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ABSTRACT
Software scale and complexity are growing by every
measure: more hardware and software, more communi-
cation links, more interdependency, more lines of code,
more storage and data, etc. [18]. At the same time busi-
ness trends are increasingly squeezing development re-
sources. In particular, development processes are strain-
ing under severe cost and time-to-market pressures. Global
competition and market deregulation are shrinking profit
margins and thus limiting budgets for the development
and QA of software.

In response to these trends, developers have begun to
change the way they build and validate software systems
by (among other things) moving towards more flexible
product designs allowing dynamic reconfiguration.

This approach promises to improve cost, quality, and
development-time, but creates other problems, espe-
cially when used in the context of safety-critical sys-
tems.

To realize this promise, however, effective certifica-
tion becomes more important than ever since as static
controls are removed or reduced, it becomes even more
vital that (1) problems be caught as quickly as possible
and (2) systems not be allowed to drift so far from their
intended functional and performance requirements that
rework costs overwhelm the hoped-for efficiencies.

This article will present and discuss some of our recent
efforts to address these problems.
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1. EMERGING TRENDS AND RESEARCH
CHALLENGES

Software scale and complexity are growing by every
measure: more hardware and software, more communi-
cation links, more interdependency, more lines of code,
more storage and data, etc. [18]. At the same time busi-
ness trends are increasingly squeezing development re-
sources. In particular, development processes are strain-
ing under severe cost and time-to-market pressures. Global
competition and market deregulation are shrinking profit
margins and thus limiting budgets for the development
and QA of software.

In response to these trends, developers have begun to
change the way they build and validate software sys-
tems by moving towards more “agile” processes [26, 10]

characterized by (1) decentralized development teams,
(2) greater reliance on component assembly and de-
ployment than green field code writing, (3) evolution-
oriented development featuring incremental development
and frequent software updates, and (4) flexible product
designs supporting extensive compile time customiza-
tion and runtime adaptation. These processes try to
improve cost, quality, and cycle-time by limiting explicit
coordination, by parallelizing or eliminating certain de-
velopment activities, and by allowing systems to defer
many decisions until field deployment time.

To realize these efficiencies, however, quality assur-
ance (QA) becomes more important than ever since
as process controls are removed or reduced, it becomes
even more vital that a system’s functional and perfor-
mance characteristics be carefully exposed and explored
throughout the lifecycle. In practice, these QA pro-
cesses are increasingly guided by a combination of the
following:

Test-driven development (TDD). In TDD-oriented
projects tests become first class artifacts, treated at
the same level of importance as implementations them-
selves. Tests are developed before (or in parallel with)
implementations and are integrated into automated test
harnesses (such as JUnit, CPPunit, or NUnit) where
they can be invoked automatically as part of the stan-
dard build process. This automated QA process ensures
that tests can be run each time the application is built,
catching errors more quickly and supporting continu-
ous evolution by minimizing unintended consequences
to incremental changes [23].

Continuous build, integration, and test (CBIT).
CBIT [17] enhances test-driven development by automat-
ing the system integration process each time changes
are checked into the source repository by performing a
complete system build, running all unit tests, measur-
ing code coverage, enforcing coding conventions, eval-
uating code for consistency and running system tests.
This technology helps to ensure that code written by
independent groups works together and helps define
stable system versions on which new functionality can
be safely added. Some popular CBIT systems include
CruiseControl, Apache Gump, Mozilla Tinderbox, and
Dart.

While various aspects and combinations of TDD and
CBIT have been used sucessfully in industry [15], our
experience applying these QA techniques to highly con-
figurable large-scale systems has identified several seri-
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ous limitations. In particular, we find that in practice
TDD and CBIT today use unsophisticated algorithms
and are thus highly inefficient, are limited to compila-
tion and simple functional testing, and have huge gaps
in configuration coverage. In particular, conventional
TDD and CBIT approaches tend to:

• Concentrate QA efforts only on the most readily-
available platforms and default configurations, rather
than enforce and enable test diversity.

• Incur substantial redundancy and wasted effort
when scaled across multiple CBIT servers because
knowledge, artifacts, effort, and results are not co-
ordinated to maximize efficiency and effectiveness.

• Support static QA processes that focus exclusively
on the current system version (e.g., the head branch
of the software revision control system), rather
than learning over time or conducting proactive
analyses to improve future system versions.

