
A Framework for Modeling Operating System Mechanisms in the Simulation of

Network Protocols for Real-Time Distributed Systems

Paolo Pagano, Prashant Batra, and Giuseppe Lipari

Scuola Superiore Sant’Anna
56127 Pisa, Italy

{Paolo.Pagano, Prashant.Batra, Giuseppe.Lipari}@sssup.it

Abstract

In this paper we present a software tool for the simula-

tion of distributed real-time embedded systems. Our tool is

based on the popular NS-2 package for simulating the net-

working aspects, and on the RTSim package for the real-

time operating system aspects. By reusing much of the exist-

ing code, our simulator covers a very wide range of network

protocols and real-time mechanisms.

After describing the architecture of our tool, we tested it

in a simple wireless sensor networks scenario, and we mea-

sured the latency in transmitting and receiving messages

due to the concurrent activities in the nodes. These effects

have been tested against two node scheduling policies, and

under different load conditions in the CPU of the nodes.

1. Introduction

Simulation is an important analysis tool in the develop-

ment of distributed systems, in testing new network pro-

tocols, and for assessing the performance of protocols. In

many important cases, simulation complements effectively

off-line mathematical analysis tools, especially for large and

complex systems with hundreds of nodes.

Performance assessment via simulation is particularly

important for embedded real-time systems, where timing

guarantees (delay and throughput) play a very important

role. In a hard real-time system (avionics systems, indus-

trial control, etc.), missing a deadline on some data delivery

may in certain cases compromise the correctness of the sys-

tem. Soft real-time systems (multimedia devices, telecoms,

etc.) are less critical, but the Quality of Service (QoS) de-

livered to the final user depends on some performance index

like average and maximum delays.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

As with any other system, the simulation of a real-time

distributed system consists first in building a model of the

system (network topology, protocols and behavior inside

the nodes) and then a model of the external environment

(incoming packets, sensor data and events, etc.) with which

the system interacts. The model must be reasonably pre-

cise: it must be able to capture all the interesting behaviors

of the system without being too complex.

Existing software tools for network simulation, and in

particular the popular NS-2 [2] (Network Simulator 2), al-

low to simulate a wide range of network protocols and dis-

tributed systems, both wired and wireless, including very

dynamic systems like Mobile Ad-hoc Networks (MANETs)

and Wireless Sensor Networks (WSNs). These tools have

been specifically designed to study the behavior of the com-

munication. To the best of the authors’ knowledge, in all

simulation models reported in the literature until now, the

temporal behavior of the application running in the node

is not modeled. In particular, all computations performed

in the node (for example the presence of load due to other

applications) have zero delay. The reason is that for mod-

eling network effects, the impact of the application timing

and of the operating systems can be considered negligible.

However, for real-time embedded systems, the impact of

the other processing activities and of the operating system

delay in the node can be quite relevant.

In this paper, we address this problem by presenting a

software tool based on the NS-2 simulator [2] and on the

RTSim simulator [18] that allows to easily simulate the net-

working aspects via NS-2 as well as the real-time operating

systems aspects via RTSim. Although the use of the tool is

very general, in this paper we will demonstrate the useful-

ness on a specific problem, that is to evaluate the reduction

in some indicators of QoS in a very simple WSN scenario.

The paper is organized as follows: in Section 2 we de-

scribe the state-of-the-art in network and os simulation and

motivate the choice for building a software tool based on

NS-2 and RTSim; in Section 3, after a brief academic in-

troduction on both the packages, we describe how we in-

tegrated them; in Section 4 we recall some RT issues rele-

vant in WSN applications; in Section 5 we briefly describe

how we modeled the behavior of the TinyOS [10] operat-

ing system; we also show the results of a simulation run in

a very simple WSN scenario comparing such results with

those obtained with a simple Fixed Priority (FP) scheduling

model; in Section 6 we sketch a possible interpretation of

the results.

2. Existing simulation engines

The type of simulation we are concerned with is dis-

crete and event-driven. We are interested in simulating dis-

tributed systems, with particular concern on MANETs (Mo-

bile Ad-hoc Networks) and WSN (Wireless Sensor Net-

works).

In what follows we briefly report the main features of the

most popular simulators available for the scientific commu-

nity and designed to reliably simulate MANETs and WSNs;

for a complete survey see [13].

