
 A Cryptographic Coarse Grain Reconfigurable Architecture Robust Against DPA

Daniel Mesquita1, Benoît Badrignans2, Lionel Torres2, Gilles Sassatelli2, Michel Robert2, Fernando Moraes3
1Instituto de Engenharia de Sistemas e

Computadores – INESC-ID
Lisboa – Portugal

mesquita@inesc-id.pt

2Université Montpellier II, LIRMM
Montpellier –France
{surname}@lirmm.fr

3PUCRS – FACIN
Porto Alegre – Brasil
moraes@inf.pucrs.br

Abstract
This work addresses the problem of information leakage of

cryptographic devices, by using the reconfiguration technique
allied to an RNS based arithmetic. The information leaked by
circuits, like power consumption, electromagnetic emissions and
time to compute may be used to find cryptographic secrets. The
results issue of prototyping shows that our coarse grained
reconfigurable architecture is robust against power analysis
attacks..

1. Introduction
The main idea of this work is that reconfigurable

techniques may be used to give flexibility and improve
security of cryptographic systems. Flexibility is an obvious
necessity in the security domain, because cryptanalysis
evolves as fast as cryptographic methods. However,
nowadays is no longer sufficient make use of proven
robust cryptographic algorithms. Now it is imperative to
take care of the hardware implementation of these
algorithms.

In 1998 an attack based on the information leaked by
cryptographic circuits was proposed [1]. This kind of
attack makes use of information like time to compute,
electromagnetic emissions, temperature, power
consumption, etc. They are called Side Channel Attacks
(SCA) and can be used to retrieve secret keys of
cryptographic devices.

For instance, the power consumed by a cryptographic
engine has a strict relation with the data computed. This
characteristic is due that logic gates consume current
differently when switches from zero to one than from zero
to zero. Then, an encryption process generates a power
signature depending on the text encrypted and the
cryptographic key used to do it. If the cryptographic
hardware has no protection, a Simple Power Analysis
(SPA) attack can be performed. But even with some
countermeasures present, the Differential Power Analysis
(DPA) may be still efficient.

This paper firstly gives an overview about DPA attacks
and shows some countermeasures. Then, the Leak
Resistant Reconfigurable Architecture (LR2A) is explained.

1-4244-0910-1/07/$20.00 c2007 IEEE.

Afterwards a discussion about the security of the LR2A is
made, considering the arithmetic background of this
approach. Finally some results, conclusions and further
work are presented.

2. DPA Attack

Differential power analysis consists not only visual (as
the SPA), but also statistical analysis and error-correction
methods to recover keys of hardware implementation of
cryptographic algorithms [1].

The most of power consumption of an integrated circuit
is due to the logical gates and the parasitic capacitance of
the internal wires. But the variant part of power
consumption is given by the data processed. So, the DPA
has the ability to find the correlated data in hardware’s
power consumption, without requiring any information
about the implementation details.

For a typical attack, an adversary repeatedly samples
the target device’s power consumption through each of
several thousand cryptographic computations. These power
traces can be obtained using high-speed analog-to-digital
converters. Figure 1 illustrates this method used to attack a
smartcard device, but experiences were made also against
FPGA implementations.

Figure 1 - A DPA attack platform

As an illustration, a DPA attack against a device
implementing the DES algorithm is given. The Data

Encryption Standard (DES) [2] is used because of its
widespread use and simplicity. The DES is composed by
16 rounds of substitutions, with initial and final
permutations. In each of the 16 rounds, the DES
encryption algorithm performs eight S-box operations. The
8 S-boxes take as input the XOR between the six key bits
and the six bits of the R register and produce four output
bits.

The attack consists in to guess the sub-keys at the input
of the S-box, and predict the output. For example, a typical
prediction is that the 6 bits entering S-box 1 are “100101”.
If correct, it allows the attacker to compute four bits
entering the second round of the DES computation. If the
assertion is incorrect, however, an effort to predict any of
these bits will be wrong nearly to half the time.