All told, today’s QA approaches weren’t designed to
scale to the combinatorially exploding software configu-
ration and control spaces found in modern dynamically
adaptive systems.
1.1 Assessment of Current Technologies and

Related Work
There have been a number of attempts to address

the challenges and limitations of the existing QA pro-
cesses described in Section 1. These efforts gather vari-
ous types of information from systems in a wide variety
of configurations. Below, we describe some of these ef-
forts and discuss their pros and cons.

1. Remote data collection systems. Online crash
reporting systems, such as the Netscape Quality Feed-
back Agent [5] and Microsoft XP Error Reporting [4],
gather system state at a central location whenever a
fielded system crashes. A key assumption of these tech-
niques is that fielded systems inherently run in numer-
ous configurations. Recent work by Liblit et al. [22] ex-
tends these approaches to capture data on both crashing
and non-crashing executions, using statistical learning
algorithms to identify data that predicts each outcome.
Orso et al. [25] have also developed the GAMMA sys-
tem to collect partial runtime information from multiple
fielded instances of a software system. GAMMA allows
users to conduct a variety of different analyses, but is
limited to tasks for which capturing low-level profiling
information is appropriate.

A limitation shared by these remote data collection
systems, however, is their limited scope, i.e., they per-
form only a small fraction of typical QA activities, ig-
noring for example issues associated with quality of ser-
vice (QoS) performance. Moreover, they are largely re-
active (i.e., the reports are only generated after systems
crash), rather than proactive (i.e., attempting to detect,
identify, and remedy problems before users encounter
them).

2. Distributed regression test suites. Many
popular open-source projects distribute regression test
suites that end-users run to evaluate installation suc-
cess. Well-known examples include GNU GCC [3], CPAN [1],
Mozilla [30], the Visualization Toolkit (VTK) [19], and

ACE+TAO [16]. Users can—but frequently do not—
return the test results to project developers. Even when
results are returned to developers, moreover, the testing
process is often undocumented and unsystematic. For
example, developers have no record of what was tested,
how it was tested, or what the results were, resulting in
the loss of crucial QA-related information.

3. Auto-build scoreboards and build farms.
Auto-build scoreboards and build farms are a more proac-
tive form of distributed regression test suites that al-
low developers to build/test their software at multi-
ple sites on various hardware, operating system, and
compiler platforms. The Mozilla Tinderbox [7] and
ACE+TAO Virtual Scoreboard [2] are auto-build score-
boards that track end-user build results across various
platforms. Bugs are reported via the Bugzilla issue
tracking system [29], which provides inter-bug depen-
dency recording, advanced reporting capabilities, ex-
tensive configurability, and integration with automated
software configuration management systems, such as
CVS [28]. While these auto-build systems help docu-
ment the QA process, the decision of what to put under
QA and how to do it is left to users. Unless develop-
ers can control at least key aspects of the QA process,
important gaps and inefficiencies will still occur.

4. Distributed continuous quality assurance
(DCQA) environments, are designed to coordinate
QA efforts around-the-clock using resources in multiple,
geographically distributed locations. For example, the
VTK project uses a DCQA environment called Dart [6],
which supports a continuous build and test process that
is initiated whenever repository check-ins occur. Devel-
opers install a Dart client on their platform and use
this client to automatically check out software from a
remote repository, build it, execute the tests, and sub-
mit the results to the Dart server. Another similar sys-
tem is BuildBot [8]. A key limitation of these DCQA
systems, however, is that the underlying QA process is
hard-wired, i.e., other QA processes or other implemen-
tations of the build and test process are not easily sup-
ported and the process does not change once it starts.
These systems therefore cannot exploit incoming results
nor avoid already discovered problems, which wastes re-
sources and misses important improvement opportuni-
ties.

Although prior efforts on QA described above can
help improve the quality and performance of software,
they have significant limitations. First, existing ap-
proaches are largely ad hoc and have no scientific
basis for assuring that anomaly detection, QoS eval-
uation, and integration testing is performed systemat-
ically and comprehensively. Second, many existing ap-
proaches are reactive and have limited scope (e.g.,
they can be used only when software crashes or only
focus on functional regression tests), whereas effective
QA support needs to be much broader and more proac-
tive (e.g., seeking to resolve problems before users en-
counter them and trying to identify/optimize perfor-
mance bottlenecks). Third, existing approaches inad-
equately document the QA activities that have been
performed, which makes it hard to determine the full
extent of (or gaps in) the QA process. Fourth, exist-
ing approaches limit developer control over the QA



process, e.g., although developers may be able to decide
what aspects of their software to examine, some config-
urations are evaluated multiple times, whereas others
are not evaluated at all. Finally, existing approaches
do not intelligently adapt by learning from QA re-
sults obtained earlier by other users. These limitations
collectively yield inefficient and opaque in-the-field QA
processes that are insufficient to address the emerging
trends and requirements of software systems described
in Section 1.

