
IPStash: a Power-Efficient Memory Architecture for IP-lookup

Stefanos Kaxiras
Department of Electrical and Computer

Engineering, University of Patras, Greece
kaxiras@ee.upatras.gr

Georgios Keramidas
Department of Electrical and Computer

Engineering, University of Patras, Greece
keramidas@ee.upatras.gr

Proceedings
0-7695-2043
Abstract

High-speed routers often use commodity, fully-
associative, TCAMs (Ternary Content Addressable
Memories) to perform packet classification and routing
(IP-lookup). We propose a memory architecture called
IPStash to act as a TCAM replacement, offering at the
same time, better functionality, higher performance,
and significant power savings. The premise of our work
is that full associativity is not necessary for IP-lookup.
Rather, we show that the required associativity is simply
a function of the routing table size. We propose a mem-
ory architecture similar to set-associative caches but
enhanced with mechanisms to facilitate IP-lookup and
in particular longest prefix match. To perform longest
prefix match efficiently in a set-associative array we
restrict routing table prefixes to a small number of
lengths using a controlled prefix expansion technique.
Since this inflates the routing tables, we use skewed
associativity to increase the effective capacity of our
devices. Compared to previous proposals, IPStash does
not require any complicated routing table transforma-
tions but more importantly, it makes incremental
updates to the routing tables effortless. The proposed
architecture is also easily expandable. Our simulations
show that IPStash is both fast and power efficient com-
pared to TCAMs. Specifically, IPStash devices —built
in the same technology as TCAMs— can run at speeds
in excess of 600 MHz, offer more than twice the search
throughput (>200Msps), and consume up to 35% less
power (for the same throughput) than the best commer-
cially available TCAMs when tested with real routing
tables and IP traffic.

1. Introduction

A critical function in network routers is packet
classification—in other words, determining routing and
traffic policies for each incoming packet based on infor-
mation from the packet itself. A prime example is the
Internet Protocol’s basic routing function (IP-lookup)
which determines the next network hop for each incom-
ing packet. Its complexity stems from wildcards in the
routing tables, and from the Longest Prefix Match
(LPM) algorithm mandated by the Classless Inter-
Domain Routing (CIDR) [34].

Since the advent of CIDR in 1993, IP routes have
been identified by a <route prefix, prefix length> pair,
where the prefix length is between 1 and 32 bits. For
every incoming packet, a search must be performed in
the router’s forwarding table to determine the packet’s
next network hop. The search is decomposed into two
steps. First, we find the set of routes with prefixes that

match the beginning of the incoming packet’s IP desti-
nation address. Then, among this set of routes, we
select the one with the longest prefix. This identifies the
next network hop.

What makes IP-lookup an interesting problem is
that it must be performed increasingly fast on increas-
ingly large routing tables. Today’s leading (2.5, 5, and
10 Gbit/sec) network processors such as Intel’s IXP
2850 [17], EZChip’s NP-1 [12], Agere’s APP550 [30],
IBM’s PowerNP (NP4GS3) [15] and Vitesse’s IQ2200
[42] achieve the necessary lookup rate using a combina-
tion of high speed memories and specialized access
hardware. Another direction concentrates on partition-
ing routing tables in optimized data structures, often in
tries (a form of trees), so as to reduce as much as possi-
ble the average number of accesses needed to perform
LPM [39,31,6,8]. Each lookup however, requires sev-
eral dependent (serialized) memory accesses stressing
conventional memory architectures to the limit. Mem-
ory latency and not bandwidth is the limiting factor
with these approaches.

TCAMs—A fruitful approach to circumvent latency
restrictions is through parallelism: searching all the
routes simultaneously. Content Addressable Memories
perform exactly this fully-parallel search. To handle
route prefixes —routes ending with wildcards— Ter-
nary CAMs (TCAMs) are used. TCAMs have an addi-
tional “don’t care” bit for every tag bit. When the “don’t
care” bit is set the tag bit becomes a wildcard and
matches anything. The ternary capability of TCAMs
makes them an attractive solution for the IP-lookup
problem and thus have found acceptance in many com-
mercial products. Several companies (IDT [16], Net-
logic [29], Micron [28], Sibercore [38]) currently offer
a large array of TCAM products used in IP-lookup and
packet classification.

In a TCAM, IP-lookup is performed by storing
routing table entries in order of decreasing prefix
lengths. TCAMs automatically report the first entry
among all the entries that match the incoming packet
destination address (topmost match). The need to main-
tain a sorted table in a TCAM makes incremental
updates a difficult problem. If N is the total number of
prefixes to be stored in an M-entry TCAM, naive addi-
tion of a new update can result in O(N) moves. Signifi-
cant effort has been devoted in addressing this problem
[37,20], however all the proposed algorithms require an
external entity to manage and partition the routing
table.

In addition to the update problems, two other major
drawbacks hamper the wide deployment of TCAMs:
high cost/density ratio and high power consumption.
The fully-associative nature of the TCAM means that
 of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-X/03 $17.00 © 2003 IEEE

Proceedings
0-7695-2043
comparisons are performed on the whole memory array,
costing a lot of power: a typical 18 Mbit 512K-entry
TCAM can consume up to 15 Watts when all the entries
are searched [16,38]. TCAM power consumption is crit-
ical in router applications because it affects two impor-
tant router characteristics: linecard power and port
density. Linecards have fixed power budgets because of
cooling and power distribution constraints [13]. Thus,
one can fit only a few power-hungry TCAMs per line-
card. This in turn reduces port density —the number of
input/output ports that can fit in a fixed volume—
increasing the running costs for the routers.

Efforts to divide TCAMs into “blocks” and search
only the relevant blocks have reduced power consump-
tion considerably [43,16,29]. This direction to power
management actually validates our approach.
“Blocked” TCAMs are in some ways analogous to set-
associative memories but in this paper we argue for
pure set-associative memory structures for IP-lookup:
many more “blocks” with less associativity and separa-
tion of the comparators from the storage array. In
TCAMs, blocking further complicates routing table
management requiring not only correct sorting but also
correct partitioning of the routing tables. Routing table
updates also become more complicated. In addition,
external logic to select blocks to be searched is neces-
sary. All these factors further increase the distance
between our proposal and TCAMs in terms of ease-of-
use while still failing to reduce power consumption
below that of a straightforward set-associative array.

More seriously, blocked TCAMs can only reduce
average power consumption. Since the main constrain
in our context is the fixed power budget of a linecard a
reduction of average power consumption is of limited
value —maximum power consumption still matters. As
we show in this paper, the maximum power consump-
tion of IPStash is less than the power consumption of a
comparable blocked TCAM with full power manage-
ment.

IPStash—To address TCAM problems we propose a
new memory architecture for IP-lookup we call
IPStash. It is based on the simple hypothesis that IP-
lookup only needs associativity depending on routing
table size; not full associativity. As we show in this
paper this hypothesis is indeed supported by the
observed structure of typical routing tables. IPStash is a
set-associative memory device that directly replaces a
TCAM and offers at the same time:
• Better functionality: It behaves as a TCAM, i.e.,

stores the routing table and responds with the long-
est prefix match to a single external access. In con-
trast to TCAMs there is no need for complex sorting
and/or partitioning of the routing table; instead, a
simple route-prefix expansion is performed but this
can happen automatically and transparently.

• Fast routing table updates: since the routing table
needs no special handling, updates are also straight-
forward to perform. Updates are simply writes/
deletes to/from IPStash.

• Low power: Accessing a set-associative memory is
far more power-efficient than accessing a CAM. The
difference is accessing a very small subset of the
memory and performing the relevant comparisons,

instead of accessing and comparing the whole mem-
ory at once.

• Higher density scaling: One bit in a TCAM requires
10-12 transistors while SRAM memory cells require
4-6 transistors. Even when TCAMs are imple-
mented using DRAM technology they can be less
dense than SRAMs.

• Easy expandability: Expanding the IPStash is as
easy as adding more devices in parallel without the
need for any complicated arbitration. The net effect
is an increase of the associativity of the whole array.