For any of the four predicted bits, the power traces are
divided into two subsets: one where the predicted bit value
is 0, and one set where the predicted value is 1. Next, an
average trace is computed for each subset, where the nth
sample in each average trace is the average of the nth
samples in all traces in the subset. Finally, the adversary
computes the difference of the average traces.

If the original assumption is incorrect, the criteria used
to create the subsets will be approximately random. Any
randomly-chosen subset of a sufficiently-large data set will
have the same average as the main set. As a result, the
difference trace will be near to zero, and the adversary
repeats the process with a new guess.

If the assumption is correct, however, choice of the
subsets will be correlated to the actual computation. In
particular, the second-round bit will have been ‘0’ in all
traces in one subset and ‘1’ in the other. When this bit is
actually being manipulated, its value will have a small
effect on the power consumption, which will appear as a
statistically-significant deviation from zero in the
difference trace.

The main idea behind this method is that prediction of a
single output bit leads the attacker to the 6 bits of the input
sub-key, and then, to the rest of the key bits.

3. DPA Countermeasures
Several general approaches for reducing the flow of

information through power consumption have been
proposed. This might be accomplished by adding a
secondary architecture to the chip that would do
calculations on random numbers. This could mask the
power consumed by the other part of the chip handling the
encryption. But it is unclear whether enough randomness
could be created to resist the more thorough statistical
techniques used to break the cards' codes. Random
calculations tend to average out over time and are easy for
differential power analysis to remove.

At the architectural level, one solution could be to add
parallel circuits to the chip that would mirror the real

encryption calculations. For instance, if the real circuit is
multiplying by the binary number 101, then the mirror
circuit might multiply by 010 [3]. This would smooth out
the power consumption because the power consumed by
both parts together should be more constant. Still, it is
unclear if all information can be blocked by this solution,
because the mirroring is not perfect, due to physical
synthesis aspects.

Some efficient algorithmic countermeasures have been
presented both at the hardware (logic gates, analog) and
algorithmic levels.

A. Hardware Countermeasures

The hardware methods to counteract DPA attacks differ
expressively from the algorithmic ones. For the hardware
approach the intermediate results of the cryptographic
algorithm computation are not affected. As an alternative,
the contribution of the hardware approach is to hide the
attackable part of the power consumption with different
noises. The noise addition has a direct relation with the
needs of measurement. It does not avoid DPA attacks, but
makes it quite more difficult. The effectiveness of the
countermeasures against DPA is due to the fact that
cryptographic devices are typically protected by a
combination of algorithmic and hardware techniques, or
only the hardware one [4].

In order to decrease the correlation between data inputs
and the power consumption of a given circuit, we must be
able to increase the samples needed in DPA. Two major
hardware countermeasures in this sense have been
proposed.

The lower signal to noise ratio (SNR) is, the lower is the
correlation between the correct hypothetical current
consumption and the real power consumption of the device.
To reduce SNR there are some works that use special logic
to minimize the data dependency of the current
consumption.

In [5], [6] and [7] the balanced dual-rail logic is
proposed. The basic idea is that a logic gate must consume
an equivalent power, independently from the incoming
input values. The SNR is reduced by this data-independent
switching of the standard cells. Unfortunately, the
experiments show that this goal is only partially reached.
Dual-rail approach is not sufficient to guarantee a
complete data independent power signature. One potential
problem is that the gate loads may differ due to differences
in routing. The design of each dual-rail gate must ensure
equal input pin loads and balanced power usage. To
achieve this, the process of grouping cells in the placement
must be done carefully, which implies a high development
effort. Besides that, the final circuit with dual-rail logic
takes about tree times the area and two times the
consumption of the original circuit.

The second hardware approach to prevent DPA attacks
is to reduce the correlation between input data and power

consumption by randomly disarrange the moment of time
at which the attacked intermediate result is computed. If
the time tc is different in every power trace, the correlation
between the hypothetical power consumption and the real
one is highly reduced. The countermeasure proposed by
[8] lies on the insertion of random delays. The
countermeasure proposed in [4] counteracts the DPA by
using power-managed blocks to mask the power
consumption. Both approaches, with the [9] and [10]
works, difficult the DPA attack. But, as shown in [11],
even if a direct calculation of the maximum probability of
a given power consumption occurring at a given time is
not practical, it is always possible to approximate it
empirically based on a software model of the
countermeasure.

