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Abstract
Embedded media applications have to satisfy real-time,

low power consumption and silicon area constraints. These
applications spend most of the execution time in the iter-
ation of a few kernels; such kernels are typically made of
independent operations, which can be executed in parallel.
Clustered architectures are a solution designed to exploit
the high Instruction Level Parallelism (ILP) of the media
kernels, to keep a good level of scalability and to match
the strict constraints of the embedded domains. Within this
category, architectures with reconfigurable connections be-
tween clusters are of particular interest. The enhanced flex-
ibility allows them to handle several different data-paths
effectively, hence multiple applications; this is a key eco-
nomic factor in the semiconductor world, in which the cost
of the masks significantly increases at every technological
advance. This papers describes Hierarchical Cluster As-
signment (HCA), a compilation technique that deals with
the problem of mapping the computation of multimedia ker-
nels onto the clusters of the target machine. HCA exploits
the hierarchical structure of the clusters of the target archi-
tectures; it works by decomposing the problem of cluster as-
signment into a sequence of simpler sub-problems, each of
them involving a subset of the kernel instructions and a sub-
set of the machine clusters. A prototype of this methodology
has been implemented in a flexible framework and tested on
machine models based on the DSPFabric architecture.

1 Introduction
Embedded multimedia applications are subject to strong

real-time and QoS constraints. Their implementation on
portable devices is challenging, since it simultaneously
needs to achieve high performance, low power consump-
tion, low cost and fast time-to-market. In order to avoid the
non-recurring costs of ASIC design, industry and academia
invested resources in the research for coarse grain reconfig-
urable architectures throughout the last fifteen years.

The hardware maturity, the increasing demand of com-
putational power by multimedia applications and the ag-
gressive competition in the market of media streaming are
established facts during the last few years, which make
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coarse-grain reconfigurable hardware an attractive solution
for the execution of application kernels.

Media applications, like audio and video encod-
ing/decoding, often spend most of the execution time in
the iteration of a few kernels, i.e. Inverse Discrete Co-
sine Transform (IDCT), interpolation or deblocking filters.
These kernels are largely made of independent operations
and low memory aliasing, thus exposing a high degree of
Instruction Level Parallelism (ILP).

Clustered architectures – where each cluster is a Process-
ing Element (PE) with its own functional units and register
bank – allow exploiting the ILP and guarantee scalability,
low power consumption and low cost. Equivalent unified
machines (same amount of resources in a single cluster) are
not feasible because of the more than linear increase of the
centralized register file read/write time, w.r.t. the increase
of the functional units accessing it. On one hand, clustered
architectures are a solution to achieve highly parallel hard-
ware. On the other, they suffer of non-unary delays caused
by explicit inter-cluster copies. Such architectures are said
homogeneous if all their clusters present the same kind of
functional units, heterogeneous otherwise. The migration
of the operands among clusters is demanded to a word-
level communication network and is controlled by special
instructions – like snd or rcv – executed by the clusters
themselves, or by dedicated hardware.

These architectures belong to the family of Scalar
Operand Networks (SON), and can be characterized by the
AsTrO taxonomy [23], which specifies whether the assign-
ment of the instructions, the transport of the operands and
the ordering of the instructions are statically or dynamically
performed.

Coarse-grain reconfigurability adds another dimension
to the design space and provides the architecture with high
flexibility. It makes possible to instantiate a specific data-
path among the clusters, by selecting a subset of avail-
able connections, compatible with the communication con-
straints.

The key compilation technology to exploit this class of
architectures at their best is the Instruction Cluster Assign-
ment (ICA). During the ICA, the compiler partitions the in-
structions of the Data Dependency Graph (DDG) over the
clusters, trying to reach a balance between the conflicting
goals of high parallelism and low penalties caused by inter-



cluster copies. More precisely, the compiler performs the
ICA pass by optimizing a global cost function, built on a
set of heuristic criteria. Such criteria are aimed at achieving
the best compromise between those opposite goals; to be
effective, they also estimate and take into account parame-
ters that come into play in later phases of the compilation
flow. For instance, if the scheduling technique is Modulo
Scheduling [20], the cost function must take into account
the Initiation Interval (II), the register pressure and the life-
time of the temporaries. Moreover, the datapath correctness
must be guaranteed by the compiler, which selects the com-
munication patterns to be configured, compatibly with the
limited amount of input/output ports w.r.t. to total amount
of potential connections. Consequently the ICA pass is crit-
ical both to produce legal code and to obtain a good quality
schedule at the end of the compilation flow.

