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Abstract 
 

This work presents a new compilation technique that uses 
instruction replication in order to reduce the number of 
communications executed on a clustered 
microarchitecture. For such architectures, the need to 
communicate values between clusters can result in a 
significant performance loss. Inter-cluster 
communications can be reduced by selectively replicating 
an appropriate set of instructions. However, instruction 
replication must be done carefully since it may also 
degrade performance due to the increased contention it 
can place on processor resources. The proposed scheme 
is built on top of a previously proposed state-of-the-art 
modulo scheduling algorithm that effectively reduces 
communications. Results show that the number of 
communications can decrease using replication, which 
results in significant speed-ups. IPC is increased by 25% 
on average for a 4-cluster microarchitecture and by as 
much as 70% for selected programs. 

1. Introduction 

Clustering is becoming a mainstream 
microarchitectural technique due to its benefits in terms of 
wire delays, power dissipation and complexity. Clustering 
consists of splitting the processor resources into several 
groups or clusters. The components of each cluster are 
simpler, faster, and consume less power than a monolithic 
implementation. The resources in a cluster can be laid out 

close together, which reduces signal transmission delays 
[13]. Long (and slow) wires are used to interconnect 
clusters. 

The use of clustering is especially noticeable in the 
DSP market, including Texas Instruments’ TMS320C6x 
[23], Analog Devices’TigerSHARC [10], BOPS’s Man 
Array [19], HP/ST’s Lx [9] and Equator’s MAP1000 [11]. 
All of these processors use a statically-scheduled, 
clustered, microarchitecture. 

Compilers play a critical role for statically-scheduled 
processors. An important step of compilation is code 
scheduling. In this paper, we focus on instruction 
scheduling techniques for clustered microprocessors. In 
particular, we limit our focus to scheduling software-
pipelined loops [7] since a vast majority of the execution 
time on this class of processors is spent in loop bodies. 

One major constraint to be considered during 
instruction scheduling for clustered microarchitectures is 
inter-cluster communication. Even when we use an 
instruction scheduler that reduces communication, inter-
cluster communications can degrade performance. In 
Figure 1, we provide the percentage of time that the 
Initiation Interval (II – the number of cycles between the 
initiation of consecutive iterations) is increased beyond 
the minimum initiation interval (MII – a lower bound of 
the II computed taking into account the limited resources 
in the architecture and the recurrences in the code). 
Results have been obtained using a state-of-the-art 
scheduler [2] on 678 loops taken from the SPECfp95 
benchmark suite. This scheduler uses a graph partitioning 
algorithm to properly assign instructions to clusters, 
balancing the workload and minimizing the number of 
communications. There are three reasons that cause us to 
increase the II: excess communications, recurrences that 
do not fit in the current II and excess register pressure. 

In this paper, we will discuss different cluster 
configurations that are labeled as wcxbylzr, where w is the 
number of clusters, x is the number of inter-cluster buses, 
y is the latency of these buses, and z is the number of 
registers. As we can see, between 70-90% of the increases 
in the II are due to communications. Only 2-4% of the 
increases in the II were due to recurrences. This is due to 
the fact that the MII already takes into account recurrence 
constraints. 
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Figure 1: Causes for increasing the II. 
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When a value is needed in more than one cluster, one 
alternative to generating a communication is to compute 
the value in each place where it is needed. Applying this 
technique comes at the expense of some code replication, 
so it must be performed carefully since it will increase the 
pressure placed on other processor resources and thus 
may also incur in some performance degradation. In this 
work we propose a technique to replicate selected 
instructions in multiple clusters in order to reduce the 
number of communications. The replication scheme is 
implemented on top of a state-of-the-art scheduling 
algorithm for clustered processors. The proposed 
technique is evaluated for a clustered VLIW machine, 
though it can be used for any statically-scheduled 
architecture. We evaluate this approach using 678 loops 
taken from the SPECfp95 benchmark suite. The execution 
in the loop bodies represent approximately 95% of the 
total execution time. The results for different 
configurations show that replication can significantly 
speed up the program execution.  