1.2 Summary of Prior Work
In prior work [13, 24, 34], we developed a proto-

type DCQA environment called Skoll [27] that improves
upon earlier system approaches described in Section 1.1.
In particular, Skoll provides an Intelligent Steering Agent
(ISA) that guides the QA process across large config-
uration spaces by decomposing QA analyses (such as
anomaly detection, QoS evaluation, and integration test-
ing QA processes) into multiple tasks and then dis-
tributing/executing these tasks continuously across a
grid of computing resources contributed by end-users
and distributed developers around the world. The re-
sults of these executions are returned to a central col-
lection site [2] that merges and analyzes the results to
complete the original QA analysis (e.g., identifying de-
fects, performance bottlenecks, and other quality prob-
lems) and (2) guide subsequent iterations of the QA
process.

The Skoll process and infrastructure. Skoll is a
process and a tool-supported infrastructure for defining
and executing DCQA processes. Skoll’s analytical cor-
nerstone is a model of the QA task space that captures
all QA task configurations in which QA tasks might
run. A task configuration is a set of name and value
tuples, which serve as parameters to generic QA task
definitions. In actual systems, not all parameter combi-
nations are legal, so Skoll also supports inter-parameter
constraints that limit the setting of one parameter based
on the settings of others.

Given a configuration space and generic QA tasks
that operate on points in this space, DCQA processes
are defined by (1) creating programs that systemati-
cally “visit” points in the configuration space, where
visiting involves a remote client executing a QA task
in the configuration defined by that point and return-
ing the results to a Skoll server, (2) defining analysis
techniques that merge and analyze incremental QA task
results, and (3) creating decision rules to dynamically
and intelligently steer the visitor programs based on the
incoming results.

At execution time, Skoll’s DCQA processes run on
volunteered clients using software that calls into a Skoll
server when they are available to perform QA tasks.
When contacted, Skoll uses intelligent planning tech-
nology to assign the current best QA task to that client,
where “best” is defined by the navigation and adapta-
tion strategies discussed above, the state of the DCQA
process, and characteristics of the client machine offer-
ing service. After a QA task is selected, Skoll creates
the code artifacts, assembly parameters, build instruc-
tions, and QA-specific code associated with it. This
data is then sent to the client, which executes it and re-

turns the results for collection and analysis. As results
return, decision rules are triggered to effect any desired
process steering.

We have developed several novel DCQA Processes
using the Skoll infrastructure, some of which we de-
scribe below.

DCQA fault characterization creates models de-
scribing the configuration options and settings that best
predict failure. These models help developers quickly
narrow down the causes of specific failures by field test-
ing many different system configurations and feeding
the results to a predictive model building process. Since
there are many QA subtasks—each taking hours to compl-
ete—we developed search-based strategies to improve
early fault characterization. For example, one strategy
zooms in on parts of the subtask configuration space in
which tests fail, allowing quick characterization of spe-
cific problems. Conversely, after a problematic configu-
ration subspace has been characterized, we steer further
efforts away from this subspace and towards other parts
of the subtasks configuration space for which QA infor-
mation is still needed.

We applied this DCQA fault characterization pro-
cess to one version of ACE+TAO for which QA in-
formation was already available, using several hundred
clients across 120 CPUs in our evaluation testbed. The
largest subtask configuration models had ∼115K pos-
sible configurations. Our results confirmed Skoll’s ef-
fectiveness and strongly suggest that our DCQA pro-
cess worked better than the conventional QA approach
used by ACE+TAO developers. For example, although
ACE+TAO developers could not execute large-scale QA
processes due to the combinatoric number of configura-
tions, we used Skoll to execute all tests on all compilable
configurations in 8 days. We quickly identified problems
that they had not found or had taken much longer to
find. Finally, the automatic fault characterization en-
abled them to find the root cause of quality problems
quickly. See [24] for more details.

