
Instruction Replication for Clustered Microarchitectures

Alex Aletà1, Josep M. Codina1, Antonio González1,2 and David Kaeli3

1. Dep. of Computer Architecture, UPC, Barcelona, Spain
2. Intel Barcelona Research Center, Intel Labs, UPC, Barcelona, Spain

3. Northeastern University, Boston, MA, USA
E-mail: {aaleta, jmcodina, antonio}@ac.upc.es; kaeli@ece.neu.edu

Abstract

This work presents a new compilation technique that uses
instruction replication in order to reduce the number of
communications executed on a clustered
microarchitecture. For such architectures, the need to
communicate values between clusters can result in a
significant performance loss. Inter-cluster
communications can be reduced by selectively replicating
an appropriate set of instructions. However, instruction
replication must be done carefully since it may also
degrade performance due to the increased contention it
can place on processor resources. The proposed scheme
is built on top of a previously proposed state-of-the-art
modulo scheduling algorithm that effectively reduces
communications. Results show that the number of
communications can decrease using replication, which
results in significant speed-ups. IPC is increased by 25%
on average for a 4-cluster microarchitecture and by as
much as 70% for selected programs.

1. Introduction

Clustering is becoming a mainstream
microarchitectural technique due to its benefits in terms of
wire delays, power dissipation and complexity. Clustering
consists of splitting the processor resources into several
groups or clusters. The components of each cluster are
simpler, faster, and consume less power than a monolithic
implementation. The resources in a cluster can be laid out

close together, which reduces signal transmission delays
[13]. Long (and slow) wires are used to interconnect
clusters.

The use of clustering is especially noticeable in the
DSP market, including Texas Instruments’ TMS320C6x
[23], Analog Devices’TigerSHARC [10], BOPS’s Man
Array [19], HP/ST’s Lx [9] and Equator’s MAP1000 [11].
All of these processors use a statically-scheduled,
clustered, microarchitecture.

Compilers play a critical role for statically-scheduled
processors. An important step of compilation is code
scheduling. In this paper, we focus on instruction
scheduling techniques for clustered microprocessors. In
particular, we limit our focus to scheduling software-
pipelined loops [7] since a vast majority of the execution
time on this class of processors is spent in loop bodies.

One major constraint to be considered during
instruction scheduling for clustered microarchitectures is
inter-cluster communication. Even when we use an
instruction scheduler that reduces communication, inter-
cluster communications can degrade performance. In
Figure 1, we provide the percentage of time that the
Initiation Interval (II – the number of cycles between the
initiation of consecutive iterations) is increased beyond
the minimum initiation interval (MII – a lower bound of
the II computed taking into account the limited resources
in the architecture and the recurrences in the code).
Results have been obtained using a state-of-the-art
scheduler [2] on 678 loops taken from the SPECfp95
benchmark suite. This scheduler uses a graph partitioning
algorithm to properly assign instructions to clusters,
balancing the workload and minimizing the number of
communications. There are three reasons that cause us to
increase the II: excess communications, recurrences that
do not fit in the current II and excess register pressure.

In this paper, we will discuss different cluster
configurations that are labeled as wcxbylzr, where w is the
number of clusters, x is the number of inter-cluster buses,
y is the latency of these buses, and z is the number of
registers. As we can see, between 70-90% of the increases
in the II are due to communications. Only 2-4% of the
increases in the II were due to recurrences. This is due to
the fact that the MII already takes into account recurrence
constraints.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2c1b2l64r 4c1b2l64r 4c2b2l64r

Registers

Recurrences

Bus

Figure 1: Causes for increasing the II.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

When a value is needed in more than one cluster, one
alternative to generating a communication is to compute
the value in each place where it is needed. Applying this
technique comes at the expense of some code replication,
so it must be performed carefully since it will increase the
pressure placed on other processor resources and thus
may also incur in some performance degradation. In this
work we propose a technique to replicate selected
instructions in multiple clusters in order to reduce the
number of communications. The replication scheme is
implemented on top of a state-of-the-art scheduling
algorithm for clustered processors. The proposed
technique is evaluated for a clustered VLIW machine,
though it can be used for any statically-scheduled
architecture. We evaluate this approach using 678 loops
taken from the SPECfp95 benchmark suite. The execution
in the loop bodies represent approximately 95% of the
total execution time. The results for different
configurations show that replication can significantly
speed up the program execution.

The remainder of this paper is organized as follows.
Section 2 provides some background on modulo
scheduling and graph partitioning. Section 3 describes our
replication heuristics. Section 4 analyzes its performance.
Section 5 describes some alternatives to our replication
technique. Section 6 reviews related work and section 7
summarizes this work.

2. Background

2.1. Description of the Microarchitecture

In this work, a statically-scheduled clustered
microarchitecture is considered. Each cluster is composed
of multiple functional units and a register file. Clusters
communicate register values among them using special
copy instructions and a set of dedicated register buses.
The memory hierarchy is centralized and shared by all
clusters. In this work, we have assumed homogeneous
clusters, although the proposed algorithm can be easily
extended to deal with heterogeneous clusters.

