
Processor Acceleration Through Automated Instruction
Set Customization

Nathan Clark Hongtao Zhong Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan
Ann Arbor, MI 48109

{ntclark, hongtaoz, mahlke}@umich.edu

ABSTRACT
Application-specific extensions to the computational capa-
bilities of a processor provide an efficient mechanism to meet
the growing performance and power demands of embedded
applications. Hardware, in the form of new function units
(or co-processors), and the corresponding instructions, are
added to a baseline processor to meet the critical compu-
tational demands of a target application. The central chal-
lenge with this approach is the large degree of human effort
required to identify and create the custom hardware units,
as well as porting the application to the extended processor.
In this paper, we present the design of a system to auto-
mate the instruction set customization process. A dataflow
graph design space exploration engine efficiently identifies
profitable computation subgraphs from which to create cus-
tom hardware, without artificially constraining their size
or shape. The system also contains a compiler subgraph
matching framework that identifies opportunities to exploit
and generalize the hardware to support more computation
graphs. We demonstrate the effectiveness of this system
across a range of application domains and study the appli-
cability of the custom hardware across the domain.

1. INTRODUCTION
In recent years, the markets for PDAs, cellular phones,

digital cameras, network routers and other high performance
but special purpose devices has grown explosively. In these
systems, application-specific hardware design is used to meet
the challenging cost, performance, and power demands. The
most popular strategy is to build a system consisting of a
number of special-purpose ASICs coupled with a low cost
core processor, such as an ARM [29]. The ASICs are spe-
cially designed hardware accelerators to execute the compu-
tationally demanding portions of the application that would
run too slowly if implemented on the core processor. While
this approach is effective, ASICs are costly to design and
offer only a hardwired solution that permits almost no post-
programmability.

An alternative design strategy is to augment the core pro-
cessor with special-purpose hardware to increase its com-
putational capabilities in a cost-effective manner. The in-
struction set of the core processor is extended to feature an
additional set of operations. Hardware support is added to
execute these operations in the form of new function units

or co-processor subsystems. The Tensilica Xtensa is an ex-
ample commercial effort in this area [12].

There are a number of benefits to augmenting the in-
struction set of a core processor. First, the system is post-
programmable and can tolerate changes to the application.
Though the degree of application change is not arbitrary,
the intent is that the customized processor should achieve
similar performance levels with modest changes to the ap-
plication, such as bug fixes or incremental modifications to
a standard. Second, the computation intensive portions of
applications from the same domain (e.g., encryption) are of-
ten similar in structure. Thus, the customized instructions
can often be generalized in small ways to make their use
have applicability across a set of applications. Last, some or
all of the ASICs become unnecessary if the augmented core
can achieve the desired level of performance. This lowers
the cost of the system and the overall design time.

The central question with this approach is the degree of
human effort required to identify and implement an efficient
set of instruction set extensions. In addition, the effort re-
quired to modify the software development tool chain to
effectively understand the extended instruction set is sub-
stantial. This effort can often be more time consuming and
expensive than the design of an ASIC. The current Xtensa
system places much of this burden on the user to define,
implement, and exploit the customized processor.

We believe automation is the key to making instruction set
customization successful. To this end, this paper presents
the design of a system that combines automatic hardware
selection and seamless compiler exploitation of the custom
instructions. Hardware design is accomplished via intelli-
gent dataflow graph exploration. The exploration subsystem
focuses on efficient discovery and selection of computation
subgraphs from which custom hardware is constructed. The
major challenge is navigating through an almost limitless
design space without artificially constraining the size and
shape of the subgraphs. Compiler exploitation of the cus-
tom instructions is accomplished through a flexible subgraph
matching engine. Applications are analyzed to identify the
maximal computation subgraphs that can be replaced by
custom instructions. Techniques are also used to allow for
maximal mapping of subgraphs to each hardware unit.

Many other researchers have proposed systems to accom-
plish the task of automated instruction set generation. The
contributions of this paper are threefold. First, we present a

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

novel technique for efficient dataflow graph exploration and
selection. Second, we present the design and demonstrate
the implementation of a complete system, including retar-
getable compiler. Most previous work neglects the problem
of compiling to a machine with custom instructions. Finally,
we use the system to analyze how effectively instruction set
extensions designed for one application can be applied to
other applications in the same domain.

2. RELATED WORK
A large body of research has gone into instruction set cus-

tomization. Work in [5], [28], [32], [16], [24], [14], and [33]
all showed possible gains using this technique. While these
works show the potential utility of this instruction set cus-
tomization, they do not provide methods to automate the
process. Many other systems have been proposed to auto-
mate this process, though. These systems can be categorized
based on how they solve two sub-problems: identification of
custom instruction candidates and how to make use of the
candidates.

Candidate Discovery - Informally stated, candidate
discovery is determining subsets of an application’s dataflow
graph, or DFG, that would be amenable for implementation
in hardware. In the most general sense, each node of the
DFG can either be included or excluded from a candidate,
yielding O(2# ops) potential candidates. Several techniques
have been proposed to handle the intractability of this prob-
lem.

Early work [2] side-stepped the candidate discovery prob-
lem altogether by predefining a set of candidates. This strat-
egy requires a designer to enumerate a superset of useful can-
didates to select from, and utilizes design automation in the
selection phase. While some advantages of customization
are realized, this approach is limited by the large amount
of work necessary to define an appropriate superset of can-
didates and the poor results obtained when an appropriate
superset is not available.

Work by Bennett [7] proposes iterative combination of
primitives that occur in subsequent lines of code to reduce
static code size. This method assumes that a base instruc-
tion set is given corresponding to a high level language.
Statistics are gathered on the frequency of operations occur-
ring near each other and the highest ranking combination is
chosen as a new instruction. This technique is irrespective
of the dataflow graph and is primarily used as a code size
reduction technique.

Bennett’s work is similar to candidate discovery algorithms
in [27], [26], [6], [9], and [19], in that all of these papers pro-
pose iterative combination of primitives. Iterative solutions
typically combine two nodes, replace all such occurrences in
the DFG, and repeat until some constraints are met. These
solutions have the benefit of very good run times (typically
O(N2)) when compared to more thorough strategies, but
risk being stuck in local maxima. Each edge is combined in
a locally optimal manner, reminiscent of greedy heuristics.

Holmer proposed a more global technique [17], which was
later extended by [18]. This technique discovered candi-
dates by performing an initial grouping of nodes based on
the schedule time in the DFG, and then iteratively breaking

and recombining these groups. Work by Bose [8], is similar
to this, except that this work operated on a syntax tree, in-
stead of a DFG, and used many more candidate transforma-
tions than breaking and combining. Another major differ-
ence is that Holmer guided use of the transformations using
simulated annealing, attempting to maximize the worth of
the instruction set, where Bose performed transformations
unguided with the expected goal of improvement. The ap-
plication of these two algorithms was mainly for designing
entire instruction sets as opposed to just ISA extensions.