• Error Correction Codes: The requirement for ECC is
fast becoming a necessity in Internet equipment.
Intergrating ECC in IPStash (SRAM) is as straight-
forward as in set-associative caches but as of yet it is
unclear how ECC can be efficiently implemented in
TCAMs. In the latter case, all memory must be
checked for errors on every access since it is impos-
sible to tell a no-match from a one-bit error.

Contributions of this paper—The contributions of this
paper are as follows:
1. We propose a set-associative memory architecture

for IP-lookup and we show how we can solve the
problem of Longest Prefix Match in IPStash. Since
we do not support “don’t care” bits, we allow only a
limited number of different prefix lengths. This
inflates the routing tables but still requires about the
same number of bits as TCAM.

2. Because of the increased size of the routing tables in
the IPStash, we show how skewed associativity can
be applied with great success to increase effective
capacity.

3. We use real data to validate our assumptions with
simulations. We use the Cacti tool to estimate power
consumption and we show that IPStash consumes up
to 35% less power than the best commercial avail-
able blocked TCAMs. It is also possible to optimize
the power consumption of IPStash (for example by
selectively powering-down ways that contain irrele-
vant entries) but we have not expanded into such
techniques in this paper.

Structure of this paper—Section 2 presents the IPStash
architecture and our implementation of the LPM algo-
rithm. In Section 3 we analyze a technique (skewed
associativity) to increase the effective capacity of our
device while in Section 4 we show that IP-lookup needs
associativity depending on the routing table size. In
Section 5 we discuss some special cases and the
expandability of our proposal. Section 6 provides simu-
lation results for power consumption. Finally, Section 7
presents related work and Section 8 offers our conclu-
sions.

2. IPStash architecture

The main idea of the IPStash is to use a set-associa-
tive memory structure to store routing tables. IPStash
functions and looks like a set-associative cache. How-
ever, in contrast to a cache which holds a small part of
the data set, IPStash is intended to hold a routing table
in its entirety. In other words, it is the main storage for
the routing table—not a cache for it.
 of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-X/03 $17.00 © 2003 IEEE

Proceedings
0-7695-2043
2.1. Longest Prefix Match in IPStash

The concept for Longest Prefix Match in IPStash is
to iteratively search the set-associative array for pro-
gressively shorter route prefixes until a match is found.
Let us consider for the moment only a limited set of pre-
fix lengths, for example 24-bit, 20-bit, and 16-bit pre-
fixes but no other length. For a routing table consisting
solely of such prefixes and for a 32-way, 4096-set (12-
bit index) IPStash, the operation (shown in Figure 1) is
as follows: we insert the longest, 24-bit prefixes using
their rightmost (LSB) 12 bits as index and their leftmost
(MSB) 12 bits as tag. We also store the prefix length
with the tag. Similarly, we insert the 20-bit prefixes
using their rightmost 12 bits as index and leftmost 8 bits
as tag, and the 16-bit prefixes using their rightmost 12
bits as index and leftmost 4 bits as tag.

If we fit all of these route prefixes in IPStash with-
out any conflicts —an important goal in this work— we
search for the longest prefix match to an IP address in
three steps, as shown in Figure 1:
1. Step 1: We first try to match a 24-bit prefix. To

index for a 24-bit prefix we must use the same index
bits used to insert 24-bit prefixes in IPStash. Thus,
bits 12:23 of the IP address form the index. We read
the indexed set and this gives us 32 possible results.
Among these results we exclusively look for a 24-
bit prefix —the length of the prefix is kept with the
tag— whose tag matches bits 0:11 of the address. If
we find such a match then we have found the long-
est prefix match.

2. Step 2: Otherwise, we use bits 8:19 of the IP address
as index, now hoping to find a 20-bit prefix to
match. Again, we access the appropriate set and we
search the 32 possible results but now for a length-
20 match and for an 8-bit tag match.

3. Step 3: Similarly, for the last case we try to match a
16-bit prefix using bits 4:15 of the IP address as
index and checking for a 4-bit tag.
Because a hit in IPStash requires two conditions to

be true (tag match and length match) the final stage of
the set-associative structure is more complex than that
of a vanilla set-associative cache. We account for this in
later sections.

2.2. Fitting a real routing table in IPStash

One can imagine that we can extend this to more
than three prefix lengths to include all possible lengths
but this would be impractical. First, it would make some
searches unacceptably slow if we had to try several dif-
ferent lengths until we found a match. Second, it would
introduce great variability in the hit latency which is
clearly undesirable in a router/network processor envi-
ronment. Our solution is to expand prefixes of different
lengths to a small set of fixed lengths. The choice of
which prefixes to expand and how much depends
largely on the prefix length distributions of the routing
tables.

Many researchers have observed a distinct com-
monality in the distribution of prefix lengths in routing
tables [39,31,6,3] that stems from the allocation of IP
addresses in the Internet as a result of CIDR. This distri-

bution is not expected to change significantly with time
[14]. Figure 2 shows the distribution of prefix lengths
for three tables taken from [4] (log-scale view on top for
clarity and normal view below). We can easily draw
some general conclusions —also noted by other
researchers— from the graphs in Figure 2: 24-bit pre-
fixes comprise about 60% of the tables; prefixes longer
than 24 bits are very few (about 1%); there are no pre-
fixes less than 8 bits; the bulk of the prefixes have
lengths between 16 and 24 bits.

These observations lead to a natural categorization
of the routing table into three major classes and two
shadow classes:
• Class 1 contains all the prefixes from 21 to 24 bits.

21-bit, 22-bit, and 23-bit prefixes are all expanded
to 24 bits. The 21-bit prefixes are expanded 8-fold,
the 22-bit ones 4-fold, and the 23-bit 2-fold. In addi-
tion, in this class we add a “shadow class,” Class 0
—explained below— for the prefixes with more
than 24 significant bits.

• Class 2 contains all the prefixes from 17 to 20 bits.
17-bit, 18-bit, and 19-bit routes are all expanded to
20 bits similarly to above.

• Class 3 contains all the prefixes from 8 to 16 bits. In
this class we can afford to expand the 8-bit prefixes
256-fold (9-bit 128-fold, 10-bit 64-fold, and so on)
because there are so few of them.

• Shadow Class 4 contains all the prefixes from 1 to 7
bits and it is empty. No prefixes shorter than 8 bits
appear in BGP tables although CIDR does not pre-
clude such possibility. Because it is unlikely to
encounter such prefixes all relevant work ignores
them. However, IPStash could handle Class 4 pre-
fixes expanded to 7 bits (up to 128 entries in total).

• Shadow Class 0 contains all prefixes longer than 25
bits. The reason this is a special shadow class is
because we fold it on top of Class 1. We use exactly
the same index as in Class 1 but the tag is expanded

Figure 1. IPStash operation for three prefix
lengths

Incoming packet’s

Index
...

Tag 12 Length Data

12* 8 4
Step 1 Step 2 Step 3

match

24 Step 1

16 Step 3

IPStash

match

HIT

AND

0

12

1212*

12

23

8

4

0 19

0 15

Routing table consisting of three
types of prefixes: 24-, 20- and

Shaded part is the index,
whilst the unshaded part is the tag

12

1212*

128

4

0 31

Step 2

Step 3

Step 1

IP Address

16-bit long.

in IPStash

20 Step 2

(32-way)
(4096 sets,12-bit index)

(*) 20 bits for the class 0
 of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-X/03 $17.00 © 2003 IEEE

Proceedings
0-7695-2043
to 20 bits. The tag contains the 12 tag bits of Class 1 mately equal actual storage in bits (including hidden

Figure 2. Distribution of prefix lengths for 3 routing tables

0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2

P r e f ix le n g th

RT 1 (5 2 3 2 8 p r e f ix e s)

RT 2 (1 0 3 5 5 5 p r e f ix e s)

RT 3 (1 0 8 2 6 7 p r e f ix e s)

Class 3

Class 2

Class 1

(Empty) Class 4

Shadow Class 0

1

Prefix Length

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Log-Scale View of the Data

Prefix Length

TAG

INDEX
plus any additional prefix bits beyond 24. Class 0
entries are matched with a Class 1 access but the
expanded tag disambiguates among them. The part
of the tag that is matched depends on the unex-
panded length stored along with the tag. For this
class only, no prefix expansion is required because
its index always precedes the wildcard bits. Class 0
is exceedingly small compared to the very large
Class 1, thus folding Class 0 entries on top of Class
1 entries has negligible effects.
Prefix expansion necessitates a more complex

length match to determine a hit: within a class, IPStash
must select the longest unexpanded-length entry (the
unexpanded prefix length is stored with the tag).