One limitation with the Skoll QA process applied to
ACE+TAO is that it must ultimately test the entire
configuration space, which does not scale gracefully. We
therefore decided instead to systematically sample the
configuration space, testing only the selected configura-
tions and conducting fault characterization on the re-
sulting data. Our sampling approach is based on two
types of computing mathematical objects called cover-
ing arrays. The first type (basic covering arrays) in-
duces a subtask configuration sample in which all t-way
interactions between options are observed at least once.
The second type (variable-strength covering arrays) is
similar, but allows us to vary t across different subsets of
the subtask configuration space. Our evaluation showed
that these sampling approaches were nearly as accurate
as those based on exhaustive data, but were much less
expensive, providing from 50% to 99% reduction in the
number of configurations tested. See [12, 31] for more
details.

DCQA performance modeling. In addition to
functional testing we also have developed initial DCQA
processes targeting performance measurement. DCQA
performance modeling helps developers determine which
small subset of system configurations must be bench-



marked to accurately estimate performance across all
configurations. Since benchmarking all system config-
urations is infeasible in large-scale systems, developers
currently limit their analyses to a few configurations,
after which they (unreliably) extrapolate to the entire
configuration space, which allows performance degrada-
tions to escape to the field.

To address the limitations with existing performance
estimation, we developed a DCQA process called “reli-
able effects screening” that we implemented using Skoll.
This process executes statistically-designed experiments
across a QA grid to identify a small subset of the most
important performance-related configuration options (cur-
rently limited to binary options only). Whenever soft-
ware changes occur thereafter, developers can quickly
estimate system performance across the entire configu-
ration space by exhaustively exploring all combinations
of (the small number of) important options, while ran-
domizing the rest.

We evaluated the reliable effects screening process on
a 14 option subset of ACE+TAO and associated soft-
ware. The results indicated that (1) this process cheaply
and correctly identifies the subset of options that are
most important to system performance, (2) monitor-
ing only these selected options can detect performance
degradation quickly with an acceptable level of effort,
and (3) alternative strategies with equivalent effort yield
less reliable results. See [32, 33] for more details. An
interesting aspect of this approach is that by computing
the key effects before changes occur, we cut down total
benchmarking time from 2 days to 5 minutes, which is
fast enough to make this part of the source code check-in
process. By working proactively, therefore, we can give
developers that illusion of very fast response without
significantly compromising the quality of the analysis.

While the results described above have been promis-
ing, they are only a first step to realizing the promise of
DCQA technologies. We must therefore overcome the
following weaknesses and areas for improvement that
motivate the research efforts in this proposal:

• Scalability. Our work to date on Skoll has been
designed for, and evaluated on, problems of rel-
atively modest scale on a single software subject.
For example, our configuration models of ACE+TAO
assumed a fixed set of options, option settings were
limited to nominal categories (i.e., a small num-
ber of discrete settings), and experimentation was
limited to 20 or fewer configuration options. Our
broader goal is to run DCQA processes across large
virtual computing grids provided by software de-
velopment companies in the form of commodity
computing clusters or volunteered resources con-
nected via intranets or by world-wide user com-
munities via the Internet. To make significant
progress on this effort, therefore, we need more
powerful algorithms, theories, and tools; a larger
and more diverse application set; a more heteroge-
neous evaluation grid; and must engage appropri-
ate development organizations and user communi-
ties to broaden our application scenarios.

• Automation and ease of use. Many key arti-
facts (such as configuration models, build scripts,

test scaffolding, and algorithm definition) used in
Skoll must be implemented manually today and
redeveloped for every new application or system
change. Moreover, developers often do not com-
pletely understand the configuration model for their
large-scale, complex systems, so their models of-
ten have erroneous and missing constraints. Ex-
plicit and automated support for model building
and validation is therefore required, particularly
as we explore ultra-large-scale configuration and
control spaces [18].

• Range of applicability. So far, we have ap-
plied Skoll to only a very restricted set of problems
and we have assumed that QA tasks must be very
lightweight to run on end-user machines. These
previous restrictions prevented us from tackling
interesting use cases, such as QA processes for
component-based systems with multiple versions
of each component, cost and time optimized QA
processes run on reconfigurable hardware and soft-
ware platforms, and QA tasks involving multiple
client machines. We therefore need to focus on QA
processes used by developers and run on developer-
provided machines (which may of course be dis-
tributed around the world in large, decentralized
organizations).