Another way to decrease the SNR is presented in [12],
and consists in to mask the power consumption not by
randomizing the consumption or creating noise but by
generating, at the transistor level, a constant consumption.
This approach is a little similar with the work proposed by
Adi Shamir in [13], but the circuit described in [13]
considers only if the attacker probes the Vcc, because the
Gnd line remains vulnerable, when [12] provides a full
masking in both Vcc and Gnd wires.

B. Algorithmic Countermeasures

There are several algorithmic (or software)
countermeasures to thwart DPA attacks. Some of the first
ones were proposed in [14], and the three proposed
countermeasures are efficient against SPA and classical
DPA attacks. For RSA cryptosystems [15] the first method
described by Coron is applicable, and the second one is
just an adaptation of the Chaum’s blind signature [16]. The
third method is only suitable for ECC (Elliptic Curve
Cryptosystems). But the recently proposed Refined Power
Analysis (RPA) [17] overrules these countermeasures.

The BRIP method counteracts the RPA but is also
targeted to ECC, not tailored to work with the widely used
RSA algorithm [18]. The message blinding proposed by
P. Kocher [19] seems to be an efficient countermeasure
against the MRED [20] (an attack targeting CRT
implementation of RSA).

In general, the countermeasures protecting the RSA
algorithm of DPA attacks relies on message or exponent
blinding. These methods contribute or not to the security
of the system, depending on the way they are implemented
and the kind of attack. Is not rare that defend against one
attack may benefit another kind of attack.

So, the best way to counteract DPA attacks is to target
the DPA principle: the correlation between the data
computed and the power consumption. Differently of the
works that generally proposes CRT to accelerate RSA, like
[23], another proposes a full RNS representation to
compute RSA [24], [25]. Besides the acceleration, a full
RNS implementation of RSA can intelligently be used to

counteract DPA and DFA attacks, as is shown in Section V.

4. The Leak Resistant Reconfigurable
Architecture

We conceived a coarse grained reconfigurable
architecture to execute the Leak Resistant Arithmetic
(Section V) called “Leak Resistant Reconfigurable
Architecture” (LR²A). Besides, the LR²A intends to be
a flexible solution for cryptographic algorithms; also it can
be viewed as a coarse grain reconfigurable architecture,
because it is possible to reconfigure this architecture to
perform other cryptosystems based on modular arithmetic,
like ECC or RC6.

Furthermore, the LR²A can be easily modified to run
supplementary applications, like data compression or
image treatment, but the discussion about the flexibility
exceeds this paper’s scope.

The LR²A is built around three main structures: a
configuration and data injection controller, some
homogeneous processing elements (PE), and memory
resources. A controller is charged of data injection and
configuration control. There is k PE, where k is given by
the number of bases used for the LRA. The LR²A memory
schema is the non-uniform memory access, i.e. the
memory is distributed can be viewed as a local memory
for each PE, but accessible for all PEs and the controller.

The following subsections describe the controller, the
PE, the memory structure and the configuration model,
where the robustness of the LR²A is highlighted.

A. The Controller

The main difference of the LR²A and some common
reconfigurable architectures is that the LR²A is not only a
loop-core for a specific algorithm class. The proposed
reconfigurable architecture includes a controller to bring
the configuration specific to each node, to inject the data
into the distributed memory, and after that, to recover the
computed data. The Figure 2 shows an overview of the
LR²A.

To perform these operations the Plasma processor was
chosen, due to its availability and the fact it has a C
compiler, which makes easier the configuration model
programming. The Plasma CPU is a open source processor,
based on the MIPS R3000 instruction set, ant it has as an
advantage the software compatibility with others
processors used for embedded systems.