This paper presents the original development of Hi-
erarchical Cluster Assignment (HCA), a methodology
specifically conceived for architectures having the inter-
connection network with a hierarchical structure. This tech-
nique divides the ICA problem into a set of multiple inter-
acting problems, each of them addressing a specific level
of the hardware hierarchy. Each problem, if considered
by itself, is an ICA pass that maps a portion of the DDG
on a non-hierarchical machine. The hierarchical nature is
highlighted in the structure of the constraints, which flow
through sequential problems. The main appeal of this ap-
proach is that it easily scales with the architecture and
presents a regular and modular structure, two fundamental
qualities in a compiler design.

We consider Reconfigurable Co-Processor (RCP) [6] and
DSPFabric [3] by STMicroelectronics as target architec-
tures. The former does not present a hierarchical nature;
however, it allows introducing some concepts valid also
for the DSPFabric architecture (whose inter-connection net-
work is strongly hierarchical). Both RCP and DSPFabric
are designed for supporting Kernel Only Modulo Sched-
uled [21] loops. In this paper we focus on the HCA side
only, considering the II of the loop as the main cost factor
of the goal function. The present choice of the objective
function does not preclude more realistic choices in the fu-
ture, to take into account scheduling aware details, as reg-
ister pressure and lifetimes. We have integrated HCA in a
flexible prototype, designed to perform ICA and scheduling
over a wide range of architectures.

To the best of our knowledge, the only work on hierarchi-
cal cluster assignment technique, specifically tailored for hi-
erarchical inter-connection networks, was done for the im-
plementation of the CADDI compiler. It generates code for
PADDI-2 [24] machine, which shares several architectural
aspects with DSPFabric. However, the authors report scarce
details. Chu et al. [4] proposed a methodology for Hierar-
chical Operation Partitioning, based on a multilevel cluster-
ing pass, followed by a step of solution improvement. How-
ever, their hierarchical approach is presented as a generic
ICA technique, since they do not consider neither multilevel
hardware architectures nor reconfigurable topologies.

The novelty of this work is a detailed description of the
algorithmic passes involved in HCA on a hierarchical and

reconfigurable architecture. Moreover, we present a flexible
framework prototype, conceived for the passes of cluster
assignment and scheduling, which can be easily integrated
in an already existing compilation back-end.

The remainder of this paper is organized as follows: Sec-
tion 2 provides an overview of RCP and DSPFabric archi-
tectures. Section 3 introduces the high level organization
of our cluster assignment framework. Section 4 explains
the technique of HCA. Section 5 mentions the initial exper-
iments obtained clustering significant multimedia applica-
tions over DSPFabric architecture. Section 6 reports sig-
nificant related works on cluster assignment and scheduling
for multiclustered and reconfigurable architectures. Con-
clusions and future work are discussed in the last section.

2 Architecture Overwiev
Reconfigurable Co-Processor (RCP) [6] and DSPFabric

[3] are multicluster architectures specifically designed for
computationally intensive loops of multimedia applications.
With respect to the AsTrO taxonomy, they are Static-Static-
Static (SSS) SONs [23], which means that the assignment
of the instructions, the displacement of the copies and the
scheduling passes are compiler tasks.

Moreover, RCP and DSPFabric are characterized by
coarse-grain reconfigurable data-paths. The compiler must
select a sub-set of feasible cluster connections for data flow-
ing, and emit the reconfiguration instructions for activating
the selected wires. These instructions will be executed at
run time, in a reconfiguration phase that precedes the ex-
ecution of the application; this induces a specific network
topology.

The reconfiguration space – the space of feasible topolo-
gies – is tailored by the constraints given by the availability
of I/O ports with respect to the total number of connecting
wires.