The remainder of this paper is organized as follows. 
Section 2 provides some background on modulo 
scheduling and graph partitioning. Section 3 describes our 
replication heuristics. Section 4 analyzes its performance. 
Section 5 describes some alternatives to our replication 
technique. Section 6 reviews related work and section 7 
summarizes this work. 

2. Background 

2.1.  Description of the Microarchitecture 

In this work, a statically-scheduled clustered 
microarchitecture is considered. Each cluster is composed 
of multiple functional units and a register file. Clusters 
communicate register values among them using special 
copy instructions and a set of dedicated register buses.  
The memory hierarchy is centralized and shared by all 
clusters. In this work, we have assumed homogeneous 
clusters, although the proposed algorithm can be easily 
extended to deal with heterogeneous clusters. 

VLIW instructions flow through all clusters in a 
lockstep fashion (all clusters work on the same VLIW 
instruction together). Each cluster fetches and executes 
the operations contained in their corresponding part of 
each VLIW instruction. 

2.2. Instruction Scheduling Overview 

Modulo scheduling is a well-known technique for 
scheduling cyclic codes [8][20]. The most important 
characteristics of a modulo scheduled loop are the 
initiation interval (II), which represents the number of 
cycles between successive iterations of the loop, and the 
length of the schedule, which is the number of cycles 
necessary to schedule all the instructions of a single 

iteration of the loop. These two factors have a direct 
impact on execution time as follows: 
 Texec= (N-1+SC)·II 

SC=length/II 
where N is the number of iterations of the loop, SC is the 
stage count and length stands for the length of the 
schedule. Therefore, reducing II and length are crucial to 
obtain a good schedule. 

2.3. Base Algorithm 

The replication technique that we present in this paper is 
implemented on top of a state-of-the-art modulo 
scheduling scheme that has previously been shown to 
effectively reduce communications [2]. Figure 2 
represents the high-level structure of this framework. The 
algorithm starts at II=MII. First, the data dependence 
graph (DDG) is partitioned, that is, each node is allocated 
to a cluster. This partition requires a fixed number of 
communications that in turn induce an initiation interval 
for the bus (IIpart). If IIpart ≤ II, then the algorithm tries to 
schedule the instructions according to the partition. If a 
suitable schedule is found, the algorithm finishes. If 
IIpart>II, or if a suitable schedule has not been found, then 
the II is increased. Since this provides additional slots in 
every cluster, a refinement heuristic is applied in order to 
find a better partition. 

In the next subsection we describe in detail the 
portions of the partitioning scheme relevant to this work. 
For more details on the scheduling algorithm, the 
interested reader is referred to the original paper [2]. 

2.3.1. Graph Partitioning. The general idea of the graph 
partitioning problem is to split the set of nodes of a graph 
into a certain number of parts, meeting some constraints, 
and trying to optimize some figure of merit. For the 
purposes of this work, we will partition a DDG 
representing the body of a loop. The final goal is to assign 
each instruction of the DDG to a cluster so the number of 
parts is the same as the number of clusters. The number of 
instructions that can be assigned to each cluster is 
constrained by the limited resources available and the II. 
Finally, we would like to obtain a partition that can 
generate a schedule that minimizes execution time. 

Graph partitioning is an NP-complete problem and 
many heuristic-based solutions have been proposed in the 
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Figure 2: The High level structure of the scheduler. 
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literature. In this work we use a multilevel strategy. 
Multilevel strategies have been shown to be very effective 
[14] and are available in many software packages 
[12][15]. They consist of two steps: 

1. First, the graph is coarsened, that is, a new graph 
with fewer nodes is built by grouping pairs of nodes of 
the initial graph into new macro-nodes. To choose the 
nodes that will be grouped in the new macro-node, we 
first weight the edges of the graph according to the 
impact that adding a bus latency to that edge would 
have on execution time [1]. Next, a maximum weight 
matching is identified. The nodes connected by edges 
in the matching are grouped together in a new macro-
node. This process is repeated until we get a graph with 
as many nodes as the number of sets desired. This 
induces a preliminary partition of the original graph. It 
also induces a partition in all the intermediate graphs 
generated during the coarsening process.  
2. The second phase uses two heuristics to refine the 
preliminary partition. The general idea is to generate 
different partitions by moving nodes from one cluster 
to another. Then, the best partition is chosen using a 
metric to compare different partitions. For this purpose, 
a pseudo-schedule is used. A detailed description of 
these heuristics and the pseudo-scheduler can be found 
in [2]. 