VLIW instructions flow through all clusters in a
lockstep fashion (all clusters work on the same VLIW
instruction together). Each cluster fetches and executes
the operations contained in their corresponding part of
each VLIW instruction.

2.2. Instruction Scheduling Overview

Modulo scheduling is a well-known technique for
scheduling cyclic codes [8][20]. The most important
characteristics of a modulo scheduled loop are the
initiation interval (II), which represents the number of
cycles between successive iterations of the loop, and the
length of the schedule, which is the number of cycles
necessary to schedule all the instructions of a single

iteration of the loop. These two factors have a direct
impact on execution time as follows:
 Texec= (N-1+SC)·II

SC=length/II
where N is the number of iterations of the loop, SC is the
stage count and length stands for the length of the
schedule. Therefore, reducing II and length are crucial to
obtain a good schedule.

2.3. Base Algorithm

The replication technique that we present in this paper is
implemented on top of a state-of-the-art modulo
scheduling scheme that has previously been shown to
effectively reduce communications [2]. Figure 2
represents the high-level structure of this framework. The
algorithm starts at II=MII. First, the data dependence
graph (DDG) is partitioned, that is, each node is allocated
to a cluster. This partition requires a fixed number of
communications that in turn induce an initiation interval
for the bus (IIpart). If IIpart ≤ II, then the algorithm tries to
schedule the instructions according to the partition. If a
suitable schedule is found, the algorithm finishes. If
IIpart>II, or if a suitable schedule has not been found, then
the II is increased. Since this provides additional slots in
every cluster, a refinement heuristic is applied in order to
find a better partition.

In the next subsection we describe in detail the
portions of the partitioning scheme relevant to this work.
For more details on the scheduling algorithm, the
interested reader is referred to the original paper [2].

2.3.1. Graph Partitioning. The general idea of the graph
partitioning problem is to split the set of nodes of a graph
into a certain number of parts, meeting some constraints,
and trying to optimize some figure of merit. For the
purposes of this work, we will partition a DDG
representing the body of a loop. The final goal is to assign
each instruction of the DDG to a cluster so the number of
parts is the same as the number of clusters. The number of
instructions that can be assigned to each cluster is
constrained by the limited resources available and the II.
Finally, we would like to obtain a partition that can
generate a schedule that minimizes execution time.

Graph partitioning is an NP-complete problem and
many heuristic-based solutions have been proposed in the

Initial
Partition Schedule

Done?

IIpart≤II?

Refine Partition no: II++

no
: I

I+
+

yes

yes

Initial
Partition Schedule

Done?

IIpart≤II?

Refine Partition no: II++

no
: I

I+
+

yes

yes

Figure 2: The High level structure of the scheduler.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

literature. In this work we use a multilevel strategy.
Multilevel strategies have been shown to be very effective
[14] and are available in many software packages
[12][15]. They consist of two steps:

1. First, the graph is coarsened, that is, a new graph
with fewer nodes is built by grouping pairs of nodes of
the initial graph into new macro-nodes. To choose the
nodes that will be grouped in the new macro-node, we
first weight the edges of the graph according to the
impact that adding a bus latency to that edge would
have on execution time [1]. Next, a maximum weight
matching is identified. The nodes connected by edges
in the matching are grouped together in a new macro-
node. This process is repeated until we get a graph with
as many nodes as the number of sets desired. This
induces a preliminary partition of the original graph. It
also induces a partition in all the intermediate graphs
generated during the coarsening process.
2. The second phase uses two heuristics to refine the
preliminary partition. The general idea is to generate
different partitions by moving nodes from one cluster
to another. Then, the best partition is chosen using a
metric to compare different partitions. For this purpose,
a pseudo-schedule is used. A detailed description of
these heuristics and the pseudo-scheduler can be found
in [2].

2.3.2. Scheduler. At the beginning of the scheduling step,
the new instructions needed to carry out the
communications in the clustered architecture are added to
the DDG. Afterwards, the nodes of the DDG are sorted
according to [18]. Then, following this order, each node is
scheduled in the cluster where it is placed during the
partitioning step. Each node is scheduled as close as
possible to its predecessors and successors in order to
keep register pressure low. Since backtracking is not used,
if a suitable slot cannot be found for a node, the II is
increased, the partition is refined, and instructions are
scheduled again.

3. Replication Algorithm

In this section we describe the proposed algorithm that
selects the instructions that are replicated in other clusters.

Given a partition, there is some number of
communications among clusters that are implied by the
partition. Nevertheless, there may not be enough bus slots
to schedule all of them. In fact, this is a major cause of
increasing the II in clustered microarchitectures (as we
saw in Figure 1). We will refer to the number of excess
communications as extra_coms. Whenever we have more
communications to carry out than we have available bus
bandwidth, we can compute the number of extra
communications as follows:
 extra_coms= nof_coms – bus_coms
 bus_coms= ⌊II / bus_lat⌋ · nof_buses

where nof_coms stands for the total number of
communications in the current partition and bus_coms is
the maximum number of communications that can be
scheduled through the bus, taking into account the limited
resources in the architecture. nof_buses stands for the
number of buses available and bus_lat represents their
latency.

