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Abstract 
This work addresses the problem of information leakage of 

cryptographic devices, by using the reconfiguration technique 
allied to an RNS based arithmetic. The information leaked by 
circuits, like power consumption, electromagnetic emissions and 
time to compute may be used to find cryptographic secrets. The 
results issue of prototyping shows that our coarse grained 
reconfigurable architecture is robust against power analysis 
attacks.. 
 

1. Introduction 
The main idea of this work is that reconfigurable 

techniques may be used to give flexibility and improve 
security of cryptographic systems. Flexibility is an obvious 
necessity in the security domain, because cryptanalysis 
evolves as fast as cryptographic methods. However, 
nowadays is no longer sufficient make use of proven 
robust cryptographic algorithms. Now it is imperative to 
take care of the hardware implementation of these 
algorithms. 

In 1998 an attack based on the information leaked by 
cryptographic circuits was proposed [1]. This kind of 
attack makes use of information like time to compute, 
electromagnetic emissions, temperature, power 
consumption, etc. They are called Side Channel Attacks 
(SCA) and can be used to retrieve secret keys of 
cryptographic devices. 

For instance, the power consumed by a cryptographic 
engine has a strict relation with the data computed. This 
characteristic is due that logic gates consume current 
differently when switches from zero to one than from zero 
to zero. Then, an encryption process generates a power 
signature depending on the text encrypted and the 
cryptographic key used to do it. If the cryptographic 
hardware has no protection, a Simple Power Analysis 
(SPA) attack can be performed. But even with some 
countermeasures present, the Differential Power Analysis 
(DPA) may be still efficient.   

This paper firstly gives an overview about DPA attacks 
and shows some countermeasures. Then, the Leak 
Resistant Reconfigurable Architecture (LR2A) is explained. 
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Afterwards a discussion about the security of the LR2A is 
made, considering the arithmetic background of this 
approach. Finally some results, conclusions and further 
work are presented. 

 
2. DPA Attack  

Differential power analysis consists not only visual (as 
the SPA), but also statistical analysis and error-correction 
methods to recover keys of hardware implementation of 
cryptographic algorithms [1]. 

The most of power consumption of an integrated circuit 
is due to the logical gates and the parasitic capacitance of 
the internal wires. But the variant part of power 
consumption is given by the data processed. So, the DPA 
has the ability to find the correlated data in hardware’s 
power consumption, without requiring any information 
about the implementation details.  

For a typical attack, an adversary repeatedly samples 
the target device’s power consumption through each of 
several thousand cryptographic computations. These power 
traces can be obtained using high-speed analog-to-digital 
converters. Figure 1 illustrates this method used to attack a 
smartcard device, but experiences were made also against 
FPGA implementations. 

 
Figure 1 - A DPA attack platform 

As an illustration, a DPA attack against a device 
implementing the DES algorithm is given. The Data 



Encryption Standard (DES) [2] is used because of its 
widespread use and simplicity. The DES is composed by 
16 rounds of substitutions, with initial and final 
permutations. In each of the 16 rounds, the DES 
encryption algorithm performs eight S-box operations. The 
8 S-boxes take as input the XOR between the six key bits 
and the six bits of the R register and produce four output 
bits.  

The attack consists in to guess the sub-keys at the input 
of the S-box, and predict the output. For example, a typical 
prediction is that the 6 bits entering S-box 1 are “100101”. 
If correct, it allows the attacker to compute four bits 
entering the second round of the DES computation. If the 
assertion is incorrect, however, an effort to predict any of 
these bits will be wrong nearly to half the time. 

For any of the four predicted bits, the power traces are 
divided into two subsets: one where the predicted bit value 
is 0, and one set where the predicted value is 1. Next, an 
average trace is computed for each subset, where the nth 
sample in each average trace is the average of the nth 
samples in all traces in the subset. Finally, the adversary 
computes the difference of the average traces. 

If the original assumption is incorrect, the criteria used 
to create the subsets will be approximately random. Any 
randomly-chosen subset of a sufficiently-large data set will 
have the same average as the main set. As a result, the 
difference trace will be near to zero, and the adversary 
repeats the process with a new guess. 

If the assumption is correct, however, choice of the 
subsets will be correlated to the actual computation. In 
particular, the second-round bit will have been ‘0’ in all 
traces in one subset and ‘1’ in the other. When this bit is 
actually being manipulated, its value will have a small 
effect on the power consumption, which will appear as a 
statistically-significant deviation from zero in the 
difference trace. 