Prefix expansion can happen externally or inter-
nally in IPStash. External prefix expansion requires the
cooperation of an entity using the IPStash (e.g., a net-
work processor) so that only prefixes of the correct
lengths are stored. Internal expansion is straightforward
requiring only a small FSM and counters to fill the
wildcard bits, but it makes prefix insertion in IPStash a
variable-time operation as seen from the outside. Either
solution is acceptable, but for simplicity we only con-
sider the former in this paper.

The effect of expanding routes in three classes is to
inflate the routing tables. The effects of this inflation are
shown in Table 1 for the three routing tables RT1, RT2
and RT3 of [4]. The routing tables almost double in size
with the route expansion. In general, this means that
IPStash capacity should be about twice the size of rout-
ing table we intent to store. This, however, is not exces-
sive overhead compared to TCAMs. The true capacity
of a TCAM is twice its nominal capacity because of the
“don’t care” bits —for every storage bit there is a corre-
sponding “don’t care” bit, plus additional comparator
hardware. In this work, we compare devices of approxi-

bits). Thus, we compare a 128K-entry IPStash to a 64K-
entry (nominal capacity) TCAM. Moreover, IPStash is
composed of SRAM arrays which are about a factor of
2 denser than current TCAM technology.

Since we would use a 64K-entry TCAM for RT1
and 128K-entry TCAMs for RT2 and RT3 we use
128K-entry and 256K-entry IPStash devices respec-
tively. IPStash stores the three routing tables with con-
siderable but not complete success. Table 2 shows the
IPStash configurations used for each of the routing
tables and the resulting conflicts in the set-associative
arrays. Conflicts correspond to a very small portion of
the routing table.

Conflicts cannot be accommodated in IPStash since
it is not a cache but the main storage for the routing
table. In Section 3 we concentrate our efforts on
increasing the effective capacity of IPStash devices.

2.3. Sensitivity Analysis for Classes

The choice of classes is a trade-off between mem-

INITIAL

ROUTES

EXPANDED

ROUTES INCREASE DATE

RT1 52328 102550 1.96 Nov 12, 1999
RT2 103555 194541 1.88 Oct. 1, 2001
RT3 108267 202094 1.87 Oct 1, 2001

Table 1: The effect of the route expansion

EXPANDED

ROUTES

IPSTASH

CONFIGURATION

UNRESOLVED

CONFLICTS

RT1 102550 128K ENTRIES, 32 ASSOC. 1685 (~3.2%)
RT2 194541 256K ENTRIES, 64 ASSOC. 566 (~0.55%)
RT3 202094 256K ENTRIES, 64 ASSOC. 979 (~0.9%)

Table 2: Resulting conflicts for the three tables
 of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-X/03 $17.00 © 2003 IEEE

Proceedings
0-7695-2043
ory requirements of the expanded routing table and the
maximum number of accesses required for our iterative
LPM. Few classes means few accesses per lookup but
high memory requirements, and vice-versa. These are
opposing trends with respect to both power consump-
tion and lookup latency.

To understand the effect of Class choice on mem-
ory requirements we examined dividing the 8- to 24-bit
prefixes into two, three and four main classes (exclud-
ing the two shadow Classes 0 and 4 which always
remain the same). With only two main classes, almost
any choice of class boundaries leads to exorbitant mem-
ory requirements. With four classes we raise the maxi-
mum number of accesses per lookup to 4. Figure 2
shows the effects of class boundaries for two and three
classes. The horizontal axis shows the class widths
while the vertical axis shows the memory requirements
normalized to the original routing table. A casual study
of the distribution of prefix lengths in Section 2.2 led us
to one of the best configurations —with minimal mem-
ory requirements— for three classes (pointed out on the
graph).

Because the effect of class boundaries depends on
the actual prefix length distribution, we envision
IPStash as a configurable device where the classes are
set during power-up. For the sake of simplicity in the
rest of this paper we restrict our examples to the afore-
mentioned classes of Section 2.2.

3. Increasing effective capacity

3.1. Skewed associativity

Barring a change in IPStash geometry (associativ-
ity vs. number of sets), a change in the total capacity of
an IPStash device, or additional hardware structures,
our main proposal to increase effective capacity is
based on Seznec’s idea of a skewed associativity [36].
Skewed associativity can be applied in IPStash with
great success.

The basic idea of skewed associativity is to use dif-
ferent indexing functions for each of the set-associative
ways (32 or 64 in our case). Thus, items that in a stan-
dard cache would compete for a place in the same set
because of identical indexing across the ways, in a
skewed-associative cache map on different sets. This
has the property of reducing the overall number of con-
flicts.

One way to think about skewed associativity is to

view it as an increase of the entropy of the system by
the introduction of additional randomness in the distri-
bution of the items in the cache. The left upper graph of
Figure 4 shows how RT3 is loaded into an “unlimited-
associativity” IPStash —without restriction to the num-
ber of ways. The horizontal dimension represents the
sets (4096) and the vertical dimension the set-associa-
tive ways. As it is depicted in the graph, RT3 needs any-
where from 23 to 89 ways. If RT3 was forced into a 64-
way IPStash anything beyond 64 in the graph would be
a conflict. Despite the random look of the graph, the
jagged edges do in fact represent order (structure) in the
system. It is the order introduced by the hashing func-
tion. The effect of skewing (shown in the right graph of
Figure 4) is to smooth-out the jagged edges of the origi-
nal graph —in some sense to increase the entropy (dis-
order) of the system.

We produced the skewed-associative graph in Fig-
ure 4 using a simple skewing technique. The key issue
in IPStash is that we do not have so much freedom to
create 32 (or 64) distinct skewing functions because we
have only few significant bits to exploit. Our compro-
mising solution is to create only 8 (4 for Class-3) differ-
ent skewed indices instead of 32 or 64 as the hardware
associativity would call for. Each index is used on a
bank of 4 ways in the 32-way IPStash —8 in the 64-way
IPStash. Although this technique might not give us opti-
mal results it has the desirable characteristic of curbing
the increase in power consumption because of the mul-
tiple distinct decoders. Skewed indices are created as
shown in Figure 5:
• For Class 1,0, and 2: The rightmost 8 bits of the

original index are XORed with the 8 rightmost bits
of the tag, right-rotated once for each different
skewed index (for a total of 8 times). The leftmost 4
bits of the original index form the beginning of the
skewed index.

• For Class 3: Because the tag in this case is only 4-
bits wide we XOR it with the rightmost 4 bits of the
original index, right-rotating it once for each skewed
index. The leftmost 8 bits now form the left part
(beginning) of the skewed index. Here, the 8 rota-
tions only result in 4 distinct results, each used in
two different banks.