The replication algorithm first computes the
replication subgraph for each communication in the
partition. This subgraph is the minimum set of nodes that
have to be replicated in order to remove the corresponding
communication. Then, the subgraphs to replicate are
selected according to a heuristic. This process is iterated
until extra communications are avoided. Thus, no over-
replication is possible. If extra communications cannot be
avoided, the II has to be increased and the partition
refined. In the next subsections we present the algorithm
in more detail.

3.1. Replication Subgraphs

The replication subgraph corresponding to an instruction
com that has to be communicated to other clusters is the
minimum set of nodes that have to be replicated in order
to remove that communication. We will denote this
subgraph as Scom.

A simple example of building replication subgraphs is
presented in Figure 3. The graph shown in the upper left
of the figure is the original graph. The scheduler partitions
it into four sets of nodes and each set is assigned to a
different cluster: {L,M,N} in cluster 1; {I,J,K} in cluster
2; {A,B,C,D,E} in cluster 3; and {F,G,H} in cluster 4. For
this resulting partition, there are three values that have to
be communicated: the values produced by instructions D,

Replication Subgraphs and weights:

SD={D,B,C,A};

SE={E,A} ;

SJ={J,I} ;
L

M

N

D

A

B C

E
I

J

K

F

G

H

Cluster 1 Cluster 2 Cluster 3 Cluster 4

L

M

N

D

A

B C

F

G

H

A

EI

J

K

A

E

Cluster 1 Cluster 2 Cluster 3 Cluster 4

E

16
31

8
4

16
5

8
5

8
5

8
5 =−+++

16
49

16
7

8
7

8
7

8
7 =+++

16
40

8
5

8
5

8
5

8
5 =+++

Replicate SE

Figure 3: Example of instruction replication to reduce
communications.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

E and J.
The replication subgraph corresponding to the

communication of the value produced by instruction D
has four nodes: SD={D,B,C,A}; the replication subgraph
for E is: SE={E,A}. Node D does not belong to SE because
it is not necessary to replicate D to remove
communication E, since the value produced by D has
already been communicated and is available in the other
clusters. Finally, the replication subgraph of instruction J
is: SJ={J,I}.

Note that to remove a particular communication, it is
not necessary to replicate its associated replication
subgraph in all clusters. Obviously, it is enough to
replicate the subgraph in the clusters where the value has
a consumer. For example, to remove the communication
associated with node E, SE should be replicated in clusters
2 and 4, whereas to remove the communication associated
with D, SD should be replicated only in cluster 4. Last,
note also that stores are never replicated since the cache
memory is centralized. Therefore, a load dependent on a
store can get the data written by this store regardless of
the cluster where the store has been executed.

The algorithm to compute a replication subgraph for a
given communication is presented in Figure 4. Initially,
there is only one node in the replication subgraph, which
is the node that produces the value that has to be
communicated. Then, this node’s parents are explored. If
a parent produces a value that has to be communicated,
that node is not included in the replication subgraph since
that value is already available in the other clusters.
Otherwise, the node is included in the subgraph and all of
its parents are explored too.

3.2. Removing Unnecessary Instructions

After removing a communication by replicating a
subgraph in other clusters, there may be some instructions
from the original graph that are no longer needed. A good
example can be found in Figure 3. The graph in the

bottom of the figure represents the resulting graph after
removing the communication of node E by replicating SE
in clusters 2 and 4. Then, the original instruction E in
cluster 3 is useless. The value that it produces is not used
by any other instruction. The two successors of E (J and
G), obtain their copy of E from the copy generated in their
respective clusters. Therefore, the original instruction E
can be removed from the schedule. Hence, more resources
become available in cluster 3.

Removable instructions can be anticipated before
replication. Thus, they can also be taken into account
when selecting which subgraph to replicate. Figure 5
describes the algorithm to find the instructions that can be
removed if a communication was removed by using
instruction replication. The algorithm starts by inspecting
the instruction that produced the value that has to be
communicated. If the instruction has no children in the
cluster where it is placed, then the instruction can be
removed. If the instruction is removed, then all of its
parents that belong to the same cluster are candidates for
removal (the parents may not have any other children in
that cluster). Parents that do not belong to the same
cluster cannot be removed. In fact, the nodes that need to
communicate values belong to a different replication
subgraph. They might be able to be removed when
replicating that subgraph.