The main idea behind this method is that prediction of a 
single output bit leads the attacker to the 6 bits of the input 
sub-key, and then, to the rest of the key bits. 

 
 

3. DPA Countermeasures 
Several general approaches for reducing the flow of 

information through power consumption have been 
proposed. This might be accomplished by adding a 
secondary architecture to the chip that would do 
calculations on random numbers. This could mask the 
power consumed by the other part of the chip handling the 
encryption. But it is unclear whether enough randomness 
could be created to resist the more thorough statistical 
techniques used to break the cards' codes. Random 
calculations tend to average out over time and are easy for 
differential power analysis to remove.  

At the architectural level, one solution could be to add 
parallel circuits to the chip that would mirror the real 

encryption calculations. For instance, if the real circuit is 
multiplying by the binary number 101, then the mirror 
circuit might multiply by 010 [3]. This would smooth out 
the power consumption because the power consumed by 
both parts together should be more constant. Still, it is 
unclear if all information can be blocked by this solution, 
because the mirroring is not perfect, due to physical 
synthesis aspects. 

Some efficient algorithmic countermeasures have been 
presented both at the hardware (logic gates, analog) and 
algorithmic levels. 
 
A. Hardware Countermeasures 

The hardware methods to counteract DPA attacks differ 
expressively from the algorithmic ones. For the hardware 
approach the intermediate results of the cryptographic 
algorithm computation are not affected. As an alternative, 
the contribution of the hardware approach is to hide the 
attackable part of the power consumption with different 
noises. The noise addition has a direct relation with the 
needs of measurement. It does not avoid DPA attacks, but 
makes it quite more difficult. The effectiveness of the 
countermeasures against DPA is due to the fact that 
cryptographic devices are typically protected by a 
combination of algorithmic and hardware techniques, or 
only the hardware one [4]. 

In order to decrease the correlation between data inputs 
and the power consumption of a given circuit, we must be 
able to increase the samples needed in DPA. Two major 
hardware countermeasures in this sense have been 
proposed.  

The lower signal to noise ratio (SNR) is, the lower is the 
correlation between the correct hypothetical current 
consumption and the real power consumption of the device. 
To reduce SNR there are some works that use special logic 
to minimize the data dependency of the current 
consumption.    

In [5], [6] and [7] the balanced dual-rail logic is 
proposed. The basic idea is that a logic gate must consume 
an equivalent power, independently from the incoming 
input values. The SNR is reduced by this data-independent 
switching of the standard cells. Unfortunately, the 
experiments show that this goal is only partially reached. 
Dual-rail approach is not sufficient to guarantee a 
complete data independent power signature. One potential 
problem is that the gate loads may differ due to differences 
in routing. The design of each dual-rail gate must ensure 
equal input pin loads and balanced power usage. To 
achieve this, the process of grouping cells in the placement 
must be done carefully, which implies a high development 
effort. Besides that, the final circuit with dual-rail logic 
takes about tree times the area and two times the 
consumption of the original circuit.  

The second hardware approach to prevent DPA attacks 
is to reduce the correlation between input data and power 



consumption by randomly disarrange the moment of time 
at which the attacked intermediate result is computed. If 
the time tc is different in every power trace, the correlation 
between the hypothetical power consumption and the real 
one is highly reduced. The countermeasure proposed by  
[8] lies on the insertion of random delays. The 
countermeasure proposed in [4] counteracts the DPA by 
using power-managed blocks to mask the power 
consumption. Both approaches, with the [9] and [10] 
works, difficult the DPA attack. But, as shown in [11], 
even if a direct calculation of the maximum probability of 
a given power consumption occurring at a given time is 
not practical, it is always possible to approximate it 
empirically based on a software model of the 
countermeasure. 

Another way to decrease the SNR is presented in [12], 
and consists in to mask the power consumption not by 
randomizing the consumption or creating noise but by 
generating, at the transistor level, a constant consumption. 
This approach is a little similar with the work proposed by 
Adi Shamir in [13], but the circuit described in [13] 
considers only if the attacker probes the Vcc, because the 
Gnd line remains vulnerable, when [12] provides a full 
masking in both Vcc and Gnd wires. 