2.3.2. Scheduler. At the beginning of the scheduling step, 
the new instructions needed to carry out the 
communications in the clustered architecture are added to 
the DDG. Afterwards, the nodes of the DDG are sorted 
according to [18]. Then, following this order, each node is 
scheduled in the cluster where it is placed during the 
partitioning step. Each node is scheduled as close as 
possible to its predecessors and successors in order to 
keep register pressure low. Since backtracking is not used, 
if a suitable slot cannot be found for a node, the II is 
increased, the partition is refined, and instructions are 
scheduled again. 

3. Replication Algorithm 

In this section we describe the proposed algorithm that 
selects the instructions that are replicated in other clusters. 

Given a partition, there is some number of 
communications among clusters that are implied by the 
partition. Nevertheless, there may not be enough bus slots 
to schedule all of them. In fact, this is a major cause of 
increasing the II in clustered microarchitectures (as we 
saw in Figure 1). We will refer to the number of excess 
communications as extra_coms. Whenever we have more 
communications to carry out than we have available bus 
bandwidth, we can compute the number of extra 
communications as follows: 
 extra_coms= nof_coms – bus_coms 
 bus_coms= ⌊II / bus_lat⌋ · nof_buses 

where nof_coms stands for the total number of 
communications in the current partition and bus_coms is 
the maximum number of communications that can be 
scheduled through the bus, taking into account the limited 
resources in the architecture. nof_buses stands for the 
number of buses available and bus_lat represents their 
latency. 

The replication algorithm first computes the 
replication subgraph for each communication in the 
partition. This subgraph is the minimum set of nodes that 
have to be replicated in order to remove the corresponding 
communication. Then, the subgraphs to replicate are 
selected according to a heuristic. This process is iterated 
until extra communications are avoided. Thus, no over-
replication is possible. If extra communications cannot be 
avoided, the II has to be increased and the partition 
refined.  In the next subsections we present the algorithm 
in more detail. 

3.1. Replication Subgraphs 

The replication subgraph corresponding to an instruction 
com that has to be communicated to other clusters is the 
minimum set of nodes that have to be replicated in order 
to remove that communication. We will denote this 
subgraph as Scom. 

A simple example of building replication subgraphs is 
presented in Figure 3. The graph shown in the upper left 
of the figure is the original graph. The scheduler partitions 
it into four sets of nodes and each set is assigned to a 
different cluster: {L,M,N} in cluster 1; {I,J,K} in cluster 
2; {A,B,C,D,E} in cluster 3; and {F,G,H} in cluster 4. For 
this resulting partition, there are three values that have to 
be communicated: the values produced by instructions D, 
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Figure 3: Example of instruction replication to reduce 
communications. 
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E and J. 
The replication subgraph corresponding to the 

communication of the value produced by instruction D 
has four nodes: SD={D,B,C,A}; the replication subgraph 
for E is: SE={E,A}. Node D does not belong to SE because 
it is not necessary to replicate D to remove 
communication E, since the value produced by D has 
already been communicated and is available in the other 
clusters. Finally, the replication subgraph of instruction J 
is: SJ={J,I}. 

Note that to remove a particular communication, it is 
not necessary to replicate its associated replication 
subgraph in all clusters. Obviously, it is enough to 
replicate the subgraph in the clusters where the value has 
a consumer. For example, to remove the communication 
associated with node E, SE should be replicated in clusters 
2 and 4, whereas to remove the communication associated 
with D, SD should be replicated only in cluster 4. Last, 
note also that stores are never replicated since the cache 
memory is centralized. Therefore, a load dependent on a 
store can get the data written by this store regardless of 
the cluster where the store has been executed. 