OPNET (Optimized Network Engineering Tools) [3] is a

commercial tool from OPNET Technologies Inc. for mod-

eling and simulation of communications networks, devices,

and protocols. Although OPNET is rather intended for com-

panies to diagnose or reorganize their network, it is possible

to implement one’s own algorithm by reusing existing com-

ponents.

GloMoSim (Global Mobile Information Systems Simu-

lation Library) [8] is a scalable simulation library designed

at UCLA Computing Laboratory to support studies of large-

scale purely wireless network models. GloMoSim is a li-

brary for the C-based parallel discrete-event simulation lan-

guage PARSEC (Parallel Simulation Environment for Com-

plex Systems) [9]. One of the important distinguishing fea-

tures of PARSEC is its ability to execute a discrete-event

simulation model using several different asynchronous par-

allel simulation protocols on a variety of parallel archi-

tectures. However, the documentation shipped with Glo-

MoSim is quite poor as well as the set of standard tools for

scenario generation and post-simulation accessories.

QualNet [4] is a commercial product from Scalable Net-

work Technologies (which is derived from GloMoSim) try-

ing to alleviate most of the GloMoSim’s flaws, coming with

an extensive suite of faithful implementations of models and

protocols for both wired and wireless networks as well as

extensive documentation and technical support.

New platforms written modularly and using object ori-

ented techniques are OMNeT++ [5] (written in C++) and

J-Sim [1] (written in Java). Both have strong GUI support

and flexible architecture and are rapidly becoming popular

simulation platforms in the scientific community as well as

in industrial settings.

A different role is played by the TOSSIM simulator,

coming along with the TinyOS operating system. It com-

piles directly from TinyOS code using a special target in

the Makefile. The simulation runs natively on a desktop or

laptop. The simulator is capable to simulate thousands of

nodes simultaneously. Every mote in a simulation runs the

same TinyOS image. TOSSIM provides run-time config-

urable debugging output, allowing a user to examine the ex-

ecution of an application from different perspectives with-

out needing to recompile. TinyViz is a Java-based GUI that

allows the user to visualize and control the simulation as it

runs, inspecting debug messages, radio and UART packets,

and so forth. The simulation provides several mechanisms

for interacting with the network; packet traffic can be mon-

itored and packets can be statically or dynamically injected

into the network. The transmission is simulated at the bit

level.

The TOSSIM and TinyViz simulation capabilities are

anyhow constrained to TinyOS based applications (proto-

cols and modules already implemented in TinyOS); more-

over they can be seen more as debuggers or emulators, ra-

then than simulators.

The validity of these packages as well as of others not

even mentioned in this paper is doubtless; anyhow a share

ranging from 40% to 70% [14] (depending on the net-

work layer) of the existing simulations in the world are run

through the NS-2 package which plays the role of a “de

facto” standard. The back-end (i.e. the skeleton classes)

of the package is written in C++, whereas the OTcl script-

ing language plays the role of front-end to ease the gener-

ation of network scenarios and activities. The transmission

is simulated at the packet level and the propagation mod-

els are built in the package. More details will be given in

Section 3.1. The diffusion in the telecommunication com-

munity and the existence of a module [23] for simulating

the 802.15.4 IEEE standard MAC layer already included in

the official distribution let us decide to adopt NS-2 for sim-

ulating the network transmission in a WSN.

In the operating system area, there is not such a widely

used simulation package as NS-2. Rather, it looks like ev-

ery research group uses its own simulator. Many operat-

ing systems simulators are available for didactic purposes.

Here, we cite MOSS (Modern Operating Systems Simula-

tors) [17], a collection of Java-based simulation programs

that is used to illustrate key concepts of operating systems

in university courses. Generally, such packages are difficult

to re-use in different contexts. In particular, MOSS does not

support real-time scheduling policies and interaction with

the network.

RTSim [18] is a software package written in C++ for the

simulation of real-time operating systems, available as open

source [6]. It includes support for many real-time schedul-

ing policies and typical real-time task models (i.e. periodic

and event-driven tasks, and interrupt handlers). In this pa-

per, we propose to combine RTSim with NS-2 for the sim-

ulation of real-time distributed systems. The structure of

RTSim is described in Section 3.2.

3. The simulation framework

3.1. The NS-2 simulator

NS-2 is a tool for simulation and evaluation of network

protocols. The tool is distributed as open source, and the

size of the source code is about 400 Megabytes. Most of

MANET and Ad-Hoc routing protocols are already avail-

able in NS-2.