Choi [10] generated initial candidates in a similar man-
ner to Holmer. This work advocated combining instruc-
tions that could be executed in parallel and then combining
those parallel sets to create custom instructions that were
both wide and deep. In order to cut down on the num-
ber of potential candidates explored, Choi used an artificial
limit on how deep the combined instructions can be. The
main contribution of [10] is a new formulation of the can-
didate discovery problem: they discovered candidates using
a modification of the subset-sum problem, and attempted
to find the minimal set of instruction extensions to meet a
certain performance requirement (as opposed to simply dis-
covering the optimal instruction extensions for a given cost).
The main weaknesses of this work are the artificial limit on
custom instruction length and the initial phase of combin-
ing parallel instructions performed when it is not clear that
parallel combination is best.

Other work proposes dealing with intractability by limit-
ing the size of the problem. The algorithm proposed in [4]
searches a full binary tree, where each step decides whether
or not to include a node of the DFG into a candidate. Ways
to prune the tree are proposed, helping avoid the worst case
O(2N) runtime, but the size of the DFG must still be rel-
atively constrained in order for the algorithm to complete
in a timely manner. This limits its usefulness for very large
basic blocks or in the presence of optimizations that create
large basic blocks, such as loop unrolling.

More recent work by Goodwin [13] searches all possibili-
ties connected in a dataflow graph when generating “fused
instructions”. In order to avoid intractability, the search is
subject to restrictions that each opcode can have at most two
inputs, one output, and the resultant opcode take only one
cycle to execute. We have observed in our experiments that
using very strict restrictions, such as these, generally pro-
duces poor results. This technique also explores the option
of adding vector operations exposed through loop unrolling.

Some researches have proposed heuristic ways to limit the
search space without artificially constraining it. In [3], the
least used half of all candidates are removed after each it-
eration of candidate discovery. While this technique will
catch all important candidates in hot portions of the code,
it potentially misses useful candidates that are moderately
used in many portions of the application. Work by Sun [30]
performs a similar pruning, but uses a more complex pri-
ority function to rank the candidates, taking into account
the number of inputs and outputs, as well as dynamic oc-
currences. In Sun’s work, candidates that do not meet a
certain percentage of the best discovered candidate so far
are removed. Methods such as this have the benefit of not
artificially constraining the problem by potentially getting

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Dataflow Graph
Space Walker

Candidate
Combination

CompilerMDES printerCFU selector

HWLib
(opcode×width×freq)

App i
Optimized, unscheduled,
unallocated assembly code

Candidate
Subgraphs

Candidate
CFUs

Prioritized
List of CFUs

App j
External Constraints
- I/O, Total cost

MDES file

Dataflow Graph
Space Walker

Dataflow Graph
Space Explorer

Candidate
Combination
Candidate

Combination
CompilerCompilerMDES printerMDES printerCFU selectorCFU selector

HWLib
(opcode×width×freq)

HWLib
(opcode×width×freq)

App i
Optimized, unscheduled,
unallocated assembly code

Candidate
Subgraphs

Candidate
CFUs

Prioritized
List of CFUs

App j
External Constraints
- I/O, Total cost

MDES file

Figure 1: Organizational structure of the hardware compiler.

stuck in local minima or limiting the types of candidates
discovered.

Utilization - How to make use of the candidates is an-
other issue to deal with in instruction set customization.
The vast majority of automated systems in this field have
neglected this problem. Most systems combine the discov-
ery and selection phases so that whenever candidates are
selected, they are immediately replaced in the code, e.g.
[18]. These systems typically do not provide methods to
reuse the new instructions in other applications. As such, it
is necessary to look at work in the compiler community.

Automated utilization of custom instructions generally
happens during the code generation phase of compilation.
Traditional code generation methods use a tree covering ap-
proach [1] to map the DFG to an instruction set. The DFG
is split into several trees, where each instruction in the ISA
covers one or more nodes in the tree. The tree is covered
using as few instructions as possible. The purpose behind
splitting the DFG into trees is that there are linear time al-
gorithms to optimally cover trees, making the process very
quick.

One problem with this method, though, is that DFGs
are not trees. It is shown in [21] that tree covering meth-
ods can yield suboptimal results, particularly in the pres-
ence of irregular instructions common in custom instruc-
tions. To overcome this, [21] proposes splitting all instruc-
tions into “register-transfer” primitives and recombining the
primitives in an optimal manner using integer programming.
Work by Liao [22] attacked the same problem, and developed
an optimal solution for DFG covering by augmenting a bi-
nate covering formulation. While both of these solutions are
optimal, they also have worst case exponential runtime, so
they must be selectively used.

Research in [25] describes a new way to look at the code
generation problem. In this work, computationally complex
algorithms are used to insert custom instructions and heuris-
tics handle the rest of code generation. An application is ini-
tially decomposed into an algebraic polynomial expression
which is functionally equivalent to the original application.
Next, the polynomial is manipulated symbolically in an at-
tempt to use custom instructions as best as possible. For
example, a polynomial could be expanded using function
identities (e.g. adding 0 to a value) to better fit an exist-
ing custom instruction. Custom instructions are inserted as
intrinsic function calls in the polynomial, and functionally
equivalent high level language is output once all of this is
complete. The high level language can then be used as input
to a standard compiler. The main contribution of this work
is the method of algebraically modifying of code to better
make use of available instructions.

Our System - The candidate discovery technique pro-
posed in this paper is similar to the work in [30], but is ex-
tended to avoid potential shortcomings discussed in Section
3. In Section 4, the custom instruction utilization frame-
work implemented in this paper is described. This frame-
work ties together several ideas from other work into one
system, and addresses some runtime issues with previously
proposed solutions. In Section 5 the custom instructions
generated by our system are applied to applications across
several domains, and the results of these experiments are
carefully analyzed. Analysis like this has never been done
before, to our knowledge.

3. DATAFLOW GRAPH EXPLORATION
The overall structure of our DFG exploration engine is

shown in Figure 1. An application is fed into the system
as profiled assembly code. The code has not been sched-
uled and has not passed through register allocation, which
is important so that false dependences within the DFG are
not created. Initially, the application passes through a DFG
space explorer, which determines candidate subgraphs for
potential instruction set extensions. The space explorer
selects subgraphs subject to some externally defined con-
straints such as the maximum die area allowed for any cus-
tom function unit (CFU), or the maximum allowable reg-
ister read and write ports. A hardware library provides
timing and area numbers to the space explorer so that it
can accurately gauge the cycle time and area requirements
of combined primitive operations.