3.3. Replication Heuristic

After computing the replication subgraphs and the
removable instructions for all of the values that need to be
communicated to other clusters, we must choose which
subgraphs will be replicated. The main goal here is to
reduce extra_coms communications so that the bus is no
longer overloaded and so the resulting partition with the
added replications can be scheduled using the current II.
Note that replicating any of the subgraphs has the same
impact on the II: it reduces exactly by one the number of
communications. Therefore, just extra_coms subgraphs
need to be replicated so that communications do not cause

find_replication_subgraph_of (com) {
list <node> candidates;
candidates+=parents_of(com);
subgraph+=com;
while (candidates not empty) {
 node v= candidates.pop();
 if (∃com (v) && v∉subgraph) {
 subgraph+=v;
 candidates+= parents_of(v);
 }
 }
return subgraph;
}

Figure 4: Algorithm to find the replication subgraph of
com.

find_removable_instructions (com) {
list<node> removable, candidates;
candidates+=com;
while (candidates not empty) {
 node v:= candidates.pop();
 if (∃y / y child of v && cluster(y)==cluster(v)
 &&y∉removable) {
 removable+=v;
 candidates+=parents of v in same cluster as com;
 }
 }
return removable;
}

Figure 5: Algorithm to identify removable instructions.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

an increase in the II. In some cases, the value for
extra_coms is high, so if we do not carefully select the
graphs to be replicated, there may not be sufficient
resources to replicate all the necessary instructions.
Therefore, it is important to reduce the number of extra
instructions that need to be added. Furthermore, reducing
the number of extra instructions is also beneficial for
other reasons such as register pressure, energy
consumption and code length. Hence, our metric is based
on extra instructions. Next, we describe the heuristics
used to arrive at a good set of replications.

Our heuristic for finding a good set of replications
works as follows: first, we assign a weight to each
subgraph. This weight is an estimate that reflects the
impact on resource usage that the replication of the
subgraph would have. Then, we look for the subgraph
with the lowest weight and replicate it. Next, the
subgraphs and the weights of the remaining
communications are updated as explained in section 3.4.
This process is repeated until extra_coms communications
are removed or until no further replication is possible due
to resource constraints.

To weight a subgraph, we first assign weights to the
nodes that have to be copied to other clusters to avoid the
communication and the nodes that can be removed after
the subgraph has been replicated. Then, the weight of the
subgraph is the sum of the weights of the nodes that have
to be replicated, minus the weight of the nodes that can be
removed.

To compute the weight of a single node v, we take
into account how constrained resources will be that are
used by the instruction if the subgraph is replicated:

IIcresavailable
subgraphcresopsextracresusagecvweight

⋅
+=

),(
),,(_),(),(

where usage(res,c) stands for the number of instructions
that use resource res that are assigned to cluster c for the
given partition; extra_ops(res,c,subgraph) represents the
number of instructions that use resource res that have to
be replicated in cluster c to replicate the subgraph and
finally, available(res,c) are the number of resources of
type res in cluster c.

If a node belongs to more than one subgraph, it can
be replicated and then used more times. To reflect this
fact, the previous formula is divided by the number of
subgraphs that can benefit from the copy of a node in a
cluster:

{ }CC SvS
IIcresavailable

subgraphcresopsextracresusage

cvweight
∈

⋅
+

=
/

),(
),,(_),(

),(

To illustrate the algorithm, we will show how the
weights of the replication subgraphs in Figure 3 are
computed. Assume that every FU can execute all types of
instructions and that each cluster has 4 of these FUs. If the
II=2, and there is only one 1-cycle latency bus, then
extra_coms=1.

In SD there are four instructions. To remove
communication D, all of them must be copied to cluster 4.
No instruction would be removable if SD was replicated.
Therefore the corresponding weight will be the sum of
four terms. Let res represent the FU. For all the
instructions in SD, usage(res,c4)=3 and
extra_ops(res,c4,SD)= 4; available(res,c4)=4 and II=2; so
[usage(v,c4) + extra_ops(res,c4,SD)] /
[available(res,c4)·II]= 7/8.

The only instruction that appears in other subgraphs
is instruction A. It appears only in one other subgraph so
its weight will be divided by 2. Therefore:

16
49

16
7

8
7

8
7

8
7)(=+++=DSweight

Regarding SE, when copying A and E in cluster 2, the
load in that cluster will be 5/8. The same happens for
cluster 4. Moreover, the copy of A in cluster 4 is also
required by the replication of SD, so this weight is divided
by 2. Finally, instruction D in cluster 3 could be removed,
so the load of cluster 3 after replication is 4/8. Then we
have:

16
31

8
4

16
5

8
5

8
5

8
5)(=−+++=ESweight

Finally, for SJ, in cluster 1 and 3 the usage of the
resources will be 5/8 so:

16
40

8
5

8
5

8
5

8
5)(=+++=JSweight

3.4. Updating Subgraphs

When a communication is substituted by instruction
replication, the rest of the replication subgraphs and their
corresponding removable instructions have to be updated.
Therefore, the weights of the remaining subgraphs may
change and thus have to be recomputed.

In Figure 6, an example is presented. The graph
corresponds to the graph shown in Figure 3 after
replicating SE. The updates for replication subgraphs SD
and SJ are highlighted.

SD now only has three nodes {D,B,C}, because node
A has already been replicated. Moreover, at this point, the
subgraph should also be replicated in cluster 2 to remove
the communication of D, since now there exists a child of
node D: the copy of node E. Finally, nodes A, B, C and D
can be removed from cluster 3 if SD is replicated, because
they would be useless there.