At the beginning, the controller brings the configuration
for each PE, and saves into a data structure information
about the status of each node. After, the initial data
supposed to be computed is charged into the local
memories. Since configuration and data are in place, the
controller starts the computation. Finally, the controller is
the element charged of to recuperate the computed data
and to store it into the main memory.

Figure 2 - The LR²A overview

For the next changes (I.e, data arriving, or other
configuration needed), the controller consults current
status of the PEs and its respective memories before send
the new information. In fact; to control the LR²A consists
in to run the configuration framework explained in the
subsection III.C.

B. The Processing Element

The LR²A’s processing element has a load-store
architecture: the logic and arithmetic instructions are
executed among internal registers only, while the memory
access instructions execute either the reading from (load)
or the writing to (store) one memory position.

Due to the load/store architecture option, the processor
must have a relatively large set of data manipulation
general-purpose registers, to reduce the number of
memory accesses (this always represents a time penalty
with regard to the processor internal operation). Regarding
the instruction format, all instructions have exactly the
same size, occupying one memory word each. The
instruction contains the operation code and the operands
specification, in case they exist.

 Other characteristics present at the LR²A are common to
the most risc-like processor:

1. Address and data size are of 32 bits.
2. Memory addressing is performed on a word basis.
3. The register bank contains 16 general-purpose

registers, each of 32 bits.
4. There are 4 status flags named: negative, zero,

carry, and overflow.
5. The instruction execution takes place in 2 to 4

clock cycles.
The processor datapath includes dedicated

cryptographic specific operators. Because the LRA’s basic
operations are the modular ones, the following operations
are hardwired and incorporated to the ALU:

• Modular reduction (X mod M)
• Modular reduction by 2k factor (X mod 2k)
• Modular addition (X+Y mod M)
• Modular subtraction (X−Y mod M)
• Modular multiplication (X×Y mod M)
• Modular multiplication by 2k factor (X×Y mod 2k)
• Shifts and rotations performed trough a Barrel shifter.

C. The Configuration Control Model
 Frequently the efficiency of a reconfigurable
architecture is compromised due to the absence of methods
to control the reconfiguration process and the data
injection.
 To fill this gap a configuration model associated with
the LR²A is proposed. The model is composed by several
modules: configuration memory (CM), reconfiguration
monitor (RM), reconfiguration dispatcher (RD),
configuration scheduler (CS) and the central configuration
control (CCC). This reconfiguration model is based on the
Reconfigurable System Configuration Manager (RSCM)
idea presented at [26]. The RSCM adapted for the LR²A
can be depicted from Figure 3.
 As the name indicates, the configuration memory is a
reserved part of the controller’s memory, which stores all
configurations that could be needed to execute an
application.

The Reconfiguration Monitor (RM) detects situations
where reconfigurations need to be performed, the so-called
reconfiguration events, and notifies CCC, which acts
appropriately.

All information about PEs allocation and its
corresponding tasks is stored at the Table of Resources
Allocation (TRA), associated with the CCC. The CCC
receives requests of the RM and dispatches the necessary
services at the CS and RD.

The Configuration Scheduler (CS) module is
responsible to determine which configuration is the next to
be configured. This module receives service requests from
the CCC. It stores a data structure with information about
configurations dependence, called Table of Dependencies
and Descriptors (TDD).

Finally, the RD module is charged of the
reconfiguration itself, sending the appropriated code for
each PE, or, for a group of PEs (i.e. a broadcast of
configurations is possible).

As mentioned in [26], the RSCM can be implemented
in hardware, software or in a combined hardware/software
approach. Because the configurations are not frequent in
the LR²A, we opted to implement the RSCM in software,
running at the Plasma processor.
This configuration model allows centralizing all control
and synchronization, avoiding problems related with cache

coherence. The controller “knows” what is happening in
each PE because each PE has a data structure associated
and updated by the RSCM.

5. Leak Resistant Arithmetic
 The Leak Resistant Arithmetic (henceforth called LRA)
is based in the RNS representation and the RNS
Montgomery’s modular multiplication proposed in [22].