A list of subgraphs, annotated with area and timing es-
timates, is passed to a candidate combination stage. This
stage groups subgraphs that would be executed on the same
piece of hardware. Grouping the subgraphs creates a set of
candidate CFUs and allows us to calculate an estimate of
performance gain by using the profile weights of all the set
members. The combination stage also performs some checks
to determine which CFUs can potentially be subsumed by
other CFUs. All of this information is passed to a selection
mechanism that determines which CFUs best meet the needs
of this application. Finally, the prioritized list of CFUs is
converted in a machine description (MDES) form that can
be fed to the compiler.

Throughout this section, the DFG shown in Figure 2 from
the blowfish application [15] is used for illustrative purposes.
For simplicity, each operation or node is assumed to take 1
cycle to execute in the baseline processor.

3.1 Subgraph Selection
A CFU is loosely defined as the hardware implementa-

tion of a subset of primitive operations from an application’s

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

DFG. Primitive operations are atomic assembly operations
for a generic RISC architecture, such as Add, Or, and Load.
These operations correspond to nodes in the DFG. No as-
sumptions are made regarding the connectivity of the nodes
in a CFU, so linear, tree shaped, or even cyclic graphs can
be implemented as CFUs. However, we consider only con-
nected subgraphs.

Implementing subsets of the DFG as CFUs typically al-
lows for better performance, lower power consumption, and
reduced code size than the corresponding implementation as
a sequence of primitive operations. Determining which parts
of a DFG would make the best CFUs is a difficult problem.
The most glaring difficulty is that there are an exponen-
tial number of potential candidates to select as CFUs for a
given DFG. Exploration starts by examining each node in
the DFG and using it as a seed for a candidate subgraph. Ini-
tially, the system used a näıve implementation that looked
at all possible directions to grow the seed nodes. The num-
ber of candidate subgraphs quickly grows out of control with
sufficiently loose external constraints using this approach.

The key observation gained from experimenting with this
näıve approach is that the majority of candidates examined
by exponential growth simply do not make sense. For ex-
ample, assuming the goal is maximizing performance on the
DFG in Figure 2, CFU 6-9 (i.e. the CFU containing nodes
6 and 9) has little value, because node 9 is not on the crit-
ical path. To avoid searching these useless candidates, we
propose using a guide function to rank which nodes are the
best directions to grow. The guide function allows heuristic
determination of the merit of each growth direction, and ar-
bitrary control on the fanout from seeds. Allowing a larger
number of candidates from each seed, or large fanout, will
ensure better coverage of the design space, while allowing
smaller fanout will result in reduced run times and memory
consumption.

One important part of our technique is that restricting
fanout enables more efficient design space exploration. For
example, higher fanout could be used in blocks that have
higher profile weight, as they are more likely to yield im-
portant candidates; alternately, higher fanout could be used
at the initial levels of the search and then more tightly con-
strain the number of growth directions as the candidates in-
crease in size. All previously proposed solutions use a single
exploration strategy for all parts of the application, where
as this technique can modify its strategy to effectively avoid
searching likely useless portions of the design space.

Using a guide function to restrict growth is most simi-
lar to the work by Sun [30]. They used a priority function
to prune candidates which do not reach a certain percent-
age of the best priority discovered so far. The candidates
that are not pruned are grown in every direction. The guide
function proposed here prunes directions of search, not can-
didates. If the guide function finds no directions worthy of
growing a candidate, it is equivalent to that candidate be-
ing pruned. The benefit of pruning directions as opposed
to pruning candidates is that there is always the possibility
that a low ranking candidate will grow into a useful one.

3.2 Guide Function
The purpose of the guide function is to intelligently rank

AND XOR

XOR

4 5

6

ADD1 LD LD2 3

<<7 <<8 <<9

AND10 AND AND11 12

ADD13 ADD ADD14 15

>>16 >> >>17 18 >>19

ADD20 ADD ADD21 22 ADD23

m ^= p [0];

r ^= p[1];

r ^= (((s[(m>>24L)] +

s[0x0100+((m>>16L)&0xff)]) ^

s[0x0200 + ((m>> 8L)&0xff)]) +

s[0x0300+((m)&0xff)]) & 0xffffffff;

m ^= p[2];

m ^= (((s[(r>>24L)] +

s[0x0100+((r>>16L)&0xff)]) ^

s[0x0200+((r>> 8L)&0xff)]) +

s[0x0300+((r)&0xff)]) & 0xffffffff;

(a)

(b)

0.090.16XOR

~ 00.01<<, >>*

0.060.12AND

0.301.0+

CyclesAddersOpcode

* These are shifts by compile time constants

(c)

Bold =

Critical Path

Figure 2: A) Sample DFG from blowfish. Shaded
nodes delineate a CFU. B) Preprocessed C code.
C) Excerpt from the hardware library.

which growth directions will create the best candidates. The
guide function essentially tries to replace the architect by
making design decisions, thus its decisions must reflect the
same desirable properties the architect would strive for. The
guide function proposed here uses four categories to rank the
desirability of growth directions: criticality, latency, area,
and input/output. Giving each of these categories differ-
ent weights toward the overall score of the guide function
will greatly affect the types of candidates that are gener-
ated. Many experiments have been performed varying the
weights of each of these factors and they point to the general
conclusion that evenly balancing the factors yields the best
candidates.

In the DFG space explorer, each of the guide function cat-
egories is allotted 10 points of weight, and the sum of these
categories determines the total desirability of each candidate
direction. If a direction receives fewer than half of the total
desirability points, then it is considered a bad direction and
it will not be explored. This is not to say that half of the
directions will be ignored, merely that directions with less
than half of the points are not worth investigating.

Criticality - This category rewards candidate directions
when they appear on the critical path (longest dependence
path(s)) of a DFG. CFUs that occur on the critical path
are likely to give the application performance improvement,
which is typically the most desired result of CFUs. An ex-
ample of this from Figure 2 would be investigating ways to
grow candidate 4-6. The direction including nodes 1, 7, or
8 would rank higher in terms of criticality than would the
direction of node 5, 9, or 12, because the aforementioned
nodes are on the critical path. Points are awarded using the
equation 10

slack+1
, where slack is the number of cycles an op-

eration can be delayed without lengthening the critical path.
Thus, node 1 would get 10

0+1
= 10 points and node 9 would

get 10
2+1

= 3.33 points. Note that it is important to give
candidate directions credit even when they are slightly off
the critical path as the heuristic provides because auxiliary
paths often become critical after several CFUs are formed.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

10000

100000

1000000

10000000

100000000

0 1 2 3 4 5 6

Cost Constraint (Adders)

N
u

m
b

e
r

o
f

C
a
n

d
id

a
te

s
 E

x
a
m

in
e
d

Intelligent All Paths

Figure 3: Candidates examined for blowfish.