In RCP architecture, each cluster could receive values
from neighbors, but the availability of only ( )
input ports per cluster limits the number of connections si-
multaneously configurable. Figure 1 (a) shows a 8-cluster
RCP, in which each cluster could receive a copy from 4
neighbors, (b) depicts a feasible topology when the num-
ber of input ports per cluster is 2. RCP is a heterogeneous

(a) (b)

Figure 1. A 8-cluster RCP ring topology. (a) Potential
connections (b) A feasible topology

machine, since only some PEs can issue instructions access-
ing memory. RCP shares the memory subsystem, including
the caches, with the main processor.
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More interesting is the DSPFabric organization, in which
each cluster can be potentially connected to all the others,
exploiting a hierarchical inter-connection schema, based on
different levels of MUXes. Effective limitations are given
by the MUXes capacity. We describe the DSPFabric archi-
tecture in the following, focusing the attention on the struc-
ture of the inter-connections.

Figure 2 gives an overall picture of a 64-cluster DSP-
Fabric Co-processor. At level 0, it can be seen as an array
of four 16-issue PEs, communicating through a collection
of multiplexers, which realize a multi input/output switch.
Each cluster set has input wires and output wires, out-
put wires being possibly broadcasted to all the others. At the
contrary, input wires can be connected to only one source.

Figure 3 shows a feasible data path at level 0, assuming
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Figure 2. A 64-cluster DSPFabric architecture

equal to 4. At level 1, the spatial structure replicates it-

0 1

23

Figure 3. A feasible inter-connection among cluster sets.

self inside each set of clusters, presenting again an array of
4-issue processors, connected together by multiplexers with
capacity . The last level is composed by the computation
nodes (CNs) connected through a reconfigurable crossbar,

which takes as input the internal connections and of the
wires incoming from level 1. Each computation node has
two incoming wires and one outgoing wire.

The computation nodes are single issue pipelined ma-
chines, accessing their own register file and functional units.
Since DSPFabric has been specifically designed as loop ac-
celerator Co-processor, each cluster is equipped with hard-
ware features for better executing modulo scheduled code
[20], like support for instruction predication and rotating
registers. Precisely, the application is scheduled using
the Kernel-Only Modulo Scheduling [21] technique, which
fully predicates the loop epilogue. Thus, no branches are
allowed and the execution is controlled by a cyclic program
counter.

The intercluster copies are controlled by receive
primitives executed by the destination cluster. Two regions
of its register file are organized as input buffers, which push
the incoming values on top, but can be read randomly by
the receiver.

The coupling with the main memory subsystem is de-
manded to a programmable DMA. Each cluster can gen-
erate an address request, which is directly sent to DMA
without consuming inter-clusters communication patterns.
Only a limited number of requests can be served at the same
time, e.g. 8 requests, thus the compiler must ensure that the
amount of simultaneous requests does not exceed that limit.
Since the memory requests have no unary latency, the DMA
engine provides input and output FIFOs – of depth equal
to the serving time – for handling high memory pressure.
When a value is ready it is directly loaded in the requesting
cluster register file.

Since DSPFabric – and, more generally, all the Co-
processors designed for multimedia embedded applications
– is specifically designed for performing media streaming,
and the input/output streams are characterized by a highly
regular structure and largely independent data, the DMA
programmable interface allows to perform efficient data
buffering and to mask the memory latencies.

3 Framework Organization
Figure 4 describes the organization of our cluster assign-

ment framework, focusing on its software interfaces. We
designed it to perform cluster assignment at a single level
of the interconnection hierarchy, merging multiple levels as
described in the next section.

The framework takes the DDG and the Pattern Graph
(PG) as input; the latter represents the architecture topol-
ogy at a high abstraction level. Each node of the PG –
called cluster in the following – is represented by its Re-
source Table (RT); a potential physical connection between
two nodes is described by an arc. At this level of abstrac-
tion, an edge just identifies a potential communication pat-
tern, without introducing low-level details; i.e. it specifies
that two clusters could be connected by a communication
pattern, but it does not focus on the nature of the intercon-
nection.