Figure 3 - The LR²A control based on the RSCM

A. Residue Number System
 A Residue Number System (RNS) relies on the Chinese
Remainder Theorem (CRT). This theorem indicates that is
possible represent a large integer using a set of smaller
integers, so that computation may be performed more
efficiently.

A residue number system is defined by a set of k
integers constants, {m1, m2, m3 .. mk }, referred to as the
moduli. The moduli must all be co-prime; so in particular
no modulus may be a factor of any other. Let M be the
product of all the mi. Any arbitrary integer X smaller than
M can be represented in the defined residue number system
as a set of k smaller integers {x1, x2, x3 ... xk } with xi = X
modulo mi representing the residue class of X regarding that
modulus.

So, arithmetic operations can be made using this
representation, as addition and multiplication, for instance,
absolutely in parallel, because once represented in RNS the
operations does not generates any carry. For example, to
perform an addition between A and B in RNS with a base
composed by mi (0 < m ≤ k) is: Sumi = (ai + bi) modulo mi.

The conversion from RNS to decimal is not so trivial,
but is needed only after all computations performed, so its
cost is amortized. To transform an RNS number in a
decimal representation the following formula is needed:

MMMxx
k

i
miii i

mod
1

1∑
=

−= (1)

For cryptographic applications, modular reduction (x
mod M), modular multiplication (x.y mod M) and modular
exponentiation (xy mod M) are the most important
operations. They can be calculated using the Montgomery’s
algorithm, modified to RNS representation, as described in
the next sub-section.

B. Montgomery Modular Multiplication
The version of the Montgomery’s modular

multiplication presented below was proposed in [24].
 In the RNS representation the value M is taken from:

∏
=

=
k

i
imM

1
 (2)

So, M is chosen as the Montgomery constant instead
βk in the classical representation. Then, with A, B, R and
N represented in RNS within the base β1={m1, m2, m3, ...
mk}. The result of the algorithm must be: R =
A.B.M1

-1mod N.
However, the value M1

-1cannot be computed in β1.
So another base β2 is defined as an extension of β1, with
k extra moduli all co-primes among them and with β1.
So, before calculate (Algorithm 1, in Figure 2, points 3
and 5) M1

-1 a base extension from β1 to β2 is performed.
 So, the Equation 2 describes the algorithm for
Montgomery’s modular multiplication in RNS. As inputs
we have two RNS bases β1 and β2, such that M and M’ can
be computed as the product of the moduli that composes
respectively β1 and β2. The inputs A, B and N are also
represented in both β1 and β2 bases. Besides a redundant
modulus mr such that gcd(mr,mi)=1 is needed. Also, N and
M must be co-primes. The result is given by R in β1.

12

2
1

21

1
1

21

:5
)(:4

:3
)(:2

:1

ββ
β

ββ
β

ββ

tofromRExtend
inMNQTR

tofromQExtend
inNTQ

andinBAT

RNSRNSRNS

RNS

RNS

−

−

⊗⊗⊕←

−⊗←

⊗←

Algorithm 1 – Modular multiplication in RNS with base
extension (LRA’s core)

The points 1, 2 and 4 of the algorithm consist of full
RNS operations that can be realized in parallel. Therefore,
the most complex operations rely on the base extensions
(points 3 and 5). There are some methods to compute a
base extension, but here the Mixed Radix System,
described in [21] that has the advantage that it requires only

a of k values for each base modification [22]. Due to space
constraints, the algorithm for modular exponentiation was
omitted in this paper, but details can be obtained in the
same reference [22].

C. The security provided by the LRA

Besides performance due to the intrinsic parallelism,
RNS algorithms provide also the possibility of randomize
the basis: the algorithm’s robustness relies on this concept.
The LRA proposes two approaches of data randomization:
one at the circuit level (spatial randomization) and the data
level (arithmetic masking). They represent a good trade-off
between security and implementation cost. The considered
approaches are:
• Random choice of initial bases: Randomization of the
input data is provided by randomly choosing the elements of
β1 and β2 before each modular exponentiation.
• Random change of bases before and during the
exponentiation: A generic algorithm is proposed in [22],
offering many degrees of freedom in the implementation
and at the security level.