The algorithm to compute a replication subgraph for a 
given communication is presented in Figure 4. Initially, 
there is only one node in the replication subgraph, which 
is the node that produces the value that has to be 
communicated. Then, this node’s parents are explored. If 
a parent produces a value that has to be communicated, 
that node is not included in the replication subgraph since 
that value is already available in the other clusters. 
Otherwise, the node is included in the subgraph and all of 
its parents are explored too. 

3.2. Removing Unnecessary Instructions 

After removing a communication by replicating a 
subgraph in other clusters, there may be some instructions 
from the original graph that are no longer needed. A good 
example can be found in Figure 3. The graph in the 

bottom of the figure represents the resulting graph after 
removing the communication of node E by replicating SE 
in clusters 2 and 4. Then, the original instruction E in 
cluster 3 is useless. The value that it produces is not used 
by any other instruction. The two successors of E (J and 
G), obtain their copy of E from the copy generated in their 
respective clusters. Therefore, the original instruction E 
can be removed from the schedule. Hence, more resources 
become available in cluster 3. 

Removable instructions can be anticipated before 
replication. Thus, they can also be taken into account 
when selecting which subgraph to replicate. Figure 5 
describes the algorithm to find the instructions that can be 
removed if a communication was removed by using 
instruction replication. The algorithm starts by inspecting 
the instruction that produced the value that has to be 
communicated. If the instruction has no children in the 
cluster where it is placed, then the instruction can be 
removed. If the instruction is removed, then all of its 
parents that belong to the same cluster are candidates for 
removal (the parents may not have any other children in 
that cluster). Parents that do not belong to the same 
cluster cannot be removed. In fact, the nodes that need to 
communicate values belong to a different replication 
subgraph. They might be able to be removed when 
replicating that subgraph. 

3.3. Replication Heuristic 

After computing the replication subgraphs and the 
removable instructions for all of the values that need to be 
communicated to other clusters, we must choose which 
subgraphs will be replicated. The main goal here is to 
reduce extra_coms communications so that the bus is no 
longer overloaded and so the resulting partition with the 
added replications can be scheduled using the current II. 
Note that replicating any of the subgraphs has the same 
impact on the II: it reduces exactly by one the number of 
communications. Therefore, just extra_coms subgraphs 
need to be replicated so that communications do not cause 

find_replication_subgraph_of (com) { 
list <node> candidates; 
candidates+=parents_of(com); 
subgraph+=com;  
while (candidates not empty) { 
    node v= candidates.pop(); 
    if ( ∃com (v) &&  v∉subgraph ) { 
        subgraph+=v; 
        candidates+= parents_of(v); 
        } 
    } 
return subgraph; 
} 

Figure 4: Algorithm to find the replication subgraph of 
com. 

find_removable_instructions (com) { 
list<node> removable, candidates; 
candidates+=com; 
while (candidates not empty) { 
    node v:= candidates.pop(); 
    if (∃y / y child of v && cluster(y)==cluster(v) 
                                                     &&y∉removable) { 
        removable+=v; 
        candidates+=parents of v in same cluster  as com; 
        } 
     } 
return removable; 
} 

Figure 5: Algorithm to identify removable instructions. 
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an increase in the II. In some cases, the value for 
extra_coms is high, so if we do not carefully select the 
graphs to be replicated, there may not be sufficient 
resources to replicate all the necessary instructions. 
Therefore, it is important to reduce the number of extra 
instructions that need to be added. Furthermore, reducing 
the number of extra instructions is also beneficial for 
other reasons such as register pressure, energy 
consumption and code length. Hence, our metric is based 
on extra instructions. Next, we describe the heuristics 
used to arrive at a good set of replications. 

Our heuristic for finding a good set of replications 
works as follows: first, we assign a weight to each 
subgraph. This weight is an estimate that reflects the 
impact on resource usage that the replication of the 
subgraph would have. Then, we look for the subgraph 
with the lowest weight and replicate it. Next, the 
subgraphs and the weights of the remaining 
communications are updated as explained in section 3.4. 
This process is repeated until extra_coms communications 
are removed or until no further replication is possible due 
to resource constraints. 