Latency - Latency tries to guide exploration toward com-
bining operations which require fewer cycles to execute when
combined into a CFU than they do as standalone operations.
The largest performance gains are possible by combining
low latency operations, such as logicals, where many can be
executed in a single cycle. Latency points are distributed
using the equation old latency

new latency
∗ 10. The latency of a CFU

is calculated by summing up the fractional delays of each
atomic operation (see Figure 2c) along the critical path of
the candidate subgraph. Using candidate 4-6 on Figure 2
as an example again, note that currently these operations
can be executed back to back in 0.15 cycles. Exploring the
direction of node 1, which has a latency of 0.3 cycles, would
get 0.15

0.15+0.30
∗ 10 = 3.3 points. In contrast, growing toward

node 10, we would get nearly all (0.15
0.15+0

∗10 = 10) the points
allotted for latency.

Area - Since cost is a major constraint in the design
of embedded processors, area is an important factor in the
choice of CFUs. The guide function considers the area to be
the sum of the areas required to implement each primitive
operation in the CFU (see Figure 2c). Note that register file
ports are a design constraint, thus they do not factor into
the area. Further, CFUs do require additional decode logic
and interconnect, but CFU area is generally the dominant
term. The area category gives more points to directions that
least increase the total area of the candidate. Area points
are calculated the same way as latency, old area

new area
∗10, except

that the old and new areas are rounded up to the nearest
half adder (that is a cost of 0.49 or 0.01 adders becomes 0.5).
Rounding is done so as not to penalize operations unfairly
when the seed is very small. Consider the case of growing
candidate 9-19. If no rounding was done, then growing to
node 23 would only yield 0.02

1.02
∗ 10 = 0.2 points and growing

to 6 would only yield 0.02
0.18

∗ 10 = 1.1 points. This does not
mean that growing toward node 6 is bad decision from an
area standpoint, however.

Input/Output - The maximum number of input and
output operands for a CFU is limited. Register file ports are
generally fixed on the core processor based on cost, power,
cycle time, and encoding constraints. Thus, the maximum
number of input and output operands available is treated
as design constraint. The purpose of the I/O category is to

guide the search in directions that reduce or keep constant
the number of inputs and outputs to the candidate. Giving
preference to directions that do not increase I/O facilitates
discovering larger subgraphs that still meet I/O constraints.
Points are awarded based on the number of input and output
ports using the equation MIN(old # ports

new # ports
∗ 10, 10). Tak-

ing the minimum of the two terms in the equation is done
because the number of ports may be reduced by growing cer-
tain directions due to reconvergence points in the DFG. As
an example of this calculation, if directions from candidate
8-11 from Figure 2 were examined, growing toward node 14
would not increase the number of inputs or outputs, yield-
ing 2

2+1
∗ 10 = 6.7 points. Growing toward node 6 would

increase both the number of inputs and outputs, yielding
2

4+1
∗ 10 = 4 points.

With the guide function heuristic in place, it was im-
portant to verify two points: that the heuristic does in-
deed prune the search space, and that good candidates are
not missed because the guide function incorrectly dismisses
them. Figure 3 demonstrates the first point. The intelligent
heuristic is able to effectively curve the exponential growth
associated with the DFG exploration problem. This algo-
rithm can be used on very large code segments and with-
out artificially constraining the types of candidates gener-
ated, which are both weaknesses of previously proposed al-
gorithms. To ensure that good candidates are not dismissed,
the heuristic was compared against a full exponential search
for several small benchmarks. The results showed that both
approaches selected identical sets of candidates. The heuris-
tic was also compared against full exponential search using
restricted constraints (3 input, 2 output ports and a five
adder maximum cost) on larger benchmarks. Again, the re-
sults found using the heuristic were comparable with those
of full exponential search.

3.3 Candidate Combination
After discovery, it is a straightforward process to group

identical candidate subgraphs together into candidate CFUs.
A simple test which checks graph equivalence, while taking
into account commutativity, accomplishes this. For exam-
ple, if subgraphs 7-10-13-16 and 8-11-14-17 were discovered
in Figure 2, the graphs would be checked for equivalence and
then combined into the candidate CFU “<<-AND-ADD-
>>”. The profile weights are then used to get an estimate
of the number of cycles each CFU improves performance.
Using a compiler instruction scheduler to get an exact mea-
surement is possible, but the complexity makes this solution
undesirable and the estimate has proved reasonably accu-
rate.

After candidate grouping, there are two passes over the
list of CFUs. The first pass records which CFUs can be
subsumed by others. Subsumed subgraphs take advantage
of the fact that most atomic operations have an associated
identity input, allowing values to pass through a node with-
out changing. This is similar to the use of symbolic algebra
described in [25]. Using Figure 2 as an example, if CFU
“AND-ADD->>” was discovered, CFU “AND->>” can be
executed on the same hardware because the subsumed hard-
ware could set one input of the ADD operation to 0. CFUs
“AND-ADD” and “ADD->>” would also be recorded as

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

1,758N

…………

1,3,7162

3,4,8,6,94201

OpsCostValueCFU

Number

1,758N

…………

1,3,7162

3,4,8,6,94201

OpsCostValueCFU

Number

Greedily select CFU 2 – the one

with the best value/cost

50N

…………

1,3,7162

4,8,6,94161

OpsCostValueCFU

Number

50N

…………

1,3,712

4,8,6,94161

OpsCostValueCFU

Number

Update the values of each CFU

that depended on ops that are

now attributed to CFU 2

Add CFU 2 to the final list, remove

CFUs with no value, and repeat until

we exceed our area budget

Figure 4: Greedy approach to CFU selection.

being subsumed by “AND-ADD->>”.
The second pass records wildcard options for each CFU.

Wildcards are CFUs with identical subgraphs except for dif-
ferent operations at one node. Combining two CFUs with
similar structure like this allows us to cheaply add another
CFU without greatly increasing the associated cost, as much
of the hardware can be shared between the two CFUs.

3.4 Candidate Selection
Contrary to combining the candidate subgraphs, CFU se-

lection is not straightforward. Selection is similar to the
0/1 knapsack problem. There is a set of resources (the
CFUs) that all have values (the estimated cycle savings)
and weights (die area), and the goal is to maximize the
total value for a given weight. It is widely known that
the 0/1 knapsack problem is NP-complete, although it is
solvable in pseudo-polynomial time using dynamic program-
ming. Strategies are needed to avoid intractability in this
stage of design automation as well.

It is important to mention that CFU selection has one
caveat missing in the 0/1 knapsack problem: the values of
all the other CFUs change once a CFU is selected for in-
clusion. Individual operations can appear in multiple CFU
candidates. Once a CFU is selected, it is necessary to up-
date the estimated cycle savings of the other CFUs so that
double counting does not occur. Using an example from
Figure 2 again, assume the two highest ranked CFUs were
7-10-13-16, and 7-10-13. If 7-10-13-16 was selected first and
did not update the value of 7-10-13 to reflect the fact that it
can no longer use any of its operations, then 7-10-13 would
be selected also, even though it would provide no gain above
what 7-10-13-16 already provided.