Regarding SJ, there are now two new nodes in this
subgraph: (copies of instructions E and A), so
SJ={J,I,E,A}. However, if communication J is removed
through replication, nodes E and A should be replicated
only in cluster 1 since there are already copies of these
instructions in cluster 4.

So three tasks have to be performed to update the
remaining subgraphs after replicating one of them:

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

1. Some subgraphs may have to be replicated in
more clusters. Since there are new copies of
instructions, some nodes may have children in
clusters where they did not have them before. A good
example is SD, which also has to be replicated in
cluster 2 after replicating SE.
2. Some subgraphs may grow. After replicating a
subgraph, a communication is removed. The
instruction producing the value that is no longer
communicated, and some of its predecessors, may
now be included in another subgraph. This is the case
for SJ in the example. After replicating SE, nodes A
and E are included in SJ.
3. Some nodes may be removed from some
replication subgraphs. Since nodes can belong to
more than one replication subgraph, if one of these
subgraphs is replicated, some instructions do not need
to be replicated again. This is the case for instructions
E and A in SJ. They only need to be replicated in
cluster 1, but not in cluster 4. It is also the case for
instruction A in subgraph SD, which has already been
replicated in clusters 2 and 4, so A can be removed
from SD.
Furthermore, removable instructions may also

undergo some changes:
1. There can be instructions that previously were
not removable, that become removable after
replicating a subgraph and removing some original
instructions. This is the case for instructions D, B, C
and A from the example, which will be removable if
SD is replicated after having replicated SE.
2. On the other hand, instructions that were
removable may no longer be, due to new copies.

4. Experimental Evaluation

We have implemented our replication technique as a part
of a research compiler [4]. To drive our evaluation we
have used the SPECfp95 benchmarks. Statistics are
reported only for innermost loops that can be modulo
scheduled. Programs were run until completion using the
test input set. We have found that these loops represent
around 95% of the total execution time of these programs.

We have assumed a VLIW architecture with an issue
width of 12. In this architecture, we assume 4 fp FU’s, 4
integer FU’s and 4 memory ports. The different clustered
configurations are presented in Table 1. The first
configuration is a 2-cluster architecture that has 2 FUs of
each type and half of the number of registers per cluster,
whereas the 4-cluster architecture has only one functional
unit of each type per cluster and one fourth the number of
registers per cluster. The memory hierarchy is shared by
all the clusters and all cache accesses are considered hits.
Different configurations based on the number of registers,
number of buses, and latency of the buses are considered.
Each configuration is identified as a sequence of letters
and numbers (wcxbylzr), as described in the introduction.

We have used IPC as the main performance metric.
Hence, it is necessary to know the number of times each
loop is executed and the average number of iterations.
They have been obtained through profiling. Figure 7
shows the IPC for different configurations. The main
conclusion is that instruction replication increases
performance for all the benchmarks and for all the tested
architectures. It is important to highlight that the baseline
scheduler that does not perform replication, is a state-of-
the-art technique that has been shown to be very effective
at minimizing communications. Benefits would be even
higher for more basic schedulers. For example, for the
4c2b4l64r configuration, the average speedup provided by
replication is 25%. For some programs such as su2cor, the
benefits can be up to 70%, 65% for tomcatv and 50% for
swim. On the other hand, there are two programs for
which the benefit is rather low, namely, mgrid and applu.
For these two benchmarks we have performed a more
extensive study.

In Figure 8 we present the IPC of mgrid. The first bar
represents the IPC of a unified microarchitecture, that is, a
processor with the same resources but not split into
clusters. The IPC of the unified configuration can be used
as an upper bound for clustered architectures (obviously
clustered microarchitectures benefit from shorter intra- SD= {D,B,C} ⇒ In cluster 4 but now also in cluster 2

Removable={D,B,C,A} from cluster 3
Weight=1+1+1+1+1+1-4/8=44/8

SJ={J,I,E,A} ⇒ In cluster 1; In cluster 4 only {J,I}
Removable= Ø

Weight=

Cluster 1 Cluster 2 Cluster 3 Cluster 4

L

M

N

D

A

B C

F

G

H

A

EI

J

K

A

E

8
42

8
7

8
7

8
7

8
7

8
7

8
7 =+++++

Figure 6: Updating replication subgraphs and weights.

Resources 2-
cluster

4-
cluster

 Latencies INT FP

INT/cluster 2 1 MEM 2 2
FP/cluster 2 1 ARITH 1 3

MEM/cluster 2 1 MUL/ABS 2 6
 DIV/SQRT 6 18

Table 1: Clustered VLIW configurations.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

cluster delays and thus may be clocked faster). The other
three bars are the IPC of the three configurations
assuming a 2-cycle latency bus. As we can see, the IPC
obtained for the clustered microarchitectures is very close
to the performance of the unified configuration. In other
words, even without replication, the inter-cluster
communications mildly impact performance and thus, the
potential benefits of replication are minimal. This
demonstrates that the scheduler we have developed
performs quite well and reduces communications.