 
B. Algorithmic Countermeasures 

There are several algorithmic (or software) 
countermeasures to thwart DPA attacks. Some of the first 
ones were proposed in [14], and the three proposed 
countermeasures are efficient against SPA and classical 
DPA attacks. For RSA cryptosystems [15] the first method 
described by Coron is applicable, and the second one is 
just an adaptation of the Chaum’s blind signature [16]. The 
third method is only suitable for ECC (Elliptic Curve 
Cryptosystems). But the recently proposed Refined Power 
Analysis (RPA) [17] overrules these countermeasures.   

The BRIP method counteracts the RPA but is also 
targeted to ECC, not tailored to work with the widely used 
RSA algorithm [18].  The message blinding proposed by 
P. Kocher [19] seems to be an efficient countermeasure 
against the MRED [20] (an attack targeting CRT 
implementation of RSA). 

In general, the countermeasures protecting the RSA 
algorithm of DPA attacks relies on message or exponent 
blinding. These methods contribute or not to the security 
of the system, depending on the way they are implemented 
and the kind of attack. Is not rare that defend against one 
attack may benefit another kind of attack.  

So, the best way to counteract DPA attacks is to target 
the DPA principle: the correlation between the data 
computed and the power consumption. Differently of the 
works that generally proposes CRT to accelerate RSA, like 
[23], another proposes a full RNS representation to 
compute RSA [24], [25]. Besides the acceleration, a full 
RNS implementation of RSA can intelligently be used to 

counteract DPA and DFA attacks, as is shown in Section V. 
 
 

4. The Leak Resistant Reconfigurable 
Architecture 

We conceived a coarse grained reconfigurable 
architecture to execute the Leak Resistant Arithmetic 
(Section V) called “Leak Resistant Reconfigurable 
Architecture” (LR²A).   Besides, the LR²A intends to be 
a flexible solution for cryptographic algorithms; also it can 
be viewed as a coarse grain reconfigurable architecture, 
because it is possible to reconfigure this architecture to 
perform other cryptosystems based on modular arithmetic, 
like ECC or RC6.  

Furthermore, the LR²A can be easily modified to run 
supplementary applications, like data compression or 
image treatment, but the discussion about the flexibility 
exceeds this paper’s scope. 

The LR²A is built around three main structures: a 
configuration and data injection controller, some 
homogeneous processing elements (PE), and memory 
resources. A controller is charged of data injection and 
configuration control. There is k PE, where k is given by 
the number of bases used for the LRA. The LR²A memory 
schema is the non-uniform memory access, i.e. the 
memory is distributed can be viewed as a local memory 
for each PE, but accessible for all PEs and the controller.  

The following subsections describe the controller, the 
PE, the memory structure and the configuration model, 
where the robustness of the LR²A is highlighted. 

 
A. The Controller 

The main difference of the LR²A and some common 
reconfigurable architectures is that the LR²A is not only a 
loop-core for a specific algorithm class. The proposed 
reconfigurable architecture includes a controller to bring 
the configuration specific to each node, to inject the data 
into the distributed memory, and after that, to recover the 
computed data. The Figure 2 shows an overview of the 
LR²A. 

To perform these operations the Plasma processor was 
chosen, due to its availability and the fact it has a C 
compiler, which makes easier the configuration model 
programming. The Plasma CPU is a open source processor, 
based on the MIPS R3000 instruction set, ant it has as an 
advantage the software compatibility with others 
processors used for embedded systems.  

At the beginning, the controller brings the configuration 
for each PE, and saves into a data structure information 
about the status of each node. After, the initial data 
supposed to be computed is charged into the local 
memories. Since configuration and data are in place, the 
controller starts the computation. Finally, the controller is 
the element charged of to recuperate the computed data 
and to store it into the main memory. 



 

 
Figure 2 - The LR²A overview 

For the next changes (I.e, data arriving, or other 
configuration needed), the controller consults current 
status of the PEs and its respective memories before send 
the new information. In fact; to control the LR²A consists 
in to run the configuration framework explained in the 
subsection III.C. 

 
B. The Processing Element 

The LR²A’s processing element has a load-store 
architecture: the logic and arithmetic instructions are 
executed among internal registers only, while the memory 
access instructions execute either the reading from (load) 
or the writing to (store) one memory position. 