To weight a subgraph, we first assign weights to the 
nodes that have to be copied to other clusters to avoid the 
communication and the nodes that can be removed after 
the subgraph has been replicated. Then, the weight of the 
subgraph is the sum of the weights of the nodes that have 
to be replicated, minus the weight of the nodes that can be 
removed. 

To compute the weight of a single node v, we take 
into account how constrained resources will be that are 
used by the instruction if the subgraph is replicated: 

IIcresavailable
subgraphcresopsextracresusagecvweight

⋅
+=

),(
),,(_),(),(  

where usage(res,c) stands for the number of instructions 
that use resource res that are assigned to cluster c for the 
given partition; extra_ops(res,c,subgraph) represents the 
number of instructions that use resource res that have to 
be replicated in cluster c to replicate the subgraph and 
finally, available(res,c) are the number of resources of 
type res in cluster c. 

If a node belongs to more than one subgraph, it can 
be replicated and then used more times. To reflect this 
fact, the previous formula is divided by the number of 
subgraphs that can benefit from the copy of a node in a 
cluster:  

{ }CC SvS
IIcresavailable

subgraphcresopsextracresusage

cvweight
∈

⋅
+

=
/

),(
),,(_),(

),(  

To illustrate the algorithm, we will show how the 
weights of the replication subgraphs in Figure 3 are 
computed. Assume that every FU can execute all types of 
instructions and that each cluster has 4 of these FUs. If the 
II=2, and there is only one 1-cycle latency bus, then 
extra_coms=1. 

In SD there are four instructions. To remove 
communication D, all of them must be copied to cluster 4. 
No instruction would be removable if SD was replicated. 
Therefore the corresponding weight will be the sum of 
four terms. Let res represent the FU. For all the 
instructions in SD, usage(res,c4)=3 and 
extra_ops(res,c4,SD)= 4; available(res,c4)=4 and II=2; so 
[usage(v,c4) + extra_ops(res,c4,SD) ] / 
[available(res,c4)·II ]= 7/8. 

The only instruction that appears in other subgraphs 
is instruction A. It appears only in one other subgraph so 
its weight will be divided by 2. Therefore: 
 

16
49

16
7

8
7

8
7

8
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Regarding SE, when copying A and E in cluster 2, the 
load in that cluster will be 5/8. The same happens for 
cluster 4. Moreover, the copy of A in cluster 4 is also 
required by the replication of SD, so this weight is divided 
by 2. Finally, instruction D in cluster 3 could be removed, 
so the load of cluster 3 after replication is 4/8. Then we 
have: 
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Finally, for SJ, in cluster 1 and 3 the usage of the 
resources will be 5/8 so: 
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3.4. Updating Subgraphs 

When a communication is substituted by instruction 
replication, the rest of the replication subgraphs and their 
corresponding removable instructions have to be updated. 
Therefore, the weights of the remaining subgraphs may 
change and thus have to be recomputed. 

In Figure 6, an example is presented. The graph 
corresponds to the graph shown in Figure 3 after 
replicating SE. The updates for replication subgraphs SD 
and SJ are highlighted. 

SD now only has three nodes {D,B,C}, because node 
A has already been replicated. Moreover, at this point, the 
subgraph should also be replicated in cluster 2 to remove 
the communication of D, since now there exists a child of 
node D: the copy of node E. Finally, nodes A, B, C and D 
can be removed from cluster 3 if SD is replicated, because 
they would be useless there. 

Regarding SJ, there are now two new nodes in this 
subgraph: (copies of instructions E and A), so 
SJ={J,I,E,A}. However, if communication J is removed 
through replication, nodes E and A should be replicated 
only in cluster 1 since there are already copies of these 
instructions in cluster 4. 