For efficiency reasons NS-2 is written in C++ and OTcl,

the latter being an object-oriented scripting language. The

C++ part is composed of schedulers and a great variety of

network components. Implementation of new protocols will

mainly occur in this part. The OTcl part is composed of

libraries that gives access to the C++ objects. Definition

and configuration of network scenarios is done in OTcl.

Link

Layer

Queue

Interface

MAC

NetIF

Radio

Propagation

Model

Channel

ARP

arptable_

uptarget_

uptarget_channel_

propagation_

uptarget_downtarget_

downtarget_

downtarget_

uptarget_

mac_

target_

Address

Demuxer

Port

Demuxer

Transport

Routing

Figure 1. Architecture of a wireless node in
NS-2.

The main C++ classes relevant for our simulation are:

Event, Scheduler, Packet, and Agent. The scheduler con-

tains a queue of events ready to be executed, ordered by

scheduling time. The scheduler runs by selecting the first

event in the queue, executing it to its completion, and re-

turning to execute the next event.

Packets are events that are handed to the scheduler be-

fore their sending time. A packet models a transmission of

a message in the network, but does not model the actual

content of the message. Therefore, the packet class need

only to contain the header specification of the packet for

processing by the respective protocols.

In NS-2, protocols are implemented as Agents: any class

that implements a protocol has to extend the Agent class.

Instances of an agent class are the end-points of wired and

wireless connections. They are identified by INET address

and port and are the lowest layer able to pack and insert

messages into the network.

Application code is modeled by the Application class.

Applications use agents to send and receive messages. If an

application runs on top of an agent, NS-2 allows the agent

to partially analyze the packet before passing it to the appli-

cation. This key feature of NS-2 has permitted us to build

up a co-simulator based on the RTSim libraries.

Figure 1 illustrates the architecture of a mobile node with

all its component types. These components can be sub-

stituted with standard components or newly implemented

ones.

Let us analyze what happens when a packet has to be sent

to the network. First, the agent (through the transport com-

ponent shown in the top part of Figure 1) creates the packet

and hands it to the address demuxer. The address demuxer

checks the destination address of the packet. If the desti-

nation address is the same as its own, the packet is handed

to the port demuxer. Otherwise the packet its handed to

the routing component. The routing component will behave

depending on the routing protocol used. For example, if

the routing protocol is AODV (Ad-hoc On Demand Vec-

tor routing), assuming that no route exists to the destina-

tion address, the protocol module will start a route request

session. When the routing component has a route to the

destination, the packet is handed to the LL component, and

then handed down to the NetIF component, passing through

the IFq and MAC components. From the NetIF, the packet

is inserted into the channel. It is also possible to disable

routing (adopting the so called “DumbAgent”) in case of a

simplified mesh scenario.

Definition and configuration of the network nodes has to

be done in OTcl. In this step the new protocol is attached to

each node. When the OTcl-script is executed, the program

outputs a trace file. Graphic representation of trace files is

also possible with the Network AniMator (NAM), a visual-

ization tool that shows node movement and communication.

3.2. The RTSim simulator

RTSim is a collection of C++ libraries that allows the

user to model and simulate single and multiprocessor em-

bedded systems, with a real-time operating system and a

set of concurrent tasks. A distinctive feature of the tool is

that it encompasses the state-of-the-art solutions for real-

time CPU scheduling (either on single or on multiprocessor

boards) and for bounded-delay sharing of resources.

In RTSim, a task (or process) is a finite or infinite se-

quence of requests for execution, or jobs. Each job executes

a piece of code (a sequence of instructions) implementing

some functional behavior. When a job is activated, we say

that it arrives and the activation time is called arrival time.

Depending on the pattern of arrival times, tasks can be clas-

sified as periodic, if the arrivals are separated by a constant

interval of time called “period”; sporadic, if the arrivals are

separated by variable intervals of time with a lower bound,

called minimum inter-arrival time; and aperiodic, if a lower

bound is not known on the inter-arrival times.

In real-time systems, tasks have time constraints, often

expressed as deadlines: for example, a typical time con-

straint for a periodic task is that each job must finish before

the next activation.

The instructions of a task are used to model its timing

and functional behavior. Basically, an instruction is mod-

eled by an execution time (which can be deterministic or

stochastic) and a behavior (which modifies the state of the

task and of other system components). Examples of instruc-

tions are:

• delay(time): this instruction models a piece of code

that takes a certain amount of time to be executed; time

can be a fixed number or a random variable. When us-

ing this instruction we are not interested in modelling

the functional behaviour of the code.