Due to the load/store architecture option, the processor 
must have a relatively large set of data manipulation 
general-purpose registers, to reduce the number of 
memory accesses (this always represents a time penalty 
with regard to the processor internal operation). Regarding 
the instruction format, all instructions have exactly the 
same size, occupying one memory word each. The 
instruction contains the operation code and the operands 
specification, in case they exist. 

 Other characteristics present at the LR²A are common to 
the most risc-like processor: 

1. Address and data size are of 32 bits. 
2. Memory addressing is performed on a word basis. 
3. The register bank contains 16 general-purpose 

registers, each of 32 bits. 
4. There are 4 status flags named: negative, zero, 

carry, and overflow. 
5. The instruction execution takes place in 2 to 4 

clock cycles. 
The processor datapath includes dedicated 

cryptographic specific operators. Because the LRA’s basic 
operations are the modular ones, the following operations 
are hardwired and incorporated to the ALU: 

• Modular reduction (X mod M) 
• Modular reduction by 2k factor (X mod 2k) 
• Modular addition (X+Y mod M) 
• Modular subtraction (X−Y mod M) 
• Modular multiplication (X×Y mod M) 
• Modular multiplication by 2k factor (X×Y mod 2k) 
• Shifts and rotations performed trough a Barrel shifter. 

 
C. The Configuration Control Model 
 Frequently the efficiency of a reconfigurable 
architecture is compromised due to the absence of methods 
to control the reconfiguration process and the data 
injection. 
 To fill this gap a configuration model associated with 
the LR²A is proposed. The model is composed by several 
modules: configuration memory (CM), reconfiguration 
monitor (RM), reconfiguration dispatcher (RD), 
configuration scheduler (CS) and the central configuration 
control (CCC). This reconfiguration model is based on the 
Reconfigurable System Configuration Manager (RSCM) 
idea presented at [26]. The RSCM adapted for the LR²A 
can be depicted from Figure 3. 
 As the name indicates, the configuration memory is a 
reserved part of the controller’s memory, which stores all 
configurations that could be needed to execute an 
application. 

The Reconfiguration Monitor (RM) detects situations 
where reconfigurations need to be performed, the so-called 
reconfiguration events, and notifies CCC, which acts 
appropriately. 

All information about PEs allocation and its 
corresponding tasks is stored at the Table of Resources 
Allocation (TRA), associated with the CCC. The CCC 
receives requests of the RM and dispatches the necessary 
services at the CS and RD. 

The Configuration Scheduler (CS) module is 
responsible to determine which configuration is the next to 
be configured. This module receives service requests from 
the CCC. It stores a data structure with information about 
configurations dependence, called Table of Dependencies 
and Descriptors (TDD). 

Finally, the RD module is charged of the 
reconfiguration itself, sending the appropriated code for 
each PE, or, for a group of PEs (i.e. a broadcast of 
configurations is possible). 

As mentioned in [26], the RSCM can be implemented 
in hardware, software or in a combined hardware/software 
approach. Because the configurations are not frequent in 
the LR²A, we opted to implement the RSCM in software, 
running at the Plasma processor. 
This configuration model allows centralizing all control 
and synchronization, avoiding problems related with cache 



coherence. The controller “knows” what is happening in 
each PE because each PE has a data structure associated 
and updated by the RSCM. 
 
 

5. Leak Resistant Arithmetic 
 The Leak Resistant Arithmetic (henceforth called LRA) 
is based in the RNS representation and the RNS 
Montgomery’s modular multiplication proposed in [22]. 

 
Figure 3 - The LR²A control based on the RSCM  

A. Residue Number System 
 A Residue Number System (RNS) relies on the Chinese 
Remainder Theorem (CRT). This theorem indicates that is 
possible represent a large integer using a set of smaller 
integers, so that computation may be performed more 
efficiently.  

A residue number system is defined by a set of k 
integers constants, {m1, m2, m3 .. mk }, referred to as the 
moduli. The moduli must all be co-prime; so in particular 
no modulus may be a factor of any other. Let M be the 
product of all the mi. Any arbitrary integer X smaller than 
M can be represented in the defined residue number system 
as a set of k smaller integers {x1, x2, x3 ... xk } with  xi = X 
modulo mi representing the residue class of X regarding that 
modulus. 