To address these limitations we are working with re-
searchers from the Institute for Software Integrated Sys-
tems (ISIS) at Vanderbilt University (VU) to develop,
validate, and deploy next generation of QA environ-
ments for complex and adaptive software systems.

1.3 Project Research Goals and Technical Fo-
cus Areas

To address the challenges discussed above—and over-
come the limitations with existing QA processes de-
scribed in Sections 1.1 and 1.2—we are conducting a
research effort called QUality Assurance as a Service
Infrastructure (QUASI) aimed at developing and vali-
dating the next generation of QA technologies that sup-
port around-the-world, around-the-clock QA on a vir-
tual computing grid provided largely by (possibly dis-
tributed) development teams. Our research goals in the
proposed QUASI project focus on:

• Developing new technologies and support
infrastructure, including languages for modeling
key characteristics of software configurations and
QA process control, control algorithms for schedul-
ing and remotely executing QA tasks, and analysis
techniques that accurately and scalably character-
ize software faults and performance problems.

• Applying and validating individual technolo-
gies, algorithms, and infrastructure compo-
nents in a controlled environment using the QUASI
evaluation grid, which is our dedicated cluster of
∼235 diverse and geographically-distributed top-
end CPUs recently funded by ONR.

• Demonstrating and evaluating our approach
at scale by using our results to enhance the QA



process of multiple large-scale projects and com-
panies. In particular, our project partners include
major companies and popular open-source projects.

Individually, these efforts provide the technical foun-
dation for producing the advanced software methods
and tools required for next-generation software systems.
Combined together, they provide a powerful framework
for cost-effective, time-bounded assurance of these sys-
tems via model-based distributed continuous QA tech-
nologies that define, deploy, and manage proactive and
adaptive QA processes (e.g., monitoring, testing, and
performance assessment) across networked testbeds to
greatly improve (or tradeoff) the cost, quality, and time
needed to build confidence that these systems are meet
their functional and performance requirements.

To support our QA research goals we are creating,
validating, and disseminating novel technologies in the
focus areas described below:

1. Design and evaluation of scalable DCQA applica-
tions. To date only a handful of research efforts [25, 11,
22, 9, 14, 21] have studied DCQA processes. It is not yet
clear, therefore, how best to structure these processes,
what types of QA tasks can be distributed effectively,
or how the costs/benefits of DCQA processes compare
to conventional QA processes. To address these issues,
we propose to create, prototype, and evaluate several
types of DCQA processes for the large-scale software
systems developed by our partners at major companies
and popular open-source projects. Since these DCQA
processes must scale to large configuration spaces, ap-
plying brute-force QA processes to detect, identify, and
remedy faults and QoS performance bottlenecks is in-
feasible, even with a large grid of computing resources.
To handle this scale and complexity, we will develop
techniques to explore and control the QA configura-
tion space intelligently. For example, we are exploring
the use of customizable strategies to create goal-driven
DCQA process adaptation based on a variety of factors,
such as task importance, cost, and resource availability.

2. Model-driven QA configuration specification, anal-
ysis, and synthesis. Today’s software systems are char-
acterized by myriad infrastructure and application vari-
abilities that are typically configured and optimized man-
ually [20]. Unfortunately, this ad hoc customization has
no scientific basis for assuring that the resulting config-
uration delivers the required functionality or QoS per-
formance. To handle this variability rigorously, we are
formally modeling aspects of the QA subtasks and
underlying software that will be varied under the control
of the QUASI DCQA process. Modeling includes not
only software configuration and process control param-
eters, but also their constraints, module interconnec-
tions, and interdependencies; QoS characteristics; and
estimated workloads. High-level, coarse-grained models
are used initially, which are then gradually refined into
finer-grained models and/or implementations as the QA
process proceeds. Our approach is predicated on the
assumption that the configuration models can be ana-
lyzed, and the analysis results will help to optimize QA
processes applied to the software and enable automated
generation and execution of many QA steps.

3. Implementation and at-scale validation of the QUASI
next-generation CBIT server infrastructure. Our DCQA

processes work by decomposing QA processes into mul-
tiple tasks, distributing and executing them on a large-
scale computing grid, continuously merging and analyz-
ing the results, and adapting the process based on these
results until the desired analysis is finished. To ensure
that our research has a firm experimental basis, we are
developing and validating a prototype of the QUASI
infrastructure, which consists of reusable tools and ser-
vices needed to implement, execute, and evaluate our
research plan outlined above.
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