Figure 3. Sensitivity analysis for 3 classes

0

5

10

15

20

25

30

0 0 0 0 0 0 0 0 0 0 0 5 6 7 8 9 10111213 5 6 7 8 9 101112 5 6 7 8 9 1011 5 6 7 8 9 10 5 6 7 8 9 5 6 7 8 5 6 7 5 6 4

5 6 7 8 9 10111213141510 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2 8 7 6 5 4 3 2 7 6 5 4 3 2 6 5 4 3 2 5 4 3 2 4 3 2 3 2 3

121110 9 8 7 6 5 4 3 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 7 7 7 7 8 8 8 9 9 10

Ex
pa

nd
ed

en
tr

ie
s/

in
iti

al
en

tr
ie

s Exhaustive search for 2 and 3 classes:
56 combinations

Chosen Class widths (9,4,4) minimize
number of expansions

Class 3

Class 2

Class 1

Figure 4. Original IPStash and skewed IPStash
comparison (for RT3)

0

10

20

30

40

50

60

70

80

90 IPStash

0

10

20

30

40

50

60

70

80

90 Skewed-IPStash

20

30

40

50

60

70

80

90

20

30

40

50

60

70

80

90

zoom-in zoom-in

A
ss

o
ci

a
tiv

ity

A
ss

o
ci

a
tiv

ity

A
ss

o
ci

a
tiv

ity

A
ss

o
ci

a
ti
vi

ty

Sets

Sets

0 4095 0 4095
Sets

Sets
2770 3324 2770 3324
 of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-X/03 $17.00 © 2003 IEEE

Proceedings
0-7695-2043
Variations of this skewing also worked very well or
better and other techniques might prove even more suc-
cessful. For the purposes of this work the skewing in
Figure 5 is sufficient to illustrate our case. Skewing
incurs a small hardware cost since the mapping func-
tions are chosen for their simplicity.

Table 3 quantifies the effects of applying skewed
associativity to IPStash devices. Without skewed-asso-
ciativity Table 3 shows that a 32-way IPStash would
have 1658 conflicts for RT1 (similarly for RT2 and
RT3). This is because as RT1 is loaded into the IPStash
each set is filled differently. Some sets receive only 9
entries which is the Min associativity required by RT1
while some sets receive 49 distinct entries which is the
Max associativity. The average number of entries is the
Average associativity. While —not surprisingly— the
average associativity of the skewed-associative and the
standard IPStash is the same for all cases, the Standard
Deviation (σ) from the mean is what distinguishes them
and makes all the difference for conflicts. This is a con-
firmation of the graphical results shown in Figure 4. In
our examples the Max associativity for the skewed-
associative cases does not exceed the predefined asso-
ciativity (32 or 64) of the IPStash devices in any case.

3.2. Memory bounds

As we have shown, skewed associativity success-
fully reduces conflicts to zero. Results presented in this
section also give us a rudimentary tool to estimate the
capacity of IPStash devices with respect to routing
tables.

Using standard deviation we can compute the
required associativity for a Confidence Interval (CI),
i.e., the probability that the routing table fits in IPStash.
Table 4 shows the results for a CI up to a 0.9999. This
method is a convenient tool to check IPStash require-
ments of individual routing tables.

4. Associativity and routing table size

The initial premise of our work was that IP-lookup
only needs associativity depending on the routing table
size; not full associativity. Given a skewed-associative

IPStash using a 12-bit index (4096 sets), Figure 6 shows
the relationship of the required associativity to the orig-
inal unexpanded size for our three routing tables (RT1,
RT2 and RT3) and the MAE-West routing tables (MW1,
MW2 and MW3) used in the traffic simulations of Sec-
tion 6.2. This relationship is remarkably linear and it
holds for non-skewed associative architectures and for
other indices as well, albeit at different slopes. There
are two important observations here:
• The slope of the curve is 0.0005, while the optimal

slope is one over the number of sets (1/4096 =
0.00024) if one considers that the expanded tables
are about twice the original size then the slope
becomes 2/4096 = 0.00048. This means that our
design is nearly optimal with respect to the
expanded routing tables. In contrast, the slope for
the fully-associative case is 1.

• The slope of the curve is constant which implies that
our design scales well.

Figure 5. Skewed indices

0 313 11 19

4 WAYS 4 WAYS4 WAYS

Rotate 1
XOR

12

Skewed index 1

Rotate 2
XOR

12

Skewed index 2

Rotate 8
XOR

Skewed index 8

0 317 1519

Class 1,0

subarray1 subarray2 subarray8

... 12

32-way Skewed-Associativity
IPStash with 8 index functions

4 48 8
23

48 8

0 313 15
84 4

7
Class 3

Class 2

RT1
ON 32-WAY

RT2
ON 64-WAY

RT3
ON 64-WAY

INITIAL ROUTES 52328 103555 108267
EXPANDED

ROUTES

102550 194541 202094

STD SKW STD SKW STD SKW

TOTAL

CONFLICTS

1685 0 566 0 979 0

MIN

ASSOCIATIVITY

9 21 22 40 23 42

MAX

ASSOCIATIVITY

49 30 86 54 89 56

AVERAGE

ASSOCIATIVITY

25 25 47.5 47.5 49.3 49.3

STANDARD

DEVIATION (σ)
11.52 1.65 15.64 2.64 16.18 2.69

Table 3: Skewed IPStash Detailed Comparison

STD

DEVIATION

RANGE

(AROUND

MEAN)

CONFIDENCE

INTERVAL

(PROBABILITY OF

FALLING INSIDE

RANGE)

REQUIRED ASSOCIATIVITY

RT1 RT2 RT3
STD SKD STD SKD STD SKD

σ(±0.5σ) 0.6836 31 26 56 49 58 51
2σ (±σ) 0.9543 37 27 64 51 66 53

3σ (±1.5σ) 0.9973 43 28 71 52 74 54
4σ (±2σ) 0.9999 49 29 79 53 82 55

Table 4: Probabilistic associativity requirements

Figure 6. Associativity and Routing table size

0

20

40

60

80

100

120

140

0 50000 100000 150000 200000 250000

Routing table size

A
ss

o
ci

at
iv

it
y

RT2

RT3

MW3

RT1

MW1

MW2
 of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-X/03 $17.00 © 2003 IEEE

Proceedings
0-7695-2043
5. Other features of the architecture

5.1. Incremental Updates

The requirement for a fast update rate is essential
for a router design. This is true because the routing
tables are hardly static [21,14]. Many changes in the
routing tables occur due to changes in network topol-
ogy. In addition, reboots of neighboring routers or BGP
misconfigurations [26] do appear to occur every few
days in real-life traces. A real life worst-case scenario
that routers are called to handle is the tremendous burst
of BGP update packets that results from multiple
downed links or routers. In such unstable conditions the
next generation of forwarding engines requires bounded
processing overhead for updates in the face of several
thousand route updates per second.

Routing table update has been a serious problem in
TCAM-based proposals. The problem is that the more
one optimizes the routing table for a TCAM the more
difficult it is to modify it. Many times updating a rout-
ing table in a TCAM means inserting/deleting the route
externally, re-processing the routing table, and re-load-
ing it on the TCAM. In other proposals, there is provi-
sion for empty space distributed in the TCAM to
accommodate a number of new routes before re-pro-
cessing and re-loading the entire table is required [37].
This extra space, however, leads to fragmentation and
reduces capacity. The updating problem becomes more
difficult in “blocked” TCAMs where additional parti-
tioning decisions have to be taken.

In contrast, route additions in IPStash are straight-
forward: a new route is expanded to the prefixes of the
appropriate length which are then inserted into the
IPStash as any other prefix during the initial loading of
the routing table.

Deletions are also straightforward: the deleted
route is expanded into prefixes of the appropriate class
length. The expanded prefixes are then presented to the
IPStash to invalidate the matching entries having the
same unexpanded length as the deleted route.

5.2. Expanding the IPstash

As a result of CIDR, the trend for routing table
sizes is a rapid increase over the last few years [13,14].
It is hard to predict routing table sizes 5 —or, worse,
10— years hence. Thus, scaling is a required feature of
the systems handling the Internet infrastructure,
because they should be able to face new and partly
unknown traffic demands.

IPStash can be easily expanded. There is no need
for additional hardware and very little arbitration logic
is required, in contrast to TCAMs which need at least a
new priority encoder and additional connections to be
added to an existing design. We consider this as one of
the main advantages of our proposal. Adding in parallel
more IPStash devices increases associativity. Figure 7
shows the proposed scheme which actually resembles a
cache-coherent bus. All IPStash devices are on the same
(logical) buses. They accept requests (incoming IP
addresses plus a command) from the request bus and
reply with the output port information when they have a

hit on the result bus. In case of multiple hits in different
devices a 32-bit arbitration bus is used. All three logical
busses can be multiplexed on a single physical 40-bit
bus (32-bits for arbitration, IP addresses, or prefixes,
plus 5 bits prefix length, plus 3 bits command).