• wait(R) and signal(R); these instructions model wait

and signal operations on a semaphore R. Instruction

wait(R) can block the task.

Tasks are assigned to the computational resources

(nodes) of the system. Each node consists of one or more

processors and a real-time operating system (kernel) en-

dowed with a scheduling policy and a synchronization pro-

tocol. The state of the art algorithms for CPU scheduling

(such as Fixed Priority, Rate Monotonic [16], Earliest Dead-

line First (EDF) [16], Proportional share [21]) are provided

as predefined objects, both for single processor and multi-

processor systems. The performance of the schedulers can

be enhanced by using aperiodic servers (Polling server [22],

Sporadic Server [20], Constant Bandwidth Server [11],

etc). Priority inversion in accessing mutually exclusive re-

sources [19] can be avoided by using appropriate synchro-

nization protocols, such as the Priority Ceiling Protocol [19]

or the Stack Resource Policy [12].

Each scheduling point in the system corresponds to a dis-

crete Event in the simulation. Events are handled via a dis-

crete event simulation engine called MetaSim. In response

to an event in the simulation, the engine calls an event han-

dler that performs the corresponding action, changing the

state of the system. For example, when a task is activated,

an event invokes a handler that puts the task in the ready

queue and invokes the node scheduler. Such event-driven

mechanism is very similar to the one used by NS-2. There-

fore, by opportunely adapting the MetaSim simulation en-

gine, we were able to integrate RTSim with NS-2 with a

moderate effort.

3.3. Integration

At hand we had two simulation frameworks, with their

own simulation engines. We decided to keep NS-2 event

scheduler as the main engine, and make the RTSim engine

(actually MetaSim engine) as its sub-engine. We defined a

special event in NS-2, called the rtsim event that takes care

of processing all events of RTSim that happen at a single

point in time.

Whenever an object of RTSim posts an event in the

Metasim event queue at simulation time t, the rtsim event

is posted in the NS-2 global event queue at the same sim-

ulation time t. When this event expires, the corresponding

event handler processes all events that have triggering time

t in the Metasim queue. In this way, we keep the logical

simulation time of NS-2 synchronized with the logical sim-

ulation time of RTSim.

To allow the user to model tasks that send and receive

packets from the network, we defined two new types of

tasks: the Sender and the Receiver tasks, which can be in-

terfaced with Agents of NS-2 which in turn model network

end-points. We also defined two new task instructions: the

send and the receive instructions. Suppose the user needs

to model a task that periodically wakes up, performs some

computation and then sends out a set of data. The user will

only need to create a periodic real-time Sender task with

a delay instruction that models the time spent in the initial

computation, and a send instruction that models the trans-

mission of data to the Agent. The task is subject to the

scheduling algorithm in the node, so it may be delayed by

other tasks. The actual sending of the data is done only

when the corresponding send instruction is executed.

In Figure 2, we describe the sequence of actions (and

events) that take place when a send instruction is executed.

First, the task object of RTSim posts a “send instruction

event” in the Metasim queue. When this event expires, the

send instruction code is executed, which notifies the cor-

responding agent. In turn the agent posts a sequence of

 Network

NS−2

Queue
MetaSIM

notifying

the agent

Post "Send Event"

Queue

Agent

RT−Application

"RTSimSend Event"

done

Sending the packet

"NS−2 Send Event"
domain

NS−2

Post

"RTSim Send Task"

done

SEND
Instruction

API

RTSIM
domain

Figure 2. The send instruction API.

events in the NS-2 queue (the exact number and sequence

of events depends on the specific network protocol stack)

and, at the end, the packet is actually sent on the network.

A similar mechanism happens with a receive instruction.

The main difference is that the receive blocks the task if

there is no pending data.

4. RT issues in WSNs

The scope of the proposed package is actually very large

and is not tightly connected with WSN issues. Wherever

any service must be guaranteed in a network (the extent

of this guarantee is known as the contract), the context of

the OS execution can be taken into account for comparing

scheduling policies or to realistically refine the contract.

To some extent, research in the WSNs does not deal

with QoS, since many services are given at “best effort”

and the single nodes are intended as unreliable. This atti-

tude is somewhat partial and incorrect looking at the variety

of existing and proposed applications of sensor networks.