In applu, we have observed that the loops that
consume most of the execution time are loops that are
executed many times, but they have a small number of
iterations (i.e., 4). Therefore, the impact of the II on the
IPC is not very large. The proposed replication technique
aims at reducing the II by removing communications. In
fact, it does a good job in this respect, as we can see in

 Figure 9. Replication reduces the II by around 10-20%,
depending on the configuration. For loops with small
iteration counts per visit, it may be more beneficial to
reduce the length of the schedule. This issue is further
investigated in section 5.1, where an extension of the
replication algorithm targeting this issue is presented.

Figure 10 shows the number of additional instructions
that are executed due to instruction replication for
different processor configurations. The additional number
of instructions is rather small for all configurations. For
most configurations, the additional instructions increase
by less than 5%. Integer instructions represent the most
common type of replicated instructions. This is due to the
structure of the loops. Usually, in the upper levels of the
DDG there are integer instructions. And instructions in
the upper levels appear in multiple subgraphs. Besides, in
terms of FU pressure, it is cost-effective to remove
communications in upper levels by replication.

2c1b2l64r

1

2

3

4

5

6

7

8

TOMCATV

SW
IM

SU2C
OR

HYDRO2D

MGRID

APPLU

TURB3D
APSI

FPPPP

W
AVE5

HMEAN

2c2b4l64r

1

2

3

4

5

6

7

8

TOMCATV

SW
IM

SU2C
OR

HYDRO2D

MGRID

APPLU

TURB3D
APSI

FPPPP

W
AVE5

HMEAN

4c1b2l64r

1

2

3

4

5

6

TOMCATV

SW
IM

SU2C
OR

HYDRO2D

MGRID

APPLU

TURB3D
APSI

FPPPP

W
AVE5

HMEAN

4c2b4l64r

1

2

3

4

5

6

TOMCATV

SW
IM

SU2C
OR

HYDRO2D

MGRID

APPLU

TURB3D
APSI

FPPPP

W
AVE5

HMEAN

4c2b2l64r

1

2

3

4

5

6

7

TOMCATV

SW
IM

SU2C
OR

HYDRO2D

MGRID

APPLU

TURB3D
APSI

FPPPP

W
AVE5

HMEAN

4c4b4l64r

1

2

3

4

5

6

7

TOMCATV

SW
IM

SU2C
OR

HYDRO2D

MGRID

APPLU

TURB3D
APSI

FPPPP

W
AVE5

HMEAN

Figure 7: Performance results.

Baseline
Replication

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

The proposed replication technique removes around

one third of the communications, depending on the
configuration. For instance, for the 4c1b2l64r, 36% of the
communications are removed and every communication
requires the replication of 2.1 instructions on average. In
general, the replicated subgraphs are quite small since
replication of large graphs is not beneficial in many cases
due to the increase in resource pressure. In addition to
configurations with 64 registers, we have also studied
clustered architectures with 32 and 128 registers. Similar
results have been obtained.

5. Alternative Replication Algorithms

Several other alternative replication algorithms have been
investigated in this work. Some of them provide benefits
just in a few cases and others provide almost no benefits
at all. In this section we present alternatives that provide
some interesting insight into the problem of replication,
even if in some cases the conclusion is that the
investigated alternative is not effective.

5.1. Replicate to Reduce the Schedule Length

The replication technique described in section 3 tries to
reduce the number of communications in order to
minimize the II. For loops with a high trip count, the
execution time is almost proportional to the II, so
reducing the II is crucial. However, when the number of
iterations is rather small, the time consumed by the prolog
and the epilog may be higher than the time consumed by
the kernel [21]. For such loops, reducing the schedule
length may be more important than reducing the II. This
happens in applu, as discussed in section 4.

Communications also impact the length of the
schedule because of the bus latency. In Figure 11 we can
see an example. In the left graph, the communication of
the value produced by instruction A introduces a one
cycle delay in the path A, D, E. Replication could be used
to remove this communication in the critical path and
thus, reduce the schedule length. Note that if we are not
interested in further reducing communication bus
utilization (i.e. it does not impact the II anymore) we may
choose to replicate the instruction only in the cluster
where it benefits the schedule length, instead of all the
clusters that use the value. For instance, in the right graph
of Figure 11, instruction A is replicated in cluster 1, but
not in cluster 3, so the communication has not
disappeared. However, the length of the schedule
decreases by one cycle.

The general idea for this extension to the replication
algorithm is to identify the communication edges located
on the critical path of the schedule of a single iteration
and then try to remove these communications by using
replication.

Let us first quantify the maximum benefit that could
be obtained from this extension to the replication
algorithm. For this purpose, we assume that the latency of
the bus is zero during the scheduling step. Thus, the
impact of communications on the II is considered, but
these operations do not affect the schedule length. The
resulting schedule is obviously wrong, but it can be used
as an upper bound on the benefit that can be obtained. In
Figure 12, we compare the harmonic mean of the IPC
obtained for this scheme and the IPC obtained for the
normal approach. As we can see, the potential benefits of
this extension to reduce the length of the schedule are
almost negligible. If we ignore the bus latency needed for
producing the schedule, the speed-up is around 1% for the
4-cluster configurations and almost zero for the 2-cluster
architecture (assuming a 2-cycle latency bus). We have
also evaluated a number of configurations with a 4-cycle
bus latency. Though the potential benefits are slightly
larger, the overall impact is still low.