Arbitration works as follows: If a device has a hit
before any other device it is clearly the winner because
it found the longest prefix (further search is inhibited in
the rest of the devices). When multiple devices simulta-
neously have a hit, they output the original unexpanded
length of their hit on the arbitration bus by asserting the
wire that corresponds to their length. Every device sees
each other’s length and a self-proclaimed winner out-
puts its result on the bus in the next cycle. All other
devices whose length is not the largest on the arbitration
bus keep quiet. This synchronous scheme works if all
the classes are searched in lockstep so that equal access
times are guaranteed. Otherwise a disparity in access
times necessitates additional logic to equalize time dif-
ferences.

Loading routes on an array of IPStash devices is
equally easy. Upon arrival of a new update the prefix is
presented to all IPStash devices in parallel. The devices
respond with a hit or miss signal on the arbitration bus
depending on whether they can accommodate the new
prefix without a conflict. The device with the highest
statically-assigned priority gets to store the prefix. If all
the devices experience a conflict, the IPStash array is
considered to be “full.”

5.3. Route Pruning

Liu has shown that given a routing table, there will
be some structure we can exploit to reduce its size [23].
He used two techniques to achieve this: i) mask exten-
sion, and ii) pruning which is relevant in our case. An
example pruning is shown in Figure 8 where the routing
table is organized as a tree structure. The parent of pre-
fix P2 is the longest prefix that matches the first few bits
of P2 so P2 is redundant because either P1 or P2 yield
the same port number and when P2 is matched, P1 is
also matched. Thus, P2 can be removed without affect-
ing the routing functionality. Liu reports that routing
tables can be pruned up to 26.6%.

Figure 7. Multiple IPStash devices

Figure 8. An example of Liu’s Pruning

IPStash
Devices

Results bus
(6 bits)

IP address bus (32 bits address + length + command)

Length/Device
bus arbitration

(32 bits)

.....

P1 = (01*, port 2)

P2 = (011*, port 2)

P3 = (0110*, port 3)
 of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-X/03 $17.00 © 2003 IEEE

Proceedings
0-7695-2043
Techniques similar to pruning can be applied in
IPStash since route expansion itself creates many
redundant prefixes. In our case, Liu’s algorithm can be
applied off-line by an external agent since it requires
access to the entire routing table. Liu’s pruning also
affects deletions which should be handled as in [23].

Liu’s pruning is not required for the successful
operation of IPStash but it is merely a size optimization.
Since it is a detriment to the simplicity of IPStash it
should be avoided for all but the most cost-sensitive
applications where the last bit of effective capacity mat-
ters. In contrast to Liu’s off-line pruning, we apply
internal pruning on-line as the routing table is inserted
in the IPStash. Internal pruning occurs only among
routes conflicting in the IPStash and not on the entire
table.

Internal on-line Pruning Algorithm—This type of
pruning is intended to reduce the number of conflicts by
allowing long prefixes to replace short prefixes when
both are expanded to identical lengths.

For example, assume that the prefixes appearing in
Figure 8 belong to the same class whose boundaries are
bits 2 to 4. Some of the resulting expanded prefixes (of
nodes P1 and P2) have exactly the same tag and index
even though they come from prefixes of different
lengths. In this case, we keep only the expanded prefix
that preserves the correctness of the routing table: the
one generated by the longest prefix.

We note here two key differences to Liu’s pruning:
i) we do not discard longer routes in favor of smaller
ones, and ii) the port number is irrelevant for deciding
which expanded route to discard.

Deletions in an internally-pruned table—When inter-
nal pruning is performed, we cannot simply delete
entries from the routing table because we might leave
holes in the coverage of other shorter prefixes. Deletion
in this case becomes a two-step process to patch the
holes. The first step is to find out which is the longest
prefix in the in the same class that matches the deleted
route. This requires a search for progressively shorter
prefixes in the same class that match the deleted prefix.
The second is to modify —instead of delete— the
expanded prefixes of the deleted route to become
expanded prefixes of its longest match.

In the face of this tedious operation, internal prun-
ing is not appropriate for high-performance applica-
tions. The trade-off here is between capacity and update
speed: for a small decrease in effective capacity the
update speed can be maintained at very high levels. In
contrast, in cost-sensitive applications (presumably
low-end), one can optimize for capacity and pay a small
penalty in update speed.

Pruning results—The effects of the pruning algorithms
(both Liu’s and internal) are shown in Table 5 where we
can see that there is a 10-15% reduction of the expanded
routes. This size reduction of the expanded routing table
corresponds to a reduction in the required maximum
(skewed) associativity analogous to that of Section 4.

5.4. Reducing uncertainty of effective capacity

Even with pruning, we cannot guarantee that
IPStash will accommodate a routing table close to its
capacity (when the mean associativity required by the
table is much closer than 3σ from the hardware associa-
tivity). Many interesting solutions exist to increase the
likelihood that a table will fit. We list here three catego-
ries for solutions without expanding further in this
paper:
• Increasing the apparent associativity: Techniques

such as Hash-rehash [1], Column-associativity [2]
and others have been proposed to make direct-
mapped caches appear set-associative. Similar tech-
niques can also be applied in IPStash to resolve con-
flicts. IPStash already may require multiple accesses
to retrieve an item but such techniques would add
further to the latency and power consumption for the
few cases that need it.

• Victim caches [19]. This is a classical solution to
accommodate conflict-evicted items in direct-
mapped caches. In our case an analogous “victim
cache” is included and sized to capture the small
part of the routing table that is unlikely to fit (as
implied by Table 4). In our case, the victim cache is
a small TCAM for longest-prefix match. A small
TCAM does not consume significant power, but it is
searched in parallel with the main IPStash on every
access.

• Finally, one can add a second IPStash device in par-
allel to the first, increasing total associativity. We do
not recommend this for a few conflicts since the
incremental step in capacity is quite large; rather we
use multiple IPStash devices to store significantly
larger routing tables as described in Section 5.2.

6. Power Consumption Results

6.1. Cacti

We used the Cacti tool [41] to estimate perfor-
mance and power consumption of IPStash. Cacti takes
as input the characteristics of the cache and iterates over
multiple configurations until it finds a configuration
optimized for speed, power, and area. Cacti divides the
memory array of the cache into several subarrays trying
to make them as close to a square as possible to balance
the latency of wordlines and bitlines. As such, Cacti
puts emphasis on latency considering power as a sec-
ondary objective. Thus, results in this section might not
be optimal in terms of power consumption and better
subarray configurations may exist.

For a level comparison we examined IPStash in the
same technology as most of the newest TCAMs. We

EXPANDED

ROUTES

PRUNED ROUTES MAX

ASSOC.
(% DIFF)

INTERNAL

PRUNED (%)
LIU’S
(%)

COMBINED

(%)
RT1 102550 3153 (3) 7545 (7) 10037 (10) 27 (-10)
RT2 194541 7957 (4) 21513 (11) 28539 (15) 47 (-13)
RT3 202094 8352 (4) 18992 (9) 26168 (13) 49 (-13)

Table 5: Pruned Tables
 of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-X/03 $17.00 © 2003 IEEE

Proceedings
0-7695-2043
used technology integration of 0.15µ and we consider 6
bits of output port information as the data payload. With
a 12-bit index, the tag is 20 bits (as required by Class 0
tags) plus 5 bits for the original unexpanded length.
Finally, power results are normalized for the same
throughput —e.g., 100 million searches per second
(Msps), a common performance target for many compa-
nies— instead of the same frequency. Thus, the opera-
tional frequency of the IPStash may not be the same as
that of other TCAMs.

Two modifications are needed in order to correctly
simulate IPStash. The first is the extra logic (additional
decoders and comparators) required for the unexpanded
length arbitration which add both latency and power.