In some applications, the impact of the tasks scheduling of

the node can be relevant. For example, WSNs for vibra-

tional monitoring and control may have considerable com-

putational load on each node due to the high sampling fre-

quency required. Therefore, efficient scheduling policies in

the node may affect the overall performance of the system.

Citing H. Karl and A. Willig [15] with respect to the chal-

lenges for WSNs we say “[...] there are cases where very

high reliability requirements exist. In yet other cases, delay

is important when actuators are to be controlled in a real

time fashion by the sensor network. The packet delivery ra-

tio is an insufficient metric; what is relevant is the amount

and quality of information that can be extracted at given

sinks about the observed objects or area. [...]”.

These issues invest the communication itself as the

access to the shared medium is regulated by the MAC

layer. The directives introduced by IEEE 802.15.4, the one

adopted by the ZigBee[7] alliance, foresee a TDMA mech-

anism to access the network. In this case, any tiny transmis-

sion latency induced by OS activity may let the node miss to

communicate during the GTS (Guaranteed Time Slot) caus-

ing longer delays in message delivery.

5. The simulated environment

5.1. The RTOS platform

In this first attempt to simulate RT applications by NS-

2, we modeled TinyOS, the most popular Operating System

used in WSNs and compared its behavior with a standard

model using Fixed Priority (FP) scheduling.

In TinyOS, tasks are scheduled in FCFS order and cannot

be preempted by other tasks, thus running to completion.

Interrupts handlers, arisen by hardware, can preempt task

code.

In Figure 3 the execution of a receive instruction is

shown in the context of FCFS and FP scheduling policies.

The example refers to a node with 3 periodic tasks with dif-

ferent execution times activated simultaneously at time 0.

In case of FCFS the task in charge of processing the incom-

ing message is queued up and the reception delayed; in the

case of FP, the processor is preempted at the arrival of the

message. The delay in receive marked in the figure is com-

municated to the NS-2 Agent by the NS-2 RT-Application.

The agent takes note of this delay (∆T (RecOS)) as a func-

tion of the message unique ID field in the common header.

The modeled behavior of the Sender task follows the

same scheme. In this case the agent saves the delay (∆T

(RecOS)) as a function of the message unique ID.

The extra delay in receive already simulated by ordinary

NS-2 timing facilities, i.e. the time spent by the packet to

reach the agent of the recipient node is taken into account

as well. This delay (∆T (RecNet)) amounts to the sum of

the propagation of the request descending and climbing the

network stacks in the two nodes plus the propagation time

of the signal in the shared medium as shown in Figure 4.

Following the naming schemes used in the figure this delay

amounts to ∆T (M1) + ∆T (P1) + ∆TNet + ∆T (M2) +
∆T (P2).

5.2. System and network models

The simulated scenario has been kept as simple as possi-

ble to permit a reliable interpretation of the results: 4 nodes

in shape of a square and a sink located in its center of mass

(see Figure 5). All the simulated effects which might give

notification by agent

τR

packet arrival receive done

T

T

1

2

T
3

notifying the agent

T (Rec OS)∆

τ3

τ2

τ
1

receive blocked

activation

τR

T
3

packet arrival

notification by agent
receive done

notifying the agent

T2

T1

τ3

τ2

τ
1

T (Rec OS)∆

activation

preemption

receive blocked

Figure 3. The model for the receive task in the
TinyOS environment and with a FP schedul-

ing.

rise to disturbance comparable with the OS induced delays

have been turned off; namely:

• the network has been simulated as a single cluster

where all nodes can be connected through single hop

routes (no ad hoc routing);

• each node is within from every other as results from

setting the power thresholds in receive and carrier

sense according to the maximum distance between the

nodes; moreover the problem of collisions with hidden

terminals is avoided;

• all the nodes are aware of the INET coordinates of the

sink.

The simulation adopts the TwoRayGround wave propa-

gation model embedded in NS-2. For Physical and MAC

OSI layers we adopted the NS-2 implementation as a black

box, namely an order 3, beacon-enabled superframe with-

out GTS. The sink played the role of PAN coordinator as

well.

Τ

∆ Τ

RT−Application

Agent

802.15.4 MAC

802.15.4 PHY

RT−Application

Agent

802.15.4 MAC

802.15.4 PHY

 Network

M1

P1 P2

M2

Net

∆ T(RecNet)

∆ Τ ∆ Τ

∆ Τ∆

Figure 4. The agent-agent delay as computed

using the ordinary NS-2 timing.