So, arithmetic operations can be made using this 
representation, as addition and multiplication, for instance, 
absolutely in parallel, because once represented in RNS the 
operations does not generates any carry. For example, to 
perform an addition between A and B in RNS with a base 
composed by mi (0 < m ≤ k) is: Sumi = (ai + bi) modulo mi. 

The conversion from RNS to decimal is not so trivial, 
but is needed only after all computations performed, so its 
cost is amortized. To transform an RNS number in a 
decimal representation the following formula is needed: 
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For cryptographic applications, modular reduction (x 
mod M), modular multiplication (x.y mod M) and modular 
exponentiation (xy mod M) are the most important 
operations. They can be calculated using the Montgomery’s 
algorithm, modified to RNS representation, as described in 
the next sub-section. 

 
 

B. Montgomery Modular Multiplication 
The version of the Montgomery’s modular 

multiplication presented below was proposed in [24]. 
 In the RNS representation the value M is taken from: 

∏
=

=
k

i
imM

1
               (2) 

So, M is chosen as the Montgomery constant instead 
βk in the classical representation. Then, with A, B, R and 
N represented in RNS within the base β1={m1, m2, m3, ... 
mk}. The result of the algorithm must  be: R = 
A.B.M1

-1mod N. 
However, the value M1

-1cannot be computed in β1. 
So another base β2 is defined as an extension of β1, with 
k extra moduli all co-primes among them and with β1. 
So, before calculate (Algorithm 1, in Figure 2, points 3 
and 5) M1

-1 a base extension from β1 to β2 is performed.  
 So, the Equation 2 describes the algorithm for 
Montgomery’s modular multiplication in RNS. As inputs 
we have two RNS bases β1 and β2, such that M and M’ can 
be computed as the product of the moduli that composes 
respectively β1 and β2. The inputs A,  B and N  are also 
represented in both β1 and β2 bases. Besides a redundant 
modulus mr such that gcd(mr,mi)=1 is needed. Also, N and 
M must be co-primes. The result is given by R in β1. 
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Algorithm 1 – Modular multiplication in RNS with base 
extension (LRA’s core) 

The points 1, 2 and 4 of the algorithm consist of full 
RNS operations that can be realized in parallel. Therefore, 
the most complex operations rely on the base extensions 
(points 3 and 5). There are some methods to compute a 
base extension, but here the Mixed Radix System, 
described in [21] that has the advantage that it requires only 



a of k values for each base modification [22]. Due to space 
constraints, the algorithm for modular exponentiation was 
omitted in this paper, but details can be obtained in the 
same reference [22]. 

 
C. The security provided by the LRA 

Besides performance due to the intrinsic parallelism, 
RNS algorithms provide also the possibility of randomize 
the basis: the algorithm’s robustness relies on this concept.  
The LRA proposes two approaches of data randomization: 
one at the circuit level (spatial randomization) and the data 
level (arithmetic masking). They represent a good trade-off 
between security and implementation cost. The considered 
approaches are: 
• Random choice of initial bases: Randomization of the 
input data is provided by randomly choosing the elements of 
β1 and β2 before each modular exponentiation. 
• Random change of bases before and during the 
exponentiation: A generic algorithm is proposed in [22], 
offering many degrees of freedom in the implementation 
and at the security level. 

The main goal of these approaches is to lead to a 
randomization of all intermediate data computed at the 
cryptographic circuit for the same input data and output.  
Based on the same principle of the DPA, if the data change 
during an operation, consequently the power consumption 
becomes non constant, thwarting DPA attacks. The security 
of this method was demonstrated in [22]. 

 
6. Results 

A. Area and Performance 
 The Table I shows the size of each PE for different 
datapath sizes. Area is given in thousands of equivalent 
logic gates (elg). 

 
TABLE I 

Synthesis for PEs with different datapath sizes 

Datapath (bits) elg (k) Clock  (MHz) 

16 4,3 60

32 8,5 40

64 15,8 30

128 32 20
 

 Taking the 32bits datapath configuration, and 
considering the size of the controller being around 40k 
gates, a LR²A composed by 32 PEs (capable to perform 
1024bits exponentiation), has an area about 352k gates. 
Comparing with state-of-art hardware accelerators for the 
same purpose, the LR²A takes five to eight times the 
commonly use area.  
 But in terms of performance, as shown in the Figure 4, 
for cryptographic keys larger than 1024 bits, the LR²A 
provides more interesting response times. The comparison 
was made taking account the square and multiply method 

to perform modular exponentiation. The classic 
implementation concerns a modular exponentiation 
calculated with a specific circuit implementing the 
Montgomery algorithm for modular multiplication, with a 
word size of 32 bits, and running at 41MHz. On the other 
hand, the LR²A implemented is a 32 bit datapath version, 
with 32 processors running at 40MHz. 
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Figure 4 – Comparison between LR²A and a classic 

implementation of the “aemod N” 