Using Cacti’s estimates we computed the extra
latency added by the length comparators to be less than
0.3ns —without affecting cycle time in pipelined
designs— and the power to be less than 0.05W at the
highest operating frequency. The second is support for
skewed associativity. Skewed index construction (rota-
tions and XORs) introduce negligible latency and
power consumption to the design. However, a skewed-
associative IPStash requires 8 separate decoders for the
wordlines —something Cacti did not do on its own. We
computed latency and power overhead of 8 separate
decoders when dividing wordlines into 8 segments. We
concluded that the skewed-associative IPStash is
slightly faster than a standard IPStash while consuming
about the same power. The reason is that the 8 decoders
required in the skewed-associative case are faster than
the monolithic decoder employed in the standard case
(which also defines cycle time). At the same time,
although each of the small decoders consumes less
power than the monolithic decoder, 8 of them together
consume slightly more power in total.

Table 6 shows the results for 4 IPStash configura-
tions ranging in capacity from 128K to 1M entries. In
IPStash we increase associativity in order to increase
size. This is because larger routing tables require higher
associativity and for the range of sizes we examined
(from 50K to 200K entries) the relation of size and
associativity is linear (Section 4). We have extended
Cacti to handle more than 32-ways, but as of yet we
have not validated these extensions. Thus, we use
Cacti’s ability to simulate multi-banked caches to
increase size and associativity at the same time. In
Cacti, multiple banks are accessed in parallel and are
intended mainly as an alternative to multiple ports. We
use them to approximate higher associativity but we do
not account for possible additional routing overheads.
Results from our modified Cacti that supports high
associativity are better than the ones obtained by the
multi-banked approximation.

Cacti shows that IPStash devices in the range of
128K to 1M entries can run up to 750MHz (about
600MHz for the 1M-entry) and easily exceed 100Msps
which is the current top-of-the-line performance for
TCAMs. All the devices have comparable access times
of 3–5ns, and pipelined cycle times of 1.4–1.7ns. We
assume that IPStash has a 3-cycle pipeline (1.5ns cycle
for the 128K, 256K, and 512K entries, 2ns cycle for the
1M entries). The maximum search latency would be
that of three pipelined accesses (a Class 3 match) which

corresponds to 5 cycles: three cycles for the first access
plus one for each additional access. This gives us a
range of 7.5–10ns for the maximum search latency and
a range of ~200Msps to 250Msps for the search
throughput.

Power consumption for 100Msps–level perfor-
mance starts at 0.65W for the 128K-entry device and
increases almost linearly with size (1.27W, 2.71W and
6.51W for the 256K, 512K and 1M-entry devices
respectively). The results are analogous for the
200Msps level performance.

6.2. Traffic

As we have mentioned, the concept for longest pre-
fix match in IPStash is to iteratively search the set-asso-
ciative array for progressively shorter prefixes until a
match is found. The number of classes and their bound-
aries determine not only the size of IPStash but also its
performance. Size requirements are dictated by the pre-
fix distribution of the routing tables. Performance, in
turn, is determined by the percentage of hits per prefix
length. As more incoming addresses hit on Class 1 (the
first class searched), fewer memory accesses are
required, the average search latency is reduced, and less
power is consumed.

To evaluate the performance of IPStash on real
searches, we obtained three traffic traces collected by
the NLANR MOAT team [33]. These traces record the
traffic from NASA Ames to the MAE-West router and
were collected over OC12c links. Because these traces
do not contain a specific routing table snapshot, we
used MAE-West routing tables (MW1, MW2 and
MW3) captured by the RIPE network coordination cen-
ter [35]. We selected the routing table snapshot dates to

IPSTASH

32-WAY

X 1
32-WAY

X 2
32-WAY

X 4
32-WAY

X 8
ENTRIES 128K 256K 512K 1M

ACCESS TIME (NS) 3.34 3.27 3.56 5.1
CYCLE TIME (NS) 1.38 1.34 1.33 1.69

MAX SEARCH LAT. (NS)
(3 PIP. ACCESSES = 5C)

5.52 5.36 5.32 6.76

MAX SEARCH

THROUGHPUT PIP.(MSPS)
241 249 251 197

MAX FREQ. (MHZ) 725 746 752 592
POWER AT 150 MHZ,

50MSPS (WATTS)
0.32 0.64 1.36 3.26

POWER AT 200 MHZ,
66MSPS (WATTS)

0.43 0.85 1.81 4.34

POWER AT 250 MHZ,
83 MSPS (WATTS)

0.54 1.07 2.26 5.42

POWER AT 300MHZ,
100 MSPS (WATTS)

0.65 1.28 2.71 6.51

POWER AT 500MHZ,
166MSPS (WATTS)

1.08 2.13 4.52 10.86

POWER AT 600MHZ,
200 MSPS (WATTS)

1.29 2.56 5.42 —

POWER AT 700MHZ,
233 MSPS (WATTS)

1.5 2.98 6.33 —

Table 6: Cacti’s power and timing results
 of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-X/03 $17.00 © 2003 IEEE

Proceedings
0-7695-2043
be as close as possible to the capture dates of the traffic
traces so we can have realistic results (Table 7).

Feeding these traffic traces through an IPStash sim-
ulator loaded with the appropriate routing table gives us
the percentage of packets that match each prefix length.
Figure 9 shows these percentages averaged over the
three simulations. Given a specific assignment of prefix
lengths to classes we can compute a single factor, the
average number of accesses per search which character-
izes search latency— a Class 1(0) match requires a sin-
gle access, a Class 2 match one more, and a Class 3
match another (a total of 3 accesses). For the class defi-
nition discussed in Section 2.2 and the distribution of
matches in Figure 9 this factor is equal to 2.55 accesses/
search.

This result was unexpected: the bulk of the prefixes
are 24-bit long, yet the small number of 8-bit prefixes
(about 1% of the total) gets a fifth of the hits skewing
heavily the average number of accesses/packet towards
high values. We believe that the traffic we examined
gives us conservative results although we have no con-
crete data to back this up. Our theory is that most of the
NASA Ames traffic is destined for remote sites and hits
on 8-bit prefixes just to get directed to the next router.
Only a small percentage of the traffic hits on 24-bit pre-
fixes that represent entities in MAE-West’s immediate
network vicinity. We believe that if we had access to the
aggregate MAE-West traffic we would see many more
packets using 24-bit prefixes as the router would dis-
tribute incoming traffic from the rest of the world back
to organizations in its immediate network vicinity.

Despite what we think is unrepresentative traffic,
we can change class boundaries so we can move to a
lower memory access factor. For example, we can
change Class 1 to bits 19:24 which yields an average of
1.9 accesses/packet for the same traffic. However, this
affects the size of the expanded routing tables (often in
a dramatic way —see Figure 3) and consequently power
consumption which is also proportional to memory size.
In general, the memory access factor varies much less
than the memory size factor. Class definition must bal-
ance increased size with a lower accesses/packet aver-
age to obtain optimal power consumption for a desired
search throughput.

Table 8 shows how the coefficient number of 2.55
accesses/packet affects the power and timing results of
IPStash devices. Since the routing tables we use in these
simulations are on the order of 128K and 256K entries,
our results are primarily representative for the 256K-
and 512K-entry IPStash devices; we simply extrapolate
for the 128K-entry and 1M-entry devices.

Comparing these results with some of the best pub-
lished industry data (Figure 10) we see that even under
unfavorable conditions IPStash easily exceeds the per-

formance of the best products providing more than dou-
ble the search throughput. Furthermore, IPStash power
consumption at its highest is at the level of the
announced minimum power consumption of the best
TCAM with full power management. Although details
for this level of power consumption have not been dis-
closed by companies, such approaches typically require
optimal partitioning of routing tables and external hard-
ware to selectively power-up TCAM blocks. In con-
trast, IPStash achieves these levels of power
consumption by default, without the need for any addi-
tional external hardware or effort.