The main goal of these approaches is to lead to a
randomization of all intermediate data computed at the
cryptographic circuit for the same input data and output.
Based on the same principle of the DPA, if the data change
during an operation, consequently the power consumption
becomes non constant, thwarting DPA attacks. The security
of this method was demonstrated in [22].

6. Results

A. Area and Performance
 The Table I shows the size of each PE for different
datapath sizes. Area is given in thousands of equivalent
logic gates (elg).

TABLE I

Synthesis for PEs with different datapath sizes

Datapath (bits) elg (k) Clock (MHz)

16 4,3 60

32 8,5 40

64 15,8 30

128 32 20

 Taking the 32bits datapath configuration, and
considering the size of the controller being around 40k
gates, a LR²A composed by 32 PEs (capable to perform
1024bits exponentiation), has an area about 352k gates.
Comparing with state-of-art hardware accelerators for the
same purpose, the LR²A takes five to eight times the
commonly use area.
 But in terms of performance, as shown in the Figure 4,
for cryptographic keys larger than 1024 bits, the LR²A
provides more interesting response times. The comparison
was made taking account the square and multiply method

to perform modular exponentiation. The classic
implementation concerns a modular exponentiation
calculated with a specific circuit implementing the
Montgomery algorithm for modular multiplication, with a
word size of 32 bits, and running at 41MHz. On the other
hand, the LR²A implemented is a 32 bit datapath version,
with 32 processors running at 40MHz.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

1024 2048 4096

Key Size (bits)

Ti
m

e
(s

ec
on

ds
)

Classic Implementation
LR²A 32 Bits

Figure 4 – Comparison between LR²A and a classic

implementation of the “aemod N”

Meanwhile, comparing the performance of the LR²A
with other state-of-art architectures to compute modular
exponentiation, the Figure 5 shows clearly that the
improvements in security achieved by the LR²A do not
compromise the performance. LR²A is capable to compute
one 1024 bits modular exponentiation in the same time that
the most performing architecture reviewed by us.

Figure 5 - LR²A performance vs other state-of-art
implementations of “aemod N”

Concerning the area, the report is 5 times for 2048 bits
and 10 times for 4096. This is the cost of the security. The
classic implementation does not contain any
countermeasure against DPA, while the LR²A incorporate
the robustness needed to counteract this attack.

B. Robustness
 Regarding the robustness aspect, by changing
intermediate results via base extension within the LRA
method, our architecture consumes differently for the same
data set. It means that we compute an exponentiation (Ae
mod N) within different basis. In the first part we can see the
consumption for the first base β1, while in the second part,
the consumption is for the base β2. The arrows highlight
a visible different consumption.

Figure 6 - Different traces for each base, with the same

computed A x B mod M

 By making a difference of the two curves, it is possible
to see that the computed data is no longer related with the
power consumption. In the Figure 7 we have the difference
of two computations of the same decimal data (I.e. the same
values for ‘A’ and for the exponent ‘e’). The Figure 7-(a)
shows the difference between two computations of (Ae mod
N) in a classical representation: it means that for the same
data set we always have the same consumption.

Figure 7 – The robustness analysis of the LR2A:

On the other hand the Figure 7-(b) highlights the
difference of two modular exponentiation with the same
‘A’ and ‘e’, but expressed in the LRA representation. As
the first exponentiation is made in the base β1, and the
second one in base β2, the resulting consumption is
different, avoiding a DPA analysis.

C. Reconfiguration issue

The main security point of the LR²A is the base
extension. This is realized through a dynamic
reconfiguration. As can be viewed in the Algorithm 1, in a
first moment the architecture executes RNS operations
(points 1, 2 and 4). But when a base extension is required,
due to its algorithmic nature, the architecture must be
reconfigured to execute new instructions. So, the RSCM
intervenes to manage the reconfiguration procedure.