Meanwhile, comparing the performance of the LR²A 
with other state-of-art architectures to compute modular 
exponentiation, the Figure 5 shows clearly that the 
improvements in security achieved by the LR²A do not 
compromise the performance. LR²A is capable to compute 
one 1024 bits modular exponentiation in the same time that 
the most performing architecture reviewed by us. 

 

Figure 5 - LR²A performance vs other state-of-art 
implementations of “aemod N” 

Concerning the area, the report is 5 times for 2048 bits 
and 10 times for 4096. This is the cost of the security. The 
classic implementation does not contain any 
countermeasure against DPA, while the LR²A incorporate 
the robustness needed to counteract this attack. 

 



B. Robustness 
 Regarding the robustness aspect, by changing 
intermediate results via base extension within the LRA 
method, our architecture consumes differently for the same 
data set. It means that we compute an exponentiation (Ae 
mod N) within different basis. In the first part we can see the 
consumption for the first base β1, while in the second part, 
the consumption is for the base   β2. The arrows highlight 
a visible different consumption. 
 

 
Figure 6 - Different traces for each base, with the same 

computed A x B mod M 

 By making a difference of the two curves, it is possible 
to see that the computed data is no longer related with the 
power consumption.  In the Figure 7 we have the difference 
of two computations of the same decimal data (I.e. the same 
values for ‘A’ and for the exponent ‘e’). The Figure 7-(a) 
shows the difference between two computations of (Ae mod 
N) in a classical representation: it means that for the same 
data set we always have the same consumption. 
 

 
Figure 7 – The robustness analysis of the LR2A:  

On the other hand the Figure 7-(b) highlights the 
difference of two modular exponentiation with the same 
‘A’ and ‘e’, but expressed in the LRA representation. As 
the first exponentiation is made in the base β1, and the 
second one in base β2, the resulting consumption is 
different, avoiding a DPA analysis. 
 
C. Reconfiguration issue 

The main security point of the LR²A is the base 
extension. This is realized through a dynamic 
reconfiguration. As can be viewed in the Algorithm 1, in a 
first moment the architecture executes RNS operations 
(points 1, 2 and 4). But when a base extension is required, 
due to its algorithmic nature, the architecture must be 
reconfigured to execute new instructions. So, the RSCM 
intervenes to manage the reconfiguration procedure. 

The Reconfiguration Monitor determines the moment 
when the base extension module is needed and notifies the 

Central Configuration Control. The CC calls the 
Configuration Scheduler, which verifies if the base 
extension module is present in the Reconfiguration 
Memory. Meanwhile, the necessary data is stored in the 
local memories. So, the Reconfiguration Dispatcher brings 
the new configuration to the PEs. 

After the base extension procedure finished, the RNS 
operations must be restored. This is accomplished by the 
RSCM, repeating the steps described in the previous 
paragraph. 

Acting this way the system is dynamically reconfigured, 
and the context is never lost due to the traces of each 
RSCM operation stored in the Table of Dependencies and 
Descriptors and in the Table of Resources Allocation. 

 
7. Summary and Conclusions 

 The Leak Resistant Arithmetic improves the robustness 
of cryptographic applications counteracting the principle of 
some hardware attacks, like DPA. Due its nature, the LRA 
leads to a coarse grain reconfigurable architecture, 
requiring important hardware resources.  
 Even with area penalties, the LR²A is competitive in 
terms of performance, equivalent to state-of-art of 
cryptographic accelerators. But in cryptographic 
applications, security always has a cost. The LR²A show 
that is possible to improve security remaining flexible and 
performing. 
 By slightly modifying the PEs it is possible to run other 
cryptographic or compression algorithms, but the main 
further work is to make the PEs still more flexible, by 
adding a fine grain reconfigurable area in each PE. In this 
way, with a reconfigurable datapath, the LR²A could 
implement a wide spectre of applications. 
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