So three tasks have to be performed to update the 
remaining subgraphs after replicating one of them: 
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1. Some subgraphs may have to be replicated in 
more clusters. Since there are new copies of 
instructions, some nodes may have children in 
clusters where they did not have them before. A good 
example is SD, which also has to be replicated in 
cluster 2 after replicating SE. 
2. Some subgraphs may grow. After replicating a 
subgraph, a communication is removed. The 
instruction producing the value that is no longer 
communicated, and some of its predecessors, may 
now be included in another subgraph. This is the case 
for SJ in the example. After replicating SE, nodes A 
and E are included in SJ. 
3. Some nodes may be removed from some 
replication subgraphs. Since nodes can belong to 
more than one replication subgraph, if one of these 
subgraphs is replicated, some instructions do not need 
to be replicated again. This is the case for instructions 
E and A in SJ.  They only need to be replicated in 
cluster 1, but not in cluster 4. It is also the case for 
instruction A in subgraph SD, which has already been 
replicated in clusters 2 and 4, so A can be removed 
from SD. 
Furthermore, removable instructions may also 

undergo some changes: 
1. There can be instructions that previously were 
not removable, that become removable after 
replicating a subgraph and removing some original 
instructions. This is the case for instructions D, B, C 
and A from the example, which will be removable if 
SD is replicated after having replicated SE. 
2. On the other hand, instructions that were 
removable may no longer be, due to new copies. 

4. Experimental Evaluation 

We have implemented our replication technique as a part 
of a research compiler [4]. To drive our evaluation we 
have used the SPECfp95 benchmarks. Statistics are 
reported only for innermost loops that can be modulo 
scheduled. Programs were run until completion using the 
test input set. We have found that these loops represent 
around 95% of the total execution time of these programs. 

We have assumed a VLIW architecture with an issue 
width of 12. In this architecture, we assume 4 fp FU’s, 4 
integer FU’s and 4 memory ports. The different clustered 
configurations are presented in Table 1. The first 
configuration is a 2-cluster architecture that has 2 FUs of 
each type and half of the number of registers per cluster, 
whereas the 4-cluster architecture has only one functional 
unit of each type per cluster and one fourth the number of 
registers per cluster. The memory hierarchy is shared by 
all the clusters and all cache accesses are considered hits. 
Different configurations based on the number of registers, 
number of buses, and latency of the buses are considered. 
Each configuration is identified as a sequence of letters 
and numbers (wcxbylzr), as described in the introduction. 

We have used IPC as the main performance metric. 
Hence, it is necessary to know the number of times each 
loop is executed and the average number of iterations. 
They have been obtained through profiling. Figure 7 
shows the IPC for different configurations. The main 
conclusion is that instruction replication increases 
performance for all the benchmarks and for all the tested 
architectures. It is important to highlight that the baseline 
scheduler that does not perform replication, is a state-of-
the-art technique that has been shown to be very effective 
at minimizing communications. Benefits would be even 
higher for more basic schedulers. For example, for the 
4c2b4l64r configuration, the average speedup provided by 
replication is 25%. For some programs such as su2cor, the 
benefits can be up to 70%,  65% for tomcatv and 50% for 
swim. On the other hand, there are two programs for 
which the benefit is rather low, namely, mgrid and applu. 
For these two benchmarks we have performed a more 
extensive study. 

In Figure 8 we present the IPC of mgrid. The first bar 
represents the IPC of a unified microarchitecture, that is, a 
processor with the same resources but not split into 
clusters. The IPC of the unified configuration can be used 
as an upper bound for clustered architectures (obviously 
clustered microarchitectures benefit from shorter intra- SD= {D,B,C} ⇒ In cluster 4 but now also in cluster 2

Removable={D,B,C,A} from cluster 3
Weight=1+1+1+1+1+1-4/8=44/8
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Figure 6: Updating replication subgraphs and weights. 

Resources 2-
cluster 

4-
cluster 

 Latencies INT FP 

INT/cluster 2 1  MEM 2 2 
FP/cluster 2 1  ARITH 1 3 

MEM/cluster 2 1  MUL/ABS 2 6 
    DIV/SQRT 6 18 

Table 1: Clustered VLIW configurations. 
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cluster delays and thus may be clocked faster). The other 
three bars are the IPC of the three configurations 
assuming a 2-cycle latency bus. As we can see, the IPC 
obtained for the clustered microarchitectures is very close 
to the performance of the unified configuration. In other 
words, even without replication, the inter-cluster 
communications mildly impact performance and thus, the 
potential benefits of replication are minimal. This 
demonstrates that the scheduler we have developed 
performs quite well and reduces communications. 