The strategy used for CFU selection is a simple greedy
method, illustrated in Figure 4. Given a list of CFU candi-
dates, the one with the best ratio of value

cost
is greedily selected.

Once CFU 2 is selected, the heuristic iterates through the
list of remaining candidates and removes operations that
were claimed by it. In Figure 4, operations 1 and 7 were
removed from CFU N and its value was updated to 0, as it
had no more operations left. Operation 3 was removed from
CFU 1 and its value was likewise updated to 16. Once all
CFUs are updated, the selection process is repeated until
the area budget is exhausted. Custom instruction replace-
ment in the compiler happens in the same order that CFUs
are selected, so iteratively updating the values by invalidat-
ing selected operations maintains the relative accuracy of

the cycle gain estimations.
Because the selection heuristic is greedy, it is not guaran-

teed to give an optimal solution, and quite frequently does
not. For example, when the greedy algorithm selects based
only on estimated cycle savings, performance does poorly
at the low cost budget points compared to when it selects
based on value

cost
. However, the opposite is true at high cost

points. In an attempt to improve the selection heuristic, a
version based on dynamic programming was implemented.
The dynamic programming heuristic generally does better
(roughly 5 - 10% on average) than greedy solutions, however
it suffers from a much slower runtime, and thus was not used
in any of the studies in this paper.

Dealing with wildcards and subsumed subgraphs adds an-
other challenge to the selection process. The main issue is
whether to count all the subsumed subgraphs and wildcards
when determining the estimated value of a CFU. If so, then
in addition to updating the estimated value of other CFUs
based on the operations in the candidate subgraphs, it is
also necessary to update them based on all the operations
in the subsumed or wildcard candidate subgraphs. This cre-
ates a large computational overhead for every selection. In
the case of subsumed subgraphs, this means frequently at-
tributing operations to small subsumed portions of a large
CFU, when much more performance could have been gained
by attributing them to a separate CFU. For example, if the
gray shaded CFU in Figure 2 was selected then it would
be possible to execute 12-15 on it. However, a CFU for
12-15-18 could have been chosen later, which would have
helped performance more. The case just described occurs
quite frequently, so CFUs are selected as if they had no sub-
sumed subgraphs or wildcards. When a selections is made,
the costs of the subsumed subgraphs and wildcards are up-
dated to reflect that they can now be added for very little
overhead.

4. COMPILER UTILIZATION
The purpose of the compiler is to automatically exploit

CFUs in a given application for maximal gain. The ba-
sic structure of our retargetable compiler is shown in Fig-
ure 5. Applications are run through a front-end, producing
a generic RISC assembly code. The assembly code is un-
scheduled and uses virtual registers. The compiler also uses
a machine description, or MDES, to determine what CFUs
are available for use. Given the assembly code and MDES,
the compiler performs dataflow analysis to generate a DFG,
discovers all subgraphs in the DFG that match available
CFUs, prioritizes these matches, replaces the matches with
custom instructions, and finally performs the typical tasks
of register allocation and scheduling. The steps that dif-
fer from traditional compilation techniques are described in
detail below.

4.1 Pattern Matching
Pattern matching is the most critical step in CFU utiliza-

tion. The first step in this process is determining all avail-
able CFUs from the MDES. From a high level, the MDES
describes what resources a CFU consumes, the latency of
the operation, the number and type of inputs and outputs,

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Compiler
Front-end
Compiler
Front-end

Assembly Code
Utilizing Custom

Function Units

Assembly Code
Utilizing Custom

Function Units

Machine Description Database (MDES)Machine Description Database (MDES)

Pattern
Matching
Pattern
Matching

Prioritization
&Filtering

Prioritization
&Filtering

Scheduling
&Reg Alloc
Scheduling
&Reg Alloc

Dataflow
Analysis
Dataflow
Analysis

vflibvflib

Hardware
Compiler
Hardware
Compiler

App i

MDES files with
CFU description

Assembly
code

ReplacementReplacement

All matched subgraphs Non-overlapping patterns

App j

Dataflow Graph

Compiler Backend

Figure 5: Organizational structure of the compiler supporting custom instructions.

and the structure of the subgraph that the CFU implements.
Discovering the subgraphs in the DFG can be viewed as

the subgraph isomorphism problem, which is known to be
NP-complete. To perform subgraph identification, the vflib
graph matching library [11] is employed. While the algo-
rithm used in vflib is still exponential worst case, the best
case is only polynomial, and the overhead added to the com-
pile time is minimal.

The vflib algorithm finds matching subgraphs by starting
at individual nodes that occur both in the DFG and the
CFU. These nodes are termed a partial match. The partial
matches are then expanded along DFG edges to create new
partial matches in a manner that is similar to our DFG space
exploration.

Figure 6 shows part of a DFG that is similar to one in
the sha benchmark [15]. Given a CFU to implement the
operations in subgraph 2-5-6, the pattern matcher would
begin by looking at all << nodes: 2, 14, and 16. These
partial matches would then be grown to partial matches 2-
3, 2-6, 14-18, and 16-19. 2-3 and 14-18 no longer match
the CFU, so only 2-6 and 16-19 are considered. The vflib
continues this process until all the partial matches either
definitively match or do not. Subgraph matching is repeated
for all CFUs, so that all potential subgraph matches in the
DFG are discovered.

At this stage, it is all right for the same operation to ap-
pear in multiple subgraph matches. The hardware compiler
provides a desirability ordering on the CFUs so that each
operation is only assigned to the CFU that the hardware
compiler thinks can make the best use of it. The assignment
of operations to CFUs is done in the prioritization and filter-
ing phase. This static desirability ordering can potentially
lead to a suboptimal generated code. Solutions proposed in
[21] and [22] have worst case exponential run times, how-
ever, and were prohibitively slow when implemented in our
compiler.

4.2 Custom Instruction Replacement
On the surface, replacing the matched subgraph with a

custom instruction is fairly simple. There are some impor-
tant issues that must be considered in order to guarantee
the correctness of the resultant program, however. Using the
DFG shown in Figure 6, subgraph 2-5-6 will be replaced with
a custom instruction. The question that arises is, “Where
should the instruction be placed in relation to other opera-
tions in the assembly code?” To ensure correctness of the
program, the custom instruction must be placed after all the

MUL ADD

<< >>

AND OR

ADD SUB

MUL XOR AND

AND

OR

<< >>

OR

<< ADD

ADD

#5 #-1

#2 #30

1

2

3

4

5

6

7 8

9 10 11

12

13

14 15 16 17

18 19

Figure 6: DFG similar to one from sha.

predecessors of the operations in the subgraph (after nodes
1 and 4 in this example), and also before all the successors
(nodes 3 and 15 here). Assuming the node identifiers define
the sequential order of the assembly code for this example,
there is a potential problem with where to place the custom
operation. Replacing node 2 is incorrect because the custom
instruction would be placed before node 4. Similarly, replac-
ing nodes 5 or 6 is incorrect because it would be placed after
node 3.