The Reconfiguration Monitor determines the moment
when the base extension module is needed and notifies the

Central Configuration Control. The CC calls the
Configuration Scheduler, which verifies if the base
extension module is present in the Reconfiguration
Memory. Meanwhile, the necessary data is stored in the
local memories. So, the Reconfiguration Dispatcher brings
the new configuration to the PEs.

After the base extension procedure finished, the RNS
operations must be restored. This is accomplished by the
RSCM, repeating the steps described in the previous
paragraph.

Acting this way the system is dynamically reconfigured,
and the context is never lost due to the traces of each
RSCM operation stored in the Table of Dependencies and
Descriptors and in the Table of Resources Allocation.

7. Summary and Conclusions

 The Leak Resistant Arithmetic improves the robustness
of cryptographic applications counteracting the principle of
some hardware attacks, like DPA. Due its nature, the LRA
leads to a coarse grain reconfigurable architecture,
requiring important hardware resources.
 Even with area penalties, the LR²A is competitive in
terms of performance, equivalent to state-of-art of
cryptographic accelerators. But in cryptographic
applications, security always has a cost. The LR²A show
that is possible to improve security remaining flexible and
performing.
 By slightly modifying the PEs it is possible to run other
cryptographic or compression algorithms, but the main
further work is to make the PEs still more flexible, by
adding a fine grain reconfigurable area in each PE. In this
way, with a reconfigurable datapath, the LR²A could
implement a wide spectre of applications.

References

[1] P. Kocher, al. “Differential Power Analysis : Leaking

Secrets”. Advances in Cryptology: CRYPTO'99, pp.
388-397. 1999.

[2] – . “ Data Encryption Standard (DES)”. Federal
Information Processing Standards Publications (FIPS
PUBS) Nº 46-3. EUA.October 25, 1999.

[3] C. Walter. “Sliding Windows Succumbs to Big Mac
Attack”. Cryptographic Hardware and Embedded
System: CHES’01, pp286-299. 2001.

[4] L. Benini, et al. “Energy-aware design techniques for
differential power analysis protection”. Design
Automation Conference: DAC ‘03. Anaheim, USA.
June, 2003.

[5] A. Razafindraibe, et al. “Asynchronous Dual rail Cells
to Secure Cryptosystem Against SCA”.
Sophia-Antipolis Forum on MicroElectronics. Nice,
France, 2005.

[6] H. Saputra, et al. “Masking behavior of DES
encryption”. Design, Automation and Test Europe –
DATE ‘03. Munich, Germany, 2003.

[7] M. Simon, et al. “Balanced Self-Checking
Asynchronous Logic for Smart Card Applications”,
Microprocessors and Microsystems Journal, 27.
Elsevier, pp 421-430, October 2003.

[8] C. Clavier, et al. “Differential Power Analysis in the
presence of hardware countermeasures”.
Cryptographic Hardware and Embedded Systems –
CHES ’00. Pp 252-263, 2000.

[9] J. Irwin, et al. “Instruction stream mutation for
non-deterministic processors”. International
Conference on Application Specific Systems,
Architectures and Processors – ASAP 2002. IEEE
press. Pp 286-295. 2002.

[10] D. May, et al. “Non-deterministic processors”.
Information security and privacy – ACISP’01. Sydney,
Australia. July 2001.

[11] S. Mangard, “Hardware countermeasures against
DPA – a statistical analysis of their effectiveness”.
Topics in Cryptology – CT-RSA’04. pp. 222 – 235. San
Francisco, USA. 2004.

[12] D. Mesquita, et al. “Current Mask Generation: A New
Hardware Countermeasure for Masking Signatures of
Cryptographic Cores”. International Conference on
VLSI: IFIP VLSI SoC ’05. Perth, Australia, 2005.

[13] A. Shamir. “Protecting smart cards from passive power
analysis with detached power supplies”.
Cryptographic Hardware and Embedded Systems,
CHES’00.Pp 71-77, 2000.