However, the benefits of this extension are higher for
selected programs. For applu, the potential benefit,
assuming zero-cycle bus latency, is around 5% in some 4-
cluster configurations. Nevertheless, it seems difficult to

0

2

4

6

IP
C

unified

2c1b2l

4c1b2l

4c2b2l

Figure 8: IPC for mgrid.

0%

5%

10%

15%

20%

25%

2c1b2l64r 4c1b2l64r 4c2b2l64r

Figure 9: Reduction of the II for applu.

0%

2%

4%

6%

8%

10%

2c1b2l 4c1b2l 4c2b2l 2c2b4l 4c2b4l 4c4b4l

mem

int

fp

Figure 10: Percentage of instructions added due to
replication.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

obtain a significant speed-up by removing the
communications in the critical path using replication. In
fact, the performance of a unified architecture is much
higher than for a 4-cluster architecture, even assuming
zero-cycle latency buses. This suggests that the effects of
communication on the length of the schedule are not as
important as the effects of splitting the resources into
clusters. When clustering, there are fewer resources
available in each cluster, so conflicts increase. Since
replication increases resource pressure, we conclude that
replicating to reduce schedule has a minor impact on
performance (this was confirmed by further experiments).

Another reason why replication in general does not
significantly reduce the schedule length is due to the use
of the pseudo-schedules in the scheduling process [2].
They allow for a very accurate estimation of the length of
the schedule during the partition and in consequence,
there are not as many communications in the critical path,
since the partition tries to put communications in edges
that do not affect the length of the schedule.

5.2. Replicating for Multiple Communications

One approach we further explored was to replicate for
multiple communications simultaneously, and at the same
time, making the replication more aware of the
information discovered by the partitioning step. In theory,
this approach seems to have more potential than
replicating each communication individually. In a
nutshell, we tried to replicate macro-nodes at the different
levels of the partition. The results were not good, mainly
due to the fact that too many unnecessary instructions
were replicated when replicating macro-nodes. Besides,
due to resource conflicts, in the majority of the cases, only
replications that imply a few instructions are beneficial.

6. Related Work

There is limited prior work related to instruction
replication. Chaitin et al. [6], in the context of register
allocation based on graph-coloring, point out that some
values can be cheaply recomputed instead of spilled to
memory. Based on this observation, they proposed a
technique called rematerialization. This technique was
later extended by Briggs et al. [5].

The most closely related work to our proposal include
the work of Kuras et al. [17] where they describe a
technique called value cloning for Long Instruction Word
architectures with partitioned register banks. That work
targeted read-only values and induction variables.

Another approach to adress excess communications
in cluster architectures is loop unrolling. There are various
works adressing this topic such as [22]. Though unrolling
removes most of the communications and achieves high
performance it increases significantly code size. For
DSPs, where VLIW architectures are frequently used,
code size is a critical issue.

There are a number of modulo scheduling approaches
for clustered VLIW architectures that have been recently
proposed. In this work, we have shown the benefits of our
instruction replication scheme using a state-of-art modulo
scheduling algorithm [2].

There are many works related to acyclic code
scheduling for clustered VLIW architectures. To the best
of our knowledge none of them make use of instruction
replication. However, heuristics proposed in this paper to
reduce scheduling length can be also applied to acyclic
code.

Cluster microarchitectures are also popular for
dynamical scheduled processors. In this area, Aggarwal et
al. studied a technique to perform dynamic instruction
replication [3].

Task duplication [16] has been used in the
multiprocessors domain to alliviate the overhead
introduced when tasks executing on different processors
exchange data.

A

B

C

FD

E

A

B

C

F

A

D

E

Replicate A

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

E

FCD

B

A

FCE

BD

AA

Scheduling length: 4 cycles
Scheduling length: 3 cycles

Figure 11: Example of reducing the schedule length through
replication.

0

1

2

3

4

5

2c1b2l 4c1b2l 4c2b2l 2c2b4l 4c2b4l 4c4b4l

IP
C

Replication

Latency 0

Figure 12: Potential benefits for reducing the schedule
length.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

7. Conclusions

In this work we have presented a compiler technique to
replicate selected instructions in order to reduce inter-
cluster communications. The proposed technique is
shown to reduce the number of communications by
approximately one third, depending on the processor
configuration. Replication has been shown to produce
significant speedups for all configurations and all
programs. For instance, for a 4-cluster processor, the
average speedup is 25% and for some programs like
su2cor it can be as much as 70%.

Our replication scheme aims at removing the
communications that have the largest impact on the
execution time, and those with the same impact are
priotirized according to their cost in terms of the required
number of replicated instructions. As a consequence, the
performance benefits come at the expense of a very small
increase in the number of executed instructions (less than
5% for most processor configurations).