To prevent this from occurring, the assembly code is reor-
ganized prior to subgraph replacement. For subgraph 2-5-6,
the last scheduled predecessor is node 4 and the earliest
scheduled successor is node 3. As long as the custom in-
struction is inserted between these operations, program se-
mantics will be maintained. For every subgraph match, if
the last predecessor comes after any successors, then those
successors and any operations dependent them are moved
after the last predecessor. In this example, we would move
node 3 after node 4 , and then safely insert the custom in-
struction after the last predecessor.

Once the subgraphs are replaced and the code is reordered
for correctness, scheduling and register allocation take place,
leaving us with an application that intelligently utilizes what-
ever CFUs are available.

5. EXPERIMENTAL RESULTS
The system proposed was constructed as part of the Tri-

maran research infrastructure [31]. The DFG exploration
engine was implemented as a standalone module, and the
compiler backend was modified to facilitate subgraph match-
ing and replacement. The cycle time and area estimates in
the hardware library were calculated using Synopsis design

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

tools and a popular 0.18µ standard cell library.
For this evaluation, two simplifying assumptions are made.

First, no memory instructions were included in CFUs. Hav-
ing custom instructions that access memory creates CFUs
with non-deterministic latency as well as requires consider-
ation of cache ports during DFG exploration. Memory dis-
ambiguation within a custom instruction must also be fac-
tored when doing pattern replacement in the compiler. The
second assumption was that custom instructions were not al-
lowed to contain branches or cross control flow boundaries.
These restrictions were put in place so that custom instruc-
tions can remain stateless and atomic. Both assumptions
are due to limitations in the DFG explorer and compiler,
and do not reflect inherent limitations of the approach.

Thirteen benchmarks were run through the CFU gen-
eration system and fifteen sets of CFUs for each bench-
mark were created. Each set corresponds to an area budget
allotted to the CFUs (relative to one adder, two adders,
etc.). The thirteen benchmarks can be divided into four
categories: encryption, network, audio, and image. The
encryption category contains three benchmarks (blowfish,
rijndael, and sha) from MiBench [15], the network cate-
gory consists of three benchmarks (crc, ipchains, and url)
from NetBench [23], and the audio (gsmdecode, gsmencode,
rawcaudio, and rawdaudio) and image (cjpeg, djpeg, and
mpeg2dec) categories are from MediaBench [20].

The baseline machine for the experiments is a four-wide
VLIW that can issue one integer, one floating-point, one
memory, and one branch instruction each cycle. The in-
struction set and latencies of each instruction are similar to
those of the ARM-7 [29]. In all of our studies, the CFUs
require an integer issue slot to execute, thus an integer op-
eration and a CFU cannot execute in the same cycle. This
was done so that any speedups observed are due to custom
instructions and not from adding parallelism to the machine.
A 300 MHz system clock was assumed for timing constraints,
and CFUs that require more than one clock cycle to execute
are pipelined so as not to affect cycle time. Cost of the CFUs
is measured in die area with respect to a 32 bit ripple-carry
adder. A maximum of five input and three output ports was
placed as an external limit on all CFUs.

Performance Versus Area: The left four graphs in
Figure 7 compare the performance gain in each of the four
benchmark categories as the total cost of CFUs is varied.
Each line in the graphs represents the speedup of an applica-
tion with CFUs as compared to the baseline machine. One of
the interesting trends in these graphs is that speedups seen
in benchmarks vary greatly. Encryption benchmarks tend to
benefit quite a bit from CFUs, with rijndael, blowfish, and
sha showing speedups of 1.87, 1.62, and 1.33, respectively, at
the higher cost points. On the contrary, several applications
in other domains show very little speedup (e.g. mpeg2dec
and ipchains). Investigation into this revealed that these
benchmarks had a significant number of branches and mem-
ory operations, which hindered the combinable operations
available for the DFG explorer. Conversely, the encryption
benchmarks contained large subgraphs dominated by simple
arithmetic and logical operations, which are ideally suited
for custom hardware.

To further illustrate this point, a limit study was per-

formed to determine the performance improvement attain-
able for each benchmark given infinite register file ports, an
infinite area budget, and the simplifying assumptions men-
tioned at the beginning of this section. When compared
against the cost point of 15 adders in Figure 7, our system
realizes speedups very close to the ideal case. This is par-
ticularly true with the audio and image benchmarks which
show very little speedup.

The exceptions to this are djpeg and cjpeg, where very
large CFUs are necessary to achieve the speedup limit. For
example, given infinite resources, the system created a CFU
for djpeg requiring 24 register file read ports and having
an area greater than 8 multipliers. Discrepancies between
the theoretical and realized speedups in other applications
can be explained similarly. With no limits, the system would
create a CFU for blowfish using 80+ register read ports, 40+
register write ports, and containing almost 200 primitive
operations. All of this data supports the conclusion that the
DFG exploration heuristic makes reasonable decisions when
selecting candidates and the compiler effectively uses them.
At the same time, the data provides strong motivation to
loosen the current restrictions on our system in order to
achieve better speedups in future work.

Another very noticeable trend in Figure 7 (djpeg in par-
ticular) is that at some cost points there is a large dip in
speedup. This is due directly to performance estimations
and the greedy selection heuristic. For rawdaudio, a speedup
of approximately 1.7 is attained at cost point 5, by using sev-
eral small and generally useful CFUs. At cost point 6 the
heuristic chose one very large CFU, which was estimated to
be more useful than the small ones, and the compiler was
not able to make use of the large one as well as the smaller
ones. Once the cost budget rises, the greedy selection begins
to include the small CFUs used at point 5 along with the
large one used at point 6, thus the speedups improve beyond
what was possible at point 5.

Cross Compilation: To examine the generalizability
of custom hardware across multiple applications from the
same domain, a set of cross compilation experiments were
performed. The four graphs on the right side of the Fig-
ure 7 show the speedups for each application compiled on
the CFUs for the other applications in the same domain.
For example, in the top right graph, rijndael-blowfish is the
curve created by compiling rijndael using the CFUs gener-
ated for blowfish.

The most noticeable trend is that no application does
quite as well on hardware designed for another application
as it does for its own. There are several cases where good
speedups were attained using another application’s CFUs,
however. Rijndael shows a 1.52 speedup on blowfish’s CFUs,
and rawdaudio shows 1.63 speedup on rawcaudio’s CFUs.
Note that when one application does well using another ap-
plication’s CFUs, it does not necessarily mean that the op-
posite is true. For example, djpeg does well on cjpeg’s CFUs,
but cjpeg gets almost no speedup from using djpeg’s CFUs.
The results show that some of the gains can be preserved
across the domains, but that the CFUs lack enough gener-
ality to support their widespread use in other applications.