[14] J-S Coron. “Resistance against Differential Power
Analysis for Elliptic Curve Cryptosystems”.
Cryptographic Hardware and Embedded Systems,
CHES’99. Pp 292-302, 1999.

[15] R. Rivest, et al. “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems”. ACM
Communications, vol 21. pp 120-126. 1978.

[16] D. Chaum. “Security without identification:
transaction systems to make Big Brother obsolete”.
Communication of the ACM. Vol. 8., n° 10, pp
1030-144. 1985.

[17] L. Goubin. “A refined power-analysis attack on ECC”.
Publick Key Cryptography: PKC ’03. pp 199-210.
2003.

[18] M. Hideyo, et al. “Efficient Countermeasures against
RPA, DPA, and SPA”. Cryptographic Hardware and
Embedded Systems, CHES’04. Pp 343-356, 2004.

[19] P. Kocher. “Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems”. 16th
Workshop in Cryptology: Crypto ’96. pp 104-113.
Santa Barbara, USA. 1996.

[20] B. Boer. “A DPA Attack against the Modular
Reduction within a CRT Implementation of RSA”.

Cryptographic Hardware and Embedded Systems,
CHES’02. pp 228-243, 2002.

[21] H. Garner. “The Residue Number System”. IRE
Transactions in electronic Computers. Vol 8, pp.
140-147, 1959.

[22] J-C. Bajard, et al. “Leak Resistant Arithmetic”.
Cryptographic Hardware and Embedded Systems
CHES’04. Pp 62-75, 2004.

[23] C. Kim, et al. “A CRT-Based RSA Countermeasure
against Physical Cryptanalysis”. Conference on High
Performance Computing and Communications: HPCC
’05. Pp 549-554, Naples, Italy, 2005.

[24] J-C. Bajard, et al. “A Full RNS Implementation of
RSA”.IEEE Transactions on Computers. Vol. 53, n° 6,
pp. 769-774. 2004.

[25] M. Ciet, et al. “Parallel FPGA implementation of RSA
with residue number systems – can side-channel threats
be avoided?”. 46th. International Midwest Symposium
on Circuits and Systems: MWSCAS ’03. Cairo, Egypt,
December 2003.

[26] E. Carvalho, et al. “Reconfiguration Control for
Dynamically Reconfigurable Systems”. Conference on
Design of Circuits and Integrated Systems: DCIS ’04.
Bordeaux, France, 2004.

[27] B. Badrignans, D. Mesquita, J-C. Bajard, L. Torres, G.
Sassatelli, and M. Robert. A parallel and secure
architecture for asymetric cryptography. In
Proceedings of ReCoSoC, page in press, Montpellier,
France, 2006.

[28] C. McIvor, M. McLoone, J. McCanny, and W.
Marnane. Fast montgomery modular multiplication
and RSA cryptographic processor architectures. In
Proceedings of the Asilomar Conference, Pacific
Groove, USA, 2003. IEEE Computer Society.

[29] S. Örs, L. Batina, B. Preneel, and J. Vandewalle.
Hardware implementation of a montgomery modular
multiplier in a systolic array. In IPDPS, page 184,
Nice, France, 2003. IEEE Computer Society.

[30] N. Nedjah and L. Mourelle. A review of modular
multiplication methods and respective hardware
implementations. Informatica, 30 :111–130, 2006.

[31] A. Daly and W. Marnane. Efficient architectures for
implementing montgomery modular multiplication and
RSA modular exponentiation on reconfigurable logic.
In Proceedings of the FPGA ’02, pages 40–49, 2002.

[32] J-P. Deschamps and G. Sutter. Fpga implementation of
modular multipliers. In Proceedings of the DCIS ’02,
pages 107–112, 2002.

[33] D. Mesquita, B. Badrignans, L. Torres, G. Sassatelli,
M. Robert, and F. Moraes. A leak resistant soc against
side channel attacks. In Proceedings of ISSoC, page in
press, Tampere, Finlande, 2006.