In order to simulate the kernel activity under different

conditions, an API has been written to permit the creation

through the OTcl interface of a certain number of periodic

tasks and a given system load. These tasks are called the

Dummy Task Set (DTS) in the following. DTS tasks have

periods ranging from 0.1 s to0.5 s and generate a cumulative

load ranging from 0 to 0.95. In the same API, we added

the possibility of selecting the OS scheduling policy (as at

present FCFS or FP).

Figure 5. Elaborated screen shot of the Net-
work AniMator for a simple WSN scenario.

The network activity in the node is simulated through the

Sender and Receiver tasks; in case of FP scheduling they

have higher priority than the DTS.

In this scenario, after a start-up time t0 (the initial phase

to permit PAN initialization), the node sends packets to the

sink at a certain rate ν. This means that a customable num-

ber N of messages will be scheduled to be sent from node

A0 to the sink S at instants:

t0i = t0 + i ·
1

ν
i = 0, 1, ..., N

The nodes Ak (k = 1,2,3) will start transmitting to the

sink after a fixed delay k · tstep and their messages will be

scheduled at instants:

tki = t0 + k · tstep + i ·
1

ν
i = 0, 1, ..., N ; k = 1, 2, 3

The kernel load will delay the send and receive by a

certain amount of time dependent on the number of tasks

and the load present in the node, and on the repetition time
1

ν
which may cause congestion in the network. The k · tstep

factor prevents initial congestion and systematic collisions.

5.3. Results

The delays have been evaluated as a function of the di-

mension of the DTS, the CPU load in the node and the rep-

etition time. Fixing such a set of parameters we evaluate:

• the maximum, mean and minimum latency observed in

sending and receiving the packets;

• the time propagation through the sender and recipi-

ent network stacks (including re-transmissions done at

lower layers);

• the packet probability of being delivered.

Though the applications can be sensitive to one, more, or

all these metrics, some general considerations can be given

as follows:

• as expected, using the FP scheduling policy with

higher priority to Sender and Receiver, the delay is

insensitive to CPU activity;

• the FCFS scheduling policy is conformant only to

moderate CPU loads in presence of RT issues; in pres-

ence of medium-to-high CPU loads a real-time sched-

uler, as FP, must be preferred;

• the delays are inversely proportional to the repetition

time of the packet transmission by the node; for suffi-

ciently sporadic transmissions (1

ν
≥ 0.4s) this effect

is reasonably small;

• the dependence on the number of tasks is moderate;

U
0.2 0.4 0.6 0.8 1

 T
 (

s
)

∆

-3
10

-210

-110

Rec FIFO

Rec FP

Send FIFO

Send FP

OS-induced mean delays in Send and Receive

U
0.2 0.4 0.6 0.8 1

 T
 (

s
)

∆

-210

-110

1

Rec FIFO

Rec FP

Send FIFO

Send FP

OS-induced max delays in Send and Receive

Figure 6. The mean and maximum delays in

message elaboration due to the CPU activity
as a function of the utilization factor for FCFS

and FP scheduling policies.

• with standard PHY, MAC, and LL settings, the packet

loss is negligible.

Being interested in WSN typical operations, we show the

results for the relevant metrics having reasonably fixed the

following parameters in operational plateaus. Namely we

set:

1

ν
= 1 s; t0 = 5 s; tstep = 1.1 s;

N = 500; dimension of DTS = 3.

In Figure 6, the OS-induced delay as a function of the

load in the sink is shown. The mean (top canvas) and

the maximum (bottom canvas) values for sending and re-

ceive are displayed as computed from a sample composed

by 20,000 exchanged messages. Notice that, in case of

FCFS scheduler, the delay grows exponentially with the

load, while by using a FP scheduler, the delay is indepen-

dent of the load.

6. Conclusions and outlook

To simulate real-time distributed embedded systems, we

integrated NS-2 and RTSim in a single framework. We

have used this tool to model RT issues in wireless telecom-

munications. In WSNs these issues play a role whenever

any QoS must be guaranteed by the nodes.

Ordinary WSN activity has been tested in a simple sce-

nario to evaluate some metrics relevant in RT sensitive ap-

plications. Modules implementing FCFS and FP scheduling

policies have been tested within certain network and CPU

load conditions.

