algorithm speedup.

6. Results

We have done extensive benchmarking of our RSVP
implementation as part of its design. The benchmarks
were selected from application areas ranging from image
processing, video, audio, and signal processing driven by
customer needs. Some of the benchmarks are "kernels",
small vector functions that can be completely executed
within the RSVP processor. Others are "applications" for
which only a portion can be executed within the RSVP
processor. A description of each benchmark is given
below.

Our benchmarking effort consists of running code on
the ARM9 processor by itself, profiling the code, and
then porting and compiling the vectorizable inner loops
for the RSVP processor. The new result (cycle count) is
then compared against the original ARM-only result to
obtain speedups.

The following is a subset of the kernel benchmarks we
have studied:

• RGB to YUV color-space conversion
• Dot product on 29 element vectors
• Finite impulse response filter
• 1024-point complex FFT
• Saxpy – add a scaled vector to another vector

(400 element vectors)
• Sort – order a vector of length 1001
• Median – find median in 1001 element vector
• Discrete cosine transform (H.263)
• Quant – vector quantization (H.263)
• Dequant – vector dequantization (H.263)
• JPEG2000 wavelet transform

Figure 11 shows the speedup results for these
compiled RSVP kernels. The RSVP processor versions
of these kernels were run out of the tile buffer (8kB
memory, 128-bits per cycle throughput) with the ARM9
processor having 4kB I and D caches (same as the SoC
we fabricated). As the results show, most of these
benchmarks saw a speedup of five to ten, with
exceptional results for quant and dequant.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

The magnitude of these speedups results from the large
effective instruction issue width of our RSVP
implementation. The issue width that the RSVP
processor is capable of is a result of its deep pipelines of
chained function units and its asynchronous load/store
units. As an example, take the average issue width of the
inner loop of the RGB to YUV benchmark. For ARM9,
the average issue rate is 0.78 instructions per cycle, and
for our RSVP implementation, the average issue rate is 9
instructions per cycle. This highlights the shortcomings
of using a single-issue embedded core for multimedia
processing.

0

2

4

6

8

10

12

DSC IP
C

M
PEG4 e

nc

M
PEG4 dec

M
P3 dec

RSVPTM vs ARM9 -
1 cycle, 32/128 bit
main memory

RSVPTM vs ARM9 -
ARM9 4kB I&D
caches, RSVPTM 8kB
SRAM, 12-2-2-2+3
cycle 32-bit SDRAM
main memory

Benchmark

Sp
ee

du
p

ov
er

 A
R

M
9

al
on

e

Figure 11, RSVP processor kernel speedups (operating

out of tile buffer).

Even with the currently available WW-SIMD
extensions for portable/embedded platforms [18,19], the
processor issue width reaches a maximum of four or eight
(for byte values on a few instructions). This maximum
issue width, however, is not obtained for actual
workloads. In fact the authors of [6] state that on average,
no more than 12% of a SIMD unit’s peak throughput is
achieved for the Media Bench benchmark suite. This
stems from the fact that in these SIMD processors, more
than 75% of dynamic instructions are support/overhead
related. This makes these solutions less efficient than an
RSVP processor, as well as being more difficult to
program.

For application benchmarking, we ran code both with
SRAM memory (assuming that all data was available in
single-cycle 128-bit wide memory), and with an SDRAM
memory system (12-2-2-2 core-cycle burst access, with
4kB instruction and data caches for ARM9 and the 8kB
tile buffer for the RSVP processor). The results highlight
the ability of an RSVP processor to achieve significant
speedups with realistic memory systems.

The following programs are a sampling of our
application benchmarking effort:

• DSC IPC – complete digital still camera image
processing chain

• MPEG4 encode and decode
• MP3 player

Figure 12 shows the speedups achieved for ARM9 +
our RSVP implementation over ARM9 alone. Three of
the benchmarks show speedups in the range of 2-4, with
the image processing chain achieving a speedup of over
10. This speedup is due to this particular application
being easy to tile, with over 90% of the load/store
operations occurring in the tile buffer. The other three
benchmarks use the tile buffer to a lesser extent, and
additional improvements are expected from these
applications with more aggressive use of tiling.

0

5

10
15

20

25

RGB to
 Y

UV
Dot FIR

FFT

Sax
py

Sor
t

M
ed

ian DCT

Quan
t

Deq
uan

t

JP
EG20

00
 (w

vlt
)

RSVPTM vs. ARM9 - 1 cycle, 128/32 bit Mem

Benchmark

Sp
ee

du
p

ov
er

 A
R

M
9

al
on

e

Figure 12, RSVP application speedups (ideal memory

and realistic memory).