CFU Extensions: The critical issue to exploiting CFUs
across multiple applications is the ability to generalize both

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Image

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Cost (Adders)

S
p

e
e

d
u

p

cjpeg

djpeg

mpeg2dec

Audio

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 2 4 6 8 10 12 14 16

Cost (Adders)

S
p

e
e
d

u
p

gsmdecode

gsmencode

rawcaudio

rawdaudio

Encryption

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 2 4 6 8 10 12 14 16

Cost (Adders)

S
p

e
e
d

u
p

blowfish

rijndael

sha

Network

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 2 4 6 8 10 12 14 16

Cost (Adders)

S
p

e
e

d
u

p

crc

ipchains

url

S
p

e
e

d
u

p

0 2 4 6 8 10 12 14 16

Cost (Adders)

Encryption - Cross

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

blowfish-rijndael

blowfish-sha

rijndael-blowfish

rijndael-sha

sha-blowfish

sha-rijndael

1

1.1

1.2

1.3

S
p

e
e

d
u

p

16

Cost (Adders)

0 2 4 6 8 10 12 14

Network - Cross

1.4

1.5

1.6

1.7

1.8

crc-ipchains

crc-url

ipchains-crc

ipchains-url

url-crc

url-ipchains

Image - Cross

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0 2 4 6 8 10 12 14 16

Cost (Adders)

S
p

e
e

d
u

p

cjpeg-djpeg

cjpeg-mpeg2dec

djpeg-cjpeg

djpeg-mpeg2dec

mpeg2dec-cjpeg

mpeg2dec-djpeg

Audio - Cross

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 2 4 6 8 10 12 14 16

Cost (Adders)

S
p

e
e

d
u

p

gsmdecode-gsmencode

gsmdecode-rawcaudio

gsmdecode-rawdaudio

gsmencode-gsmdecode

gsmencode-rawcaudio

gsmencode-rawdaudio

rawcaudio-gsmdecode

rawcaudio-gsmencode

rawcaudio-rawdaudio

rawdaudio-gsmdecode

rawdaudio-gsmencode

rawdaudio-rawcaudio

0 2 4 6 8 10 12 14 16

Figure 7: Speedups for various applications on different sets of CFUs.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

b
lo

w
fi
s
h

b
lo

w
fi
s
h
-r

ijn
d
a
e
l

b
lo

w
fi
s
h
-s

h
a

ri
jn

d
a
e
l

ri
jn

d
a
e
l-
b
lo

w
fi
s
h

ri
jn

d
a
e
l-
s
h
a

s
h
a

s
h
a
-b

lo
w

fi
s
h

s
h
a
-r

ijn
d
a
e
l

c
rc

c
rc

-i
p
c
h
a
in

s

c
rc

-u
rl

ip
c
h
a

in
s

ip
c
h
a
in

s
-c

rc

ip
c
h
a
in

s
-u

rl

u
rl

u
rl
-c

rc

u
rl
-i
p
c
h

a
in

s

S
p

e
e

d
u

p
CFUs Subsumed Subgraphs

Figure 8: Effect of subsumed subgraphs and wildcards in Encryption and Network at the 15-adder cost point.

the CFU hardware and the compiler matching algorithm.
The hardware can be generalized by making the CFUs more
multi-functional (wildcards from Section 3). The compiler
matching algorithm can be generalized by allowing subgraphs
subsumed by the CFU to map onto that CFU (subsumed
subgraphs from Section 3). Figures 8 and 9 examine the ef-
fects of these issues. The figures show the speedups attained
at cost point 15 (adders) for each combination of application
and CFUs.

The effect of compiler generalization is shown by com-
paring the grey and black portions of each bar. The grey
portion of the bars is the speedup attributable to exact sub-
graph matches, and the black portion is the additional gain
resulting when subsumed subgraphs are allowed to map onto
a CFU. The effect of generalizing the hardware is shown by
comparing the two bars. The left bar shows the speedups
attained when the hardware supports no wildcarding, i.e. it
is defined precisely by the application that created it. This
bar corresponds to cost point 15 in Figure 7. The right bar
shows speedups when each CFU is generalized to support
opcode classes. Opcode classes are groups of opcodes that
can match each node of a CFU graph (e.g. ADD and SUB
form a class, logical operations form another class). The in-
tuition behind this model is that opcodes in the same class
are similar in their hardware implementation or they can be
added with little cost overhead, so each node of the CFU
can potentially be generalized with a modest cost overhead.
Note however, the cost of using opcode classes was not ac-
counted for in Figures 8 and 9, so this data simply serves to
estimate the potential gain of multi-function CFUs.

The most important point to take from these figures is
that the subsumed subgraphs are generally very useful on
the cross compiles, but not so much for native compiles. For
example, the subsumed subgraphs associated with blowfish
only accounted for a small percentage of the overall speedup
of that application, but almost all of the speedup rijndael
attained from using blowfish’s CFUs is from the subgraphs.
Subsumed subgraphs are not very useful on native compiles,
because large CFUs are normally chosen for the most com-
putationally intensive portions of the code. This leaves few
nodes in important parts of the code available to be utilized
by subsumed subgraphs. In cross compiles, however, the
DFGs differ between applications and so the smaller sub-
sumed subgraphs take on more importance, as it is easier to
find matches.

Using opcode classes for wildcards also enables effective
reuse of CFUs. Several benchmarks show very large speedups
when wildcards are used, such as sha on rijndael, url on
ipchains, djpeg on mpeg2dec, and rawdaudio on rawcaudio.
When applications show little speedup improvement due to
wildcards in the cross compiles, that means there is very
little commonality in the computationally intensive parts of
their DFGs not already captured by other CFUs. This is
why applications using their own CFUs show little speedup
when moving to wildcards. Most cross compiles show sig-
nificant speedups when moving to wildcards, though, which
motivates incorporating this into future work. It also shows
that applications within a domain generally have similar
DFG structure in the computationally intense portions of
their DFGs.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

1

1.2

1.4

1.6

1.8

2

2.2

2.4

c
jp

e
g

c
jp

e
g
-d

jp
e
g

c
jp

e
g
-m

p
e
g
2
d
e
c

d
jp

e
g

d
jp

e
g
-c

jp
e
g

d
jp

e
g
-m

p
e
g
2
d
e
c

m
p
e
g
2
d
e
c

m
p
e
g
2
d
e
c
-c

jp
e
g

m
p
e
g
2
d
e
c
-d

jp
e
g

g
s
m

d
e
c

g
s
m

d
e
c
-g

s
m

e
n
c

g
s
m

d
e
c
-r

a
w

c

g
s
m

d
e
c
-r

a
w

d

g
s
m

e
n
c

g
s
m

e
n
c
-g

s
m

d
e
c

g
s
m

e
n
c
-r

a
w

c

g
s
m

e
n
c
-r

a
w

d

ra
w

c

ra
w

c
-g

s
m

d
e
c

ra
w

c
-g

s
m

e
n
c

ra
w

c
-r

a
w

d

ra
w

d

ra
w

d
-g

s
m

d
e
c

ra
w

d
-g

s
m

e
n
c

ra
w

d
-r

a
w

c

S
p

e
e

d
u

p

CFUs Subsumed Subgraphs

Figure 9: Effect of subsumed subgraphs and wildcards in Image and Audio at the 15-adder cost point.