Apart from quantitative comparisons which may be af-

fected by the embedded system features (e.g. the Instruction

Set Architecture – ISA and CPU speed of the sensor node),

the trend in the simulation shows that FP scheduling policy

has to be preferred to FCFS whenever the computational

load in the nodes increases. OS adopting FCFS scheduling

policy like TinyOS may be not suitable for such operations.

As on-going work, more complicated scenarios are be-

ing simulated introducing routing paths and data streams;

in a tree-shaped network topology, nodes connecting dif-

ferent clusters may fetch and forward the readings coming

from other clusters. The overall RT metrics strongly de-

pend on promptness of such nodes. These simulations are

closer to realistic WSN operations and will be tested with

CPU-intensive protocols.

Acknowledgements

This work has been financially supported in part by the

European Union in the framework of the RI-MACS project

(NMP2-CT-2005-016938).

We would like to thank Claudio Cicconetti for his ex-

ceptional expertise on NS-2 and Antonio Romano for his

support on hardware modeling of WSN nodes.

References

[1] Illinois Network Design and EXperimentation (INDEX)

Group (University of Illinois at Urbana-Champaign, IL,

USA). The J-Sim Simulator. http://www.j-sim.

org/.
[2] Information Sciences Institute (University of Southern Cali-

fornia, Los Angeles CA, USA), The Network Simulator NS-

2. http://www.isi.edu/nsnam/ns/.
[3] OPNET Technologies, Inc., Bethesda, MD, USA. The OP-

NET Simulator. http://www.opnet.com/.
[4] Scalable Network Technologies, Inc., Culver City,

CA, USA. The QualNet Simulator. http:

//www.scalable-networks.com.
[5] The OMNeT++ Discrete Event Simulation System. http:

//www.omnetpp.org/.
[6] The RTSim simulator. http://rtsim.sf.net.

[7] The ZigBee alliance. http://www.zigbee.org.
[8] UCLA Computing Laboratory (University of California,

Los Angeles CA, USA). The GloMoSim simulator. http:

//pcl.cs.ucla.edu/projects/glomosim/.
[9] UCLA Computing Laboratory (University of California,

Los Angeles CA, USA). The PARSEC environment. http:

//pcl.cs.ucla.edu/projects/parsec/.
[10] University of California, Berkeley CA, USA). The TinyOS

operating system. http://www.tinyos.net/.
[11] L. Abeni and G. Buttazzo. Integrating multimedia applica-

tions in hard real-time systems. In Proceedings of the IEEE

Real-Time Systems Symposium, Madrid, Spain, December

1998.
[12] T. P. Baker. Stack-based scheduling of real-time processes.

Real-Time Systems, (3), 1991.
[13] G. A. Di Caro. Analysis of simulation environments for mo-

bile ad hoc networks. Technical report, Dalle Molle Institute

for Artificial Intelligence, Manno, Switzerland, 2003.
[14] T. Henderson. NS-3 Project Goals. Talk given during the

“Workshop on NS-2: The IP Network Simulator”. http:

//www.wns2.org/slides/henderson.pdf.
[15] H. Karl and A. Willig. Protocols and Architecture for Wire-

less Sensor Networks. John Wiley and sons, 2005.
[16] C. Liu and J. Layland. Scheduling algorithms for multipro-

gramming in a hard-real-time environment. Journal of the

Association for Computing Machinery, 20(1), 1973.
[17] R. Ontko and A. Reeder. http://www.ontko.com/

moss/.
[18] L. Palopoli, G. Lipari, G. Lamastra, L. Abeni, G. Bolognini,

and P. Ancilotti. An object oriented tool for simulating dis-

tributed real-time control systems. Software: Practice and

Experience, 2002.
[19] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance

protocols: An approach to real-time synchronization. IEEE

Transactions on Computers, 39(9), September 1990.
[20] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic schedul-

ing for hard real-time systems. The Journal of Real-Time

Systems, 1989.
[21] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E.

Gehrke, and C. G. Plaxton. A proportional share resource

allocation algorithm for real-time, time-shared systems. In

Proceedings of the IEEE Real-Time Systems Symposium,

December 1996.
[22] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable

server algorithm for enhanced aperiodic responsiveness in

hard-real-time environments. IEEE Transactions on Com-

puters, 4(1), January 1995.
[23] J. Zheng and M. J. Lee. A comprehensive performance study

of ieee 802.15.4. In Sensor Network Operations, pages 218–

237. IEEE Press, Wiley Interscience, 2006.