In applu, we have observed that the loops that 
consume most of the execution time are loops that are 
executed many times, but they have a small number of 
iterations (i.e., 4). Therefore, the impact of the II on the 
IPC is not very large.  The proposed replication  technique 
aims at reducing the II by removing communications. In 
fact, it does a good job in this respect, as we can see in 

 Figure 9. Replication reduces the II by around 10-20%, 
depending on the configuration. For loops with small 
iteration counts per visit, it may be more beneficial to 
reduce the length of the schedule. This issue is further 
investigated in section 5.1, where an extension of the 
replication algorithm targeting this issue is presented. 

Figure 10 shows the number of additional instructions 
that are executed due to instruction replication for 
different processor configurations. The additional number 
of instructions is rather small for all configurations. For 
most configurations, the additional instructions increase 
by less than 5%. Integer instructions represent the most 
common type of replicated instructions. This is due to the 
structure of the loops. Usually, in the upper levels of the 
DDG there are integer instructions. And instructions in 
the upper levels appear in multiple subgraphs. Besides, in 
terms of FU pressure, it is cost-effective to remove 
communications in upper levels by replication. 
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Figure 7: Performance results. 
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The proposed replication technique removes around 

one third of the communications, depending on the 
configuration. For instance, for the 4c1b2l64r, 36% of the 
communications are removed and every communication 
requires the replication of 2.1 instructions on average. In 
general, the replicated subgraphs are quite small since 
replication of large graphs is not beneficial in many cases 
due to the increase in resource pressure.  In addition to 
configurations with 64 registers, we have also studied 
clustered architectures with 32 and 128 registers. Similar 
results have been obtained. 

5. Alternative Replication Algorithms 

Several other alternative replication algorithms have been 
investigated in this work. Some of them provide benefits 
just in a few cases and others provide almost no benefits 
at all. In this section we present alternatives that provide 
some interesting insight into the problem of replication, 
even if in some cases the conclusion is that the 
investigated alternative is not effective. 

5.1. Replicate to Reduce the Schedule Length 

The replication technique described in section 3 tries to 
reduce the number of communications in order to 
minimize the II. For loops with a high trip count, the 
execution time is almost proportional to the II, so 
reducing the II is crucial. However, when the number of 
iterations is rather small, the time consumed by the prolog 
and the epilog may be higher than the time consumed by 
the kernel [21]. For such loops, reducing the schedule 
length may be more important than reducing the II. This 
happens in applu, as discussed in section 4.  

Communications also impact the length of the 
schedule because of the bus latency. In Figure 11 we can 
see an example. In the left graph, the communication of 
the value produced by instruction A introduces a one 
cycle delay in the path A, D, E. Replication could be used 
to remove this communication in the critical path and 
thus, reduce the schedule length. Note that if we are not 
interested in further reducing communication bus 
utilization (i.e. it does not impact the II anymore) we may 
choose to replicate the instruction only in the cluster 
where it benefits the schedule length, instead of all the 
clusters that use the value. For instance, in the right graph 
of Figure 11, instruction A is replicated in cluster 1, but 
not in cluster 3, so the communication has not 
disappeared. However, the length of the schedule 
decreases by one cycle. 

The general idea for this extension to the replication 
algorithm is to identify the communication edges located 
on the critical path of the schedule of a single iteration 
and then try to remove these communications by using 
replication. 

Let us first quantify the maximum benefit that could 
be obtained from this extension to the replication 
algorithm. For this purpose, we assume that the latency of 
the bus is zero during the scheduling step. Thus, the 
impact of communications on the II is considered, but 
these operations do not affect the schedule length. The 
resulting schedule is obviously wrong, but it can be used 
as an upper bound on the benefit that can be obtained. In 
Figure 12, we compare the harmonic mean of the IPC 
obtained for this scheme and the IPC obtained for the 
normal approach. As we can see, the potential benefits of 
this extension to reduce the length of the schedule are 
almost negligible. If we ignore the bus latency needed for 
producing the schedule, the speed-up is around 1% for the 
4-cluster configurations and almost zero for the 2-cluster 
architecture (assuming a 2-cycle latency bus). We have 
also evaluated a number of configurations with a 4-cycle 
bus latency. Though the potential benefits are slightly 
larger, the overall impact is still low. 