7. Related Work

The use of TCAMs for routing table lookup was
first proposed by McAuley and Francis [27]. TCAMs
offer good functionality, but are expensive, power hun-
gry, and less dense than conventional SRAMs. In addi-
tion, one needs to sort routes to guarantee correct
longest prefix match. This often is a time and power
consuming process in itself. Two solutions for the prob-
lem of updating/sorting TCAM routing tables have been
recently proposed [37]. Kobayashi et al. suggested asso-

ROUTING

TABLE SIZE

TRAFFIC

TRACE SIZE DATE

SIMUL. 1 (MW1) 117685 1994855 JUNE 15, 2002
SIMUL. 2 (MW2) 125256 645147 OCT. 15, 2002
SIMUL. 3 (MW3) 224736 594651 MARCH 1, 2003

Table 7: Characteristics of the three packet traces
and the associated routing tables

Figure 9. Hits per prefix length

IPSTASH

32-WAY

X 1
32-WAY

X 2
32-WAY

X 4
32-WAY

X 8
ENTRIES 128K 256K 512K 1M

ACCESS TIME (NS) 3.04 2.97 3.26 4.8
CYCLE TIME (NS) 1.38 1.34 1.33 1.69

AVER. SEARCH

LATENCY

3.52 3.42 3.39 4.31

AVER. SEARCH

THROUGHPUT

(PIPELINED) (MSPS)

284 292 295 232

POWER AT 128MHZ,
50MSPS (WATTS)

0.28 0.55 1.16 2.78

POWER AT 170MHZ,
66MSPS (WATTS)

0.37 0.72 1.54 3.69

POWER AT 213MHZ,
83 MSPS (WATTS)

0.46 0.91 1.93 4.62

POWER AT 255MHZ,
100 MSPS (WATTS)

0.55 1.09 2.31 5.54

POWER AT 425MHZ,
166MSPS (WATTS)

0.91 1.81 3.84 9.23

POWER AT 510MHZ,
200 MSPS (WATTS)

1.1 2.17 4,61 11.0

Table 8: Cacti’s power and timing results for
the NASA Ames traffic

0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2

Arithmetic average
for all tables

Prefix length

L
P

M
h

its
(%

)

 of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-X/03 $17.00 © 2003 IEEE

Proceedings
0-7695-2043
ciating each TCAM entry with a priority [20], and addi-
tional hardware was used to output the entry with the
highest priority in case of multiple matches. This elimi-
nated the sorting requirement, but added extra latency
to lookup operations.

The problem of power consumption in TCAMs
was studied by Liu [23]. He used a combination of
pruning techniques and logic minimization algorithms
to reduce the size of TCAM-based routing tables.
Another method proposed a pre-processing step to
reduce the size of the required TCAM [25]. Zane et al.
[43] take advantage of the effort of several TCAM ven-
dors to reduce power consumption by providing mecha-
nisms to search only a part of the TCAM device.

The idea of prefix expansion was initially intro-
duced by Srinivasan and Varghese [39]. They used this
technique to reduce the depth of a trie-based routing
table. Since then, many researchers used this technique
to reduce lookup time in their software trie-based algo-
rithms [31,22].

Many researchers used caches to speed up the
translation of the destination addresses to output port
numbers. Results for Internet traffic studies [32,9,7]
showed that there is a significant locality in the packet
streams. Estrin and Mitzel [11] derive the storage
requirements for maintaining state and lookup informa-
tion on the routers, and showed that locality exists by
performing trace-driven simulations.

Most software-based routing table lookup algo-
rithms try to optimize the usage of the cache in general
purpose processors, such as algorithms proposed in [10]
and [22]. The approach is to design data structures
whose entries fit in a cache line, or fit several entries
into the same cache line to allow several lookups per
memory access. Chiueh et al. [9,10] proposed two
schemes to improve performance of IP address caching.

Talbot et al. [40] studied several traces captured
from different access routers. A profiling of the address
bit frequency determined which bits should be used for
cache indexing. Caching based on carefully selected
indexing bits showed very good locality in the IP traces
captured. This result highly depends on the choice of
indexing bits, which in turn, depends on the trace. A
fixed hardware implementation might prove to be inef-
fective if traffic conditions change.

Cheung et al. [8] formulated the problem of assign-
ing part of routing table to a different cache hierarchy as
a dynamic programming problem, and introduced a

placement algorithm to minimize the overall lookup
speed. Besson et al. [5] also evaluated hierarchical
caches in routers and their effect on IP-lookup. Jain [18]
studied cache replacement algorithms for different
types of traffic (interactive vs. non-interactive). Pink et
al. [6] proposed a technique to compress an expanded
trie representation of a routing table, so that the result is
small enough to fit in the L2 cache of general purpose
processor.

Liu [24] recently proposed the prefix cache. The
author takes advantage of the natural hierarchy of rout-
ing prefixes. Instead of caching an IP address or an arbi-
trary portion of it, a routing prefix designated by
network operators is cached. The author uses a number
of algorithms, which differ mostly on how they trans-
form the routing table so that correct results are always
guaranteed. The prefix cache is a fully associative
cache, which stores the prefix and the mask bits at the
tag side and the destination port information at the data
side. Simulation results showed that this design works
better than caching full IP addresses (fixed 32-bit IP
addresses), even after factoring in the extra complexity
involved.

Our approach is different from all previous work.
Instead of using a cache in combination with a general-
purpose processor or an ASIC routing engine, we are
using a stand-alone set-associative architecture. We cat-
egorize routing prefixes into classes and we use a con-
trolled prefix expansion technique for each category.
The expanded prefixes are placed into the IPStash using
a portion of the prefix as index. The rest of the prefix is
stored as tag along with its original unexpanded length
(so that correct lookup results are guaranteed). The data
side of IPStash contains the output port information.
IPStash offers unparalleled simplicity compared to all
previous proposals while being fast and power-efficient
at the same time.

8. Conclusions

In this paper, we propose a set-associative architec-
ture called IPStash to replace TCAMs in IP-lookup
applications. IPStash overcomes many problems faced
by TCAM designs such as the complexity needed to
manage the routing table, power consumption, density
and cost. IPStash can be faster than TCAMs and more
power efficient while still maintaining the simplicity of
a content addressable memory.

The recent turn of the TCAM vendors to power-
efficient blocked architectures where the TCAM is
divided up in independent blocks that can be addressed
externally justifies our approach. Blocked TCAMs
resemble set-associative memories, and our own pro-
posal in particular, only their blocks are too few, their
associativity is too high, and their comparators are
embedded in the storage array instead of being separate.

What we show in this paper is that associativity is a
function of the routing table size and therefore need not
be inordinately high as in blocked TCAMs with respect
to the current storage capacities of such devices. What
we propose is to go all the way, and instead of having a
blocked fully-associative architecture that inherits the
deficiencies of the TCAMs, start with a clean set-asso-

Figure 10. Overall comparison with the top-of-
the- line TCAMs

IP Stas h

S iberC o re (Ult ra-18 full
m ngt)
S iberC o re(Ult ra-18)

M ic ro n T ec hn. (H arm o ny)

Search rate (Msps)

P
ow

er
pe

r3
2K

en
tr

ie
s

(W
at

t)

50 66 83 100 166 200

1

10

0.1
 of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-X/03 $17.00 © 2003 IEEE

Proceedings
0-7695-2043
ciative design and implement IP-lookup on it. We show
how longest prefix match can be implemented by itera-
tively searching for shorter prefixes. To bound the num-
ber of iterations we expand prefixes to a set of
predefined lengths. These fixed-lengths stem from the
distribution of prefixes in actual routing tables. We used
skewed associativity to maximize the efficiency of the
limited number of associative ways available. In addi-
tion, pruning techniques can be used on top of this, but
they tend to complicate other IPStash functionality such
as deletions.

Using Cacti and traffic simulations, we study
IPStash for current routing table sizes and find that it
can be twice as fast as the top-of-the-line TCAMs while
offering about 35% power savings (for the same
throughput) over the announced minimum power con-
sumption of commercial products. In addition, IPStash
can exceed 200 Msps while the state-of-the-art perfor-
mance for TCAMs (in the same technology) currently
only reaches about 100 Msps.