In summary, Figures 8 and 9 show that the use of wild-
cards and subsumed subgraphs allows for more effective cross
compilation across the domains.

6. CONCLUSION
Application-specific instruction set extensions are an effi-

cient way to meet the growing performance and power de-
mands of embedded applications. Designing these exten-
sions has traditionally been very user intensive, as an archi-
tect must determine what would make a good extension and
manually insert these extensions into the code. In this paper
we have presented a system that automates this process. Us-
ing an efficient dataflow graph exploration heuristic we are
able to discover and automatically select custom function
units to meet the demands of an application. We have also
demonstrated how a compiler can make use of these custom
function units across a range of applications and shown ways
to increase their utility.

Our system has demonstrated significant speedups for sev-
eral applications, with as much as 1.94 for rawdaudio and
an average of 1.47, while utilizing very little die area. We
have demonstrated that it is difficult to find exact subgraph
matches in order to reuse custom instruction set extensions
across applications in a domain. Simple CFU generaliza-
tion techniques (wildcards and subsumed subgraphs) can
substantially improve the number of matches, however. In
the future, we plan to relax the memory and control flow
restrictions in the present system, and to incorporate multi-
function CFUs into the selection process.

7. ACKNOWLEDGMENTS
We thank Michael Chu and the the anonymous referees for

their helpful comments and suggestions. This research was
supported in part by ARM Limited, the DARPA/MARCO
C2S2 Research Center and equipment donated by Intel Cor-
poration.

8. REFERENCES
[1] A. Aho, M. Ganapathi, and S. Tijang. Code

generation using tree pattern matching and dynamic
programming. ACM TOPLAS, 11(4):491–516, Oct.
1989.

[2] A. Alomary et al. PEAS-I: A hardware/software
co-design system for ASIPs. In EDAC, 1993.

[3] M. Arnold. Instruction Set Extensions for Embedded
Processors. PhD thesis, Delft University of
Technology, 2001.

[4] K. Atasu, L. Pozzi, and P. Ienne. Automatic
application-specific instruction-set extensions under
microarchitectural constraints. In 40th DAC, June
2003.

[5] P. M. Athanas and H. S. Silverman. Processor
reconfiguration through instruction set
metamorphosis. IEEE Computer, 11(18), 1993.

[6] M. Baleani et al. HW/SW partitioning and code
generation of embedded control applications on a
reconfigurable architecture platform. In ACM CODES
Workshop, pages 61–66, May 2002.

[7] J. P. Bennett. A Methodology for Automated Design of
Computer Instruction Sets. PhD thesis, University of

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Cambridge, 1988.

[8] P. Bose and E. S. Davidson. Design of instruction set
architctures for support of high-level languages. In
ISCA, June 5–7, 1984.

[9] P. Brisk et al. Instruction generation and regularity
extraction for reconfigurable processors. In CASES,
pages 262–269, 2002.

[10] H. Choi et al. Synthesis of application specific
instructions for embedded DSP software. IEEE
Transactions on Computers, 48(6):603–614, June 1999.

[11] L. Cordella et al. Performance evaluation of the VF
graph matching algorithm. In Proc. of the 10th
ICIAP, volume 2, pages 1038–1041. IEEE Computer
Society Press, 1999.

[12] R. E. Gonzalez. Xtensa: A configurable and extensible
processor. IEEE MICRO, 20(2):60–70, Mar. 2000.

[13] D. Goodwin and D. Petkov. Automatic generation of
application specific processors. In CASES, 2003.

[14] M. Gschwind. Instruction set selection for ASIP
design. In ACM CODES Workshop, May 1999.

[15] M. R. Guthaus et al. MiBench: A free, commercially
representative embedded benchmark suite. In IEEE
4th Workshop on Workload Characterization, Dec.
2001.

[16] J. R. Hauser and J. Wawrzynek. GARP: A MIPS
processor with a reconfigurable coprocessor. In
Symposium on FPGAs for Custom Computing
Machines, Apr. 1997.

[17] B. Holmer. Automatic Design of Computer Instruction
Sets. PhD thesis, University of California, Berkeley,
1993.

[18] I. Huang and A. M. Despain. Synthesis of application
specific instruction sets. IEEE TCAD, 14(6), June
1995.

[19] R. Kastner et al. Instruction generation for hybrid
reconfigurable systems. ACM TODAES, 7(4), Apr.
2002.

[20] C. Lee, M. Potkonjak, and W. Mangione-Smith.
MediaBench: A tool for evaluating and synthesizing
multimedia and communications systems. In MICRO,
Dec. 1997.

[21] R. Leupers and P. Marwedel. Instruction selection for
embedded DSPs with complex instructions. In EDAC,
Sept. 1996.

[22] S. Liao et al. Instruction selection using binate
covering for code size optimization. In ICCAD, pages
393–399, 1995.

[23] G. Memik, W. H. Mangione-Smith, and W. Hu.
Netbench: A benchmarking suite for network
processors. In ICCAD, pages 39–, 2001.

[24] K. V. Palem, S. Talla, and P. W. Devaney. Adaptive
explicitly parallel instruction computing. In Proc.
Australasian Computer Architecture Conference, pages
61–74, 1999.

[25] A. Peymandoust et al. Automatic instruction set
extension and utilization for embedded processors. In
14th ASAP, June 2003.

[26] J. V. Praet et al. Instruction set definition and

instruction selection for ASIP, 1994.

[27] D. S. Rao and F. J. Kurdahi. On clustering for
maximal regularity extraction. IEEE Transactions on
Computer Aided Design, 12(8), Aug. 1993.

[28] R. Razdan and M. D. Smith. A high-performance
microarchitecture with hardware-programmable
function units. In MICRO, pages 172–180, Dec. 1994.

[29] D. Seal. ARM Architecture Reference Manual.
Addison-Wesley, 2000.

[30] F. Sun et al. Synthesis of custom processors based on
extensible platforms. In ICCAD, Nov. 2002.

[31] Trimaran. An Infrastructure for Research in ILP.
http://www.trimaran.org.

[32] M. J. Wirthlin and B. L. Hutchings. DISC: The
dynamic instruction set computer. In Field
Programmable Gate Arrays for Fast Board
Development and Reconfigurable Computing, pages
92–103, 1995.

[33] L. Wu, C. Weaver, and T. Austin. Cryptomaniac: A
fast flexible architecture for secure communication. In
ISCA, pages 110–119, June 2001.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