However, the benefits of this extension are higher for 
selected programs. For applu, the potential benefit, 
assuming zero-cycle bus latency, is around 5% in some 4-
cluster configurations. Nevertheless, it seems difficult to 
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obtain a significant speed-up by removing the 
communications in the critical path using replication. In 
fact, the performance of a unified architecture is much 
higher than for a 4-cluster architecture, even assuming 
zero-cycle latency buses. This suggests that the effects of 
communication on the length of the schedule are not as 
important as the effects of splitting the resources into 
clusters. When clustering, there are fewer resources 
available in each cluster, so conflicts increase. Since 
replication increases resource pressure, we conclude that 
replicating to reduce schedule has a minor impact on 
performance (this was confirmed by further experiments). 

Another reason why replication in general does not 
significantly reduce the schedule length is due to the use 
of the pseudo-schedules in the scheduling process [2]. 
They allow for a very accurate estimation of the length of 
the schedule during the partition and in consequence, 
there are not as many communications in the critical path, 
since the partition tries to put communications in edges 
that do not affect the length of the schedule.  

5.2. Replicating for Multiple Communications 

One approach we further explored was to replicate for 
multiple communications simultaneously, and at the same 
time, making the replication more aware of the 
information discovered by the partitioning step. In theory, 
this approach seems to have more potential than 
replicating each communication individually. In a 
nutshell, we tried to replicate macro-nodes at the different 
levels of the partition. The results were not good, mainly 
due to the fact that too many unnecessary instructions 
were replicated when replicating macro-nodes. Besides, 
due to resource conflicts, in the majority of the cases, only 
replications that imply a few instructions are beneficial. 

6. Related Work 

There is limited prior work related to instruction 
replication. Chaitin et al. [6], in the context of register 
allocation based on graph-coloring, point out that some 
values can be cheaply recomputed instead of spilled to 
memory. Based on this observation, they proposed a 
technique called rematerialization. This technique was 
later extended by Briggs et al. [5].  

The most closely related work to our proposal include 
the work of  Kuras et al. [17] where they describe a 
technique called value cloning for Long Instruction Word 
architectures with partitioned register banks. That work 
targeted read-only values and induction variables. 

Another approach to adress excess communications 
in cluster architectures is loop unrolling. There are various 
works adressing this topic such as [22]. Though unrolling 
removes most of the communications and achieves high 
performance it increases significantly code size. For 
DSPs, where VLIW architectures are frequently used, 
code size is a critical issue. 

There are a number of modulo scheduling approaches 
for clustered VLIW architectures that have been recently 
proposed. In this work, we have shown the benefits of our 
instruction replication scheme using a state-of-art modulo 
scheduling algorithm [2]. 

There are many works related to acyclic code 
scheduling for clustered VLIW architectures. To the best 
of our knowledge none of them make use of instruction 
replication. However, heuristics proposed in this paper to 
reduce scheduling length can be also applied to acyclic 
code. 

Cluster microarchitectures are also popular for 
dynamical scheduled processors. In this area, Aggarwal et 
al. studied a technique to perform dynamic instruction 
replication [3]. 

Task duplication [16] has been used in the 
multiprocessors domain to alliviate the overhead 
introduced when tasks executing on different processors 
exchange data. 
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7. Conclusions 

In this work we have presented a compiler technique to 
replicate selected instructions in order to reduce inter-
cluster communications. The proposed technique is 
shown to reduce the number of communications by 
approximately one third, depending on the processor 
configuration.  Replication has been shown to produce 
significant speedups for all configurations and all 
programs. For instance, for a 4-cluster processor, the 
average speedup is 25% and for some programs like 
su2cor it can be as much as 70%. 

Our replication scheme aims at removing the 
communications that have the largest impact on the 
execution time, and those with the same impact are 
priotirized according to their cost in terms of the required 
number of replicated instructions. As a consequence, the 
performance benefits come at the expense of a very small 
increase in the number of executed instructions (less than 
5% for most processor configurations). 
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