8. Acknowledgements

This project has been partially supported by the Ministry
of Science and Technology of Spain and the European
Union (FEDER funts) under contract TIC2001-0995-C02-
01, Direcció General de Recerca of the Generalitat de
Catalunya under grant 2001FI 00664 UPC APTIND and
Analog Devices.

9. References

[1] A. Aletà, J.M. Codina, J. Sánchez and A. González.
“Graph-Partitioning Based Instruction Scheduling for
Clustered Processors”, in Proc. of 34th Int. Symp. On
Microarchitecture, Dec 2001.

[2] A. Aletà, J.M. Codina, J. Sánchez, A. González and D.
Kaeli. “Exploiting Pseudo-schedules to Guide Data
Dependence Graph Partitioning”, in Proc. of the Int. Conf.
on Parallel Architectures and Compiler Techniques
(PACT’02), Sept 2002.

[3] A. Aggarwal, M. Franklin, “Instruction Replication:
Reducing Delays due to Inter-PE Communication
Latency”, to appear in Proc. of the Int. Conf. on Parallel
Architectures and Compiler Techniques (PACT’03), Sept
2003.

[4] E. Ayguadé, C. Barrado, A. González, J. Labarta, D.
López, S. Moreno, D. Papua, F. Reig, Q. Riera, and M.
Valero. “Ictineo: A Tool for Research on ILP”, in
Supercomputing 96, 1996.

[5] P. Briggs, K.D. Cooper and L. Torczon,
“Rematerialization”, in Proc. of the SIGPLAN '92
Conference on Programming Language Design and
Implementation, June 1992.

[6] G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke,
M.E. Hopkins and P.W. Markstein, “Register Allocation
Via Coloring”, in Computer Languages, pages 47--57,
January 1981.

[7] A. Charlesworth, “An Approach to Scientific Array
Processing: the Architectural Design of the AP120B/FPS-
164 Family”, Computer, 14(9):18-27, 1981.

[8] J.M. Codina, J. Llosa and A. González. “A Compartive
Study of Modulo Scheduling Techniques”, in Proc. of the
Int. Conf. on Supercomputing (ICS’02), June 2002.

[9] P. Faraboschi, G. Brown, J. Fisher, G. Desoli and F.
Homewood, “Lx: A Technology Platform for
Customizable VLIW Embedded Processing”, in Procs. of
the 27th Int. Symp on Computer Architecture, June 2000.

[10] J. Fridman and Z. Greenfield, “The TigerSharc DSP
Architecture”, IEEE Micro, pp. 66-76, Jan-Feb. 2000.

[11] P.N. Glaskowsky, “MAP1000 unfolds at Equator”",
Microprocessor Report, 12(16), Dec. 1998.

[12] B. Hendrickson and R. Leland, “The Chaco User's Guide
version 2.0, Tech. ReportSAND95-2344”, Sandia
National Labs, Albuquerque, NM, 1995.

[13] R. Ho, K. Mai and M. Horowitz, “The Future of Wires”,
in Procs. of the IEEE, April 2001.

[14] G. Karpis and V. Kumar, “Analysis of Multilevel Graph
Partitioning”, in Proc. of 7th Supercomputing Conf., 1995.

[15] G. Karpis and V. Kumar, “Metis: A Software Package for
Partitioning Unstructured Graphs, Partitioning Meshes
and Computing Fill-Reducing Orderings of Sparse
Matrices”. University of Minnesota, Sept. 1998.

[16] B. Kruatrachue and T. G. Lewis, “Grain Size
Determination for Parallel Processing”, IEEE Software,
Jan. 1988, pp. 23-32.

[17] D. Kuras, S. Carr, and P. Sweany. “Value Cloning For
Architectures with Partitioned Register Banks”. In
Workshop on Compiler and Architecture Support for
Embedded Systems, pages 1--5, Dec 1998.

[18] J. Llosa, E. Ayguadé, A. González and M. Valero.
“Swing Modulo Scheduling”, in Procs. of Int. Conf. on
Parallel Architectures and Compilation Techniques
(PACT’96), Oct 1996.

[19] G.G. Pechanek, and S. Vassiliadis, “The ManArray
Embedded Processor Architecture,” in Procs. of the 26th.
Euromicro Conference: "Informatics: inventing the
future", Maastricht, The Netherlands, Sept. 2000.

[20] B.R. Rau and C. Glaeser, “Some Scheduling Techniques
and an Easily Schedulable Horizontal Architecture for
High Performance Schientific Computing”, in Procs. of
14th Annual Microprogramming Workshop, pp. 183-197,
October 1981.

[21] B.R. Rau, “Iterative Modulo Scheduling”, Hewlett-
Packard Company, 1995.

[22] J. Sánchez and A. González, “The Effectiveness of Loop
Unrolling for Modulo Scheduling in Clustered VLIW
Architectures”, in Procs. of the 29th Int. Conf. on Parallel
Processing, Aug. 2000.

[23] Texas Instruments Inc., “TMS320C62x/67x CPU and
Instruction Set Reference Guide”, 1998.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