Interestingly, the performance of our RSVP
implementation for these applications does not degrade
appreciably when presented with an SDRAM memory
system. The RSVP architecture is designed to achieve
greater performance than the host processor alone with
any available memory system.

7. Conclusions

The RSVP architecture is a vector
coprocessor/accelerator architecture that improves the
performance of general purpose CPUs on streaming data
functions. It goes beyond most coprocessors/accelerators
by improving time to market because of its ease of
programmability, the elimination of hand-optimized
assembly code, and support for software reuse through
binary compatibility across multiple implementations.

The performance of an RSVP processor is much
greater than that available from any embedded core alone,
including those with SIMD extensions. The RSVP
architecture makes efficient use of compute resources by
chaining function units into deep pipelines, and the
efficiency of these pipelines reduces system power.

All this is done in a way that is hidden from RSVP
programmers, allowing them to focus on system
functionality and algorithm development. The
descriptions of computation and data are intuitive and are
presented to RSVP programmers as a single-core
programming model, providing a simple, familiar

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

paradigm that speeds software development, and reduces
time to market. Support for binary compatibility enables
software reuse, which supports quick time to market and
third party software development. Our carefully
partitioned vector coprocessor programming model and
the separation of memory access from computation
allows our tools to generate near optimal schedules
automatically, which leads to the ability to scale up the
hardware without modifying the dataflow graphs.

Finally, a complete implementation of the RSVP
architecture is currently available, including ARM9-based
SoC, software development tools, libraries, and a
development board.

8. References

[1] E.A. Lee and D.G. Messerschmitt, "Synchronous data flow,"
Proceedings of the IEEE, vol. 75, no. 9, pp. 1235-1245, 1987.

[2] P.M. Johnson, “An Introduction to Vector Processing,”
Computer Design, pp. 89–97, Feb. 1978.

[3] L. Gwennap, “Intel’s MMX speeds multimedia,”
Microprocessor Report, pp. 6-10, March 1996.

[4] A. Peleg, V. Weiser, “MMX Technology Extension to the
Intel Architecture,” IEEE Micro, pp. 42-50, Aug. 1996.

[5] L. Gwennap, “G4 is First PowerPC with AltiVec,”
Microprocessor Report, pp. 6-10, Nov. 1998.

[6] D. Talla, L. John, “Cost-effective Hardware Acceleration of
Multimedia Applications,” Proceedings of the International
Conference on Computer Design, pp. 427-439, 2001.

[7] K. Diefendorff, P. K. Dubey, R. Hochsprung, H. Scales,
“AltiVec Extension to PowerPC Accelerates Multimedia
Processing,” IEEE Micro, Vol 20, No 2, pp. 85-95, Mar/Apr
2000.

[8] R. Hintz, D. Tate, “Control Data STAR-100 processor
design,” In Proc. COMPCON, IEEE, 1972.

[9] R. M. Russell, “The Cray-1 Computer System,”
Communications of the ACM, pp. 63-72, Jan. 1978.

[10] M. C. August, G. M. Brost, C. C. Hsiung, A. J. Schiffleger,
“Cray X-MP: The Birth of a Supercomputer,” IEEE Computer,
pp. 45-52, Jan. 1989.

[11] M. Wilkes, “The Memory Gap and the Future of High-
Performance Memories,” ACM SIGARCH Computer
Architecture News, pp. 2-7, March 2001.

[12] C. E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson,
K. Asanovic, N. Cardwell, R. Fromm, J. Golbus, B. Gribstad, K.
Keeton, R. Thomas, N. Treuhaft, K. Yelick, “Scalable
processors in the billion-transistor era: IRAM,” IEEE Computer
, pp. 75–78, Sep. 1997.

[13] U. J. Kapasi, W. J. Dally, S. Rixner, J. D. Owens, B.
Khailany, “The Imagine Stream Processor,” Proceedings of the
International Conference on Computer Design, pp. 282-288,
2002.

[14] M. Stoodley, C. Lee, “Vector Microprocessors for Desktop
Computing,” Proceedings of the International Symposium on
Computer Architecture, 1998.

[15] S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe,
R. R. Taylor, “PipeRench: A Reconfigurable Architecture and
Compiler,” IEEE Computer , pp. 70–77, Apr. 2000.

[16] J. E. Smith, “The Best Way to Achieve Vector-Like
Performance?,” keynote presentation at International
Symposium on Computer Architecture, Apr. 1994.

[17] Motorola Semiconductor, AltivecTM Technology
Programming Environments Manual, Document
ALTIVECPEM/D, 1998.

[18] N, C. Paver, “Intel Wireless MMX Technology,”
presentation at Intel Developers Forum, Sep. 2002.

[19] D. Brash, “The ARM Architecture Version 6,” ARM White
Paper, Jan. 2002.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