Given the current developments in TCAMs we
believe that IPStash is a natural next step for large-scale
IP-lookup using associative memories. Furthermore, we
believe that IPStash can be expanded to many other
applications such as IPv6, NAT, the handling of mil-
lions of “flows” (point-to-point Internet connections) by
using similar techniques as in our proposal.

9. Acknowledgments

This work is supported by Agere Systems Inc. We are
grateful for the helpful discussions with Nevin Heinzte and
Dan Wang of Agere Systems. We also wish to thank the
reviewers for their many useful suggestions.

10. References

[1] A. Agarwal, M. Horowitz, J. Hennesy, “Cache Perfor-
mance of Operating Systems and Multiprogramming Work-
loads.” ACM Transactions on Computer Systems, Nov. 1988.
[2] A. Agarwal and S. D. Pudar, “Column-associative Caches:
a Technique for Reducing the Miss Rate of Direct-mapped
Caches,” ISCA-20, May 1993.
[3] F. Baboescu, S. Singh, G. Varghese, “Packet Classification
for Core Routers: Is there an alternative to CAMs?” IEEE
INFOCOM, April 2003.
[4] A. Basu, G. Narlikar, “Fast Incremental Updates for Pipe-
lined Forwarding Engines,” IEEE INFOCOM, April 2003.
[5] E. Besson, and P. Brown, “Performance Evaluation of
Hierarchical Caching in High-Speed Routers.” Proc. Globecom,
pp. 2640-45, 1998.
[6] A. Brodnik, S. Carlsson, M. Degermark, S. Pink, “Small
Forwarding Tables for Fast Routing Lookups.” ACM SIG-
COMM, September 1997.
[7] X. Chen, “Effect of Caching on Routing-Table Lookup in
Multimedia Environments.” IEEE INFOCOM, April 1991.
[8] G. Cheung and S. McCanne, “Optimal Routing Table
Design for IP Address Lookups Under Memory Constraints.”
IEEE INFOCOM, pp. 1437-44, 1999.
[9] T. Chiueh and P. Pradhan, “High Performance IP Routing
Table Lookup Using CPU Caching.” IEEE INFOCOM, April
1999.
[10] T. Chiueh and P. Pradhan, “Cache Memory Design for Net-
work Processors.” Proc. High Performance Computer Architec-
ture, pp. 409-418, 1999.
[11] D. Estrin and D. Mitzel, “An Assessment of State and
Lookup Overhead in Routers.” IEEE INFOCOM, May 1992.
[12] EZ Chip Network Processors. http://ezchip.com

[13] A. Gallo, “Meeting Traffic Demands with Next-Generation
Internet Infrastructure.” Lightwave, 18(5):118-123, May 2001.
[14] G. Huston, “Analyzing the Internet’s BGP Routing Table.”
The Internet Protocol Journal, 4, 2001.
[15] IBM PowerNP Network Processors. http://
www.chips.ibm.com/products/wired/network_processors.html
[16] IDT. http://www.idt.com
[17] Intel IXP2850 Network Processor. http://www.intel.com/
design/network/products/npfamily/ixp2850.htm
[18] R. Jain, “Characteristics of Destination Address Locality in
Computer Networks: a Comparison of Caching Schemes.”
Computer Networks and ISDN Systems, 18(4):243-54, May
1990.
[19] Norman P. Jouppi, “Improving Direct-Mapped Cache Per-
formance by the Addition of a Small Fully-Associative Cache
and Prefetch Buffers.” ISCA-17, pp. 364--373.
[20] M. Kobayashi, T. Murase, A. Kuriyama, “A Longest Prefix
Match Search Engine for Multi-Gigabit IP Processing.” In Pro-
ceedings of the International Conference on Communications
(ICC 2000), pp. 1360-1364, 2000.
[21] C. Labovitz, G.R. Malan, F. Jahanian, “Internet Routing
Instability.” The IEEE/ACM Transactions on Networking, Vol.
6, no. 5, pp. 515-528, 1999.
[22] B. Lampson, V. Srinivasan, G. Varghese, “IP-lookups
Using Multiway and Multicolumn Search.” Proceedings of
IEEE INFOCOM, vol. 3, pages 1248-56, April 1998.
[23] H. Liu, “Routing Table Compaction in Ternary CAM.”
IEEE Micro, 22(1):58-64, January-February 2002.
[24] H. Liu, “Routing Prefix Caching in Network Processor
Design.” IEEE ICCCN2001, October 2001.
[25] J. van Lunteren and A.P.J. Engbersen. “Multi-Field Packet
Classification Using Ternary CAM.” Electronics Letters,
38(1):21-23, 2002.
[26] R. Mahajan, D. Wetherall, T. Anderson, “Understanding
BGP Misconfiguration.” SIGCOMM ‘02, August 2002.
[27] A. J. McAuley and P. Francis, “Fast Routing Table Lookup
Using CAMs.” In Proceedings of INFOCOM '93, pages 1382-
1391, San Francisco, CA, March 1993.
[28] Micron Technology. http://www.micron.com
[29] Netlogic microsystems. http:// www.netlogicmicro.com
[30] Network and Communications ICs. http://www.agere.com/
enterprise_metro_access/network_processors.html
[31] S. Nilsson and G. Karlsson, “IP-address lookup using LC-
tries.” IEEE Journal of Selected Areas in Communications, vol.
17, no. 6, pages 1083-92, June 1999.
[32] C. Partridge, “Locality and Route Caches.” NSF Workshop
on Internet Statistics Measurement and Analysis (http://
www.caida.org/ISMA/Positions/partridge.html), 1996.
[33] Passive Measurement and Analysis project, National Labo-
ratory for Applied Network Research. http://pma.nlanr.net/PMA
[34] Y. Rekhter, T. Li, “An Architecture for IP Address Alloca-
tion with CIDR.” RFC 1518, Sept. 1993.
[35] RIPE Network Coordination Centre. http://www.ripe.net
[36] A. Seznec, “A case for two-way skewed-associative
cache,” Proceedings of the 20th International Symposium on
Computer Architecture, May 1993.
[37] D. Shah and P. Gupta, “Fast Updating Algorithms for
TCAMs.” IEEE Micro, 21(1):36-47, January-February 2001.
[38] Sibercore Technology. http://www.sibercore.com
[39] V. Srinivasan and G. Varghese, “Fast Address Lookups
Using Controlled Prefix Expansion.” ACM Transactions on
Computer Systems, 17(1):1-40, February 1999.
[40] B. Talbot, T. Sherwood, B. Lin, “IP Caching for Terabit
Speed Routers.” Global Communications Conference (Globe-
com'99), pp. 1565-1569, December, 1999.
[41] Steven J. E. Wilton and Norman P. Jouppi, “Cacti: An
Enhanced Cache Access and Cycle Time Model.” IEEE Journal
of Solid-State Circuits, May 1996.
[42] Vitesse IQ2200. http://www.vitesse.com
[43] F. Zane, G. Narlikar, A. Basu, “CoolCAMs: Power-Effi-
cient TCAMs for Forwarding Engines.” IEEE INFOCOM, April
2003.
 of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-X/03 $17.00 © 2003 IEEE

	1. Introduction
	2. IPStash architecture
	2.1. Longest Prefix Match in IPStash
	2.2. Fitting a real routing table in IPStash
	2.3. Sensitivity Analysis for Classes

	3. Increasing effective capacity
	3.1. Skewed associativity
	3.2. Memory bounds

	4. Associativity and routing table size
	5. Other features of the architecture
	5.1. Incremental Updates
	5.2. Expanding the IPstash
	5.3. Route Pruning
	5.4. Reducing uncertainty of effective capacity

	6. Power Consumption Results
	6.1. Cacti
	6.2. Traffic

	7. Related Work
	8. Conclusions
	9. Acknowledgments
	10. References
	IPStash: a Power-Efficient Memory Architecture for IP-lookup