The software interfaces are shown in Figure 4 in light
grey (in the following we refer to them in italic font). They
characterize the behavior of the Space Exploration Engine
(SEE), which aims at assigning the nodes of the DDG to the
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Figure 4. Cluster Assignment Framework

nodes of the PG, compatibly with the topology and the Ar-
chitecture Constraints. These allow modeling typical con-
straints of the reconfigurable architecture, like the maxi-
mum number of input/output neighbors per cluster.

SEE is a local-scope based algorithm schema, which
maintains a limited exploration frontier. It picks a new DDG
node (or a set of nodes) at each step from a priority list of
unassigned ones. For each node of the PG, SEE checks if
the current node isAssignable to , by taking into account
the resource consumption and the availability of communi-
cation patterns. If so, becomes a new candidate for and
the assignment is evaluated by an objective function
based on a collection of cost criteria. The list of candi-
dates is then reduced by a candidate filter, the assignment

is performed and the partial solution is added as a
new node to the exploration space frontier. In order to avoid
an exponential explosion of the size of the frontier, the node
filter prunes low-quality partial solutions. The concept is
explained by Figure 5, where each node is a partial solu-
tion, and the move from a partial solution to another occurs
assigning a node to a given candidate. The grey zone high-
lights the current frontier, which is kept of limited size by
node filtering.

n0,c0 n0,cn

........ ........

........................................................................n1,cn n1,c0
n1,c0 n1,cn

Figure 5. Space Exploration

It is sometimes impossible to find candidates. This sit-
uation occurs when (i) the candidate filter is too severe,
i.e. all the available candidates are discarded because they
strongly degrade the objective function value, (ii) there are
no more communication patterns available. For instance, let

us assume the following isAssignable interface implemen-
tation: cluster is considered a valid candidate for only
if the already assigned neighbors of can directly reach it.
With respect to Figure 6 (a) no candidates are available for

, assuming the instantiated connections represented with
continuous lines, the potential connections represented by
dashed lines and the limit on input arcs per cluster set to
2. The assignment of to or will cause the selec-
tion of an additional input line (to or , respectively),
which violates the constraints, while and cannot be
considered candidates at all.

i ii

n n

j j j

C0 C1

A portion of the DDG (a) no candidates for n         (b) routing

i,n

i,n

C3 C2

Figure 6. A routing example

When no candidates can be found a no candidates action
is performed in order to escape from the empasse. A possi-
ble action can be the invocation of the configurable Route
Allocator, which tries to assign the current DDG node
to a convenient cluster, then routing the copies from/to its
predecessors/successors as shown in Figure 6 (b), where
available paths are used to route a copy from to pass-
ing through intermediate clusters.

The result of the cluster assignment is a completely as-
signed DDG and a PG reporting the copy flow over its arcs,
now representing feasible communication patterns.

The last module, the Mapper, takes the assigned DDG,
the PG and a complete description of the Machine Model
as input, where all the communication wires are described
at a low level of details. This module maps the PG onto the
Machine Model, compatibly with available real communi-
cation paths and being driven by a configurable cost func-
tion, e.g. copy balancing, prioritization of parallel copies.

Figure 7 shows the differences between the PG and the
Machine Model levels of abstraction. Four clusters con-
nected by multiplexers can be seen, at a high level, as a
complete graph, since each cluster can potentially reach all
the others. The Mapper has to distribute the copies oc-
curring in the PG onto the real communication wires of the
MUXes.

This framework is currently a prototype, implemented in
Python.

4 Hierarchical Cluster Assignment
Instruction Cluster Assignment (ICA) assigns each node

of a DDG to a PE, trying to minimize a given cost function.
A way to attack the problem is to see it at a high ab-

straction level, where the machine topology is represented
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by a graph of interconnected PEs and the only machine-
dependent details needed are: (i) the resources requested by
each node of the DDG, i.e. the functional units (ii) the laten-
cies between adjacent nodes of the DDG, (iii) the resources
available on each PE, (iv) the topology of the interconnec-
tion network.

The cost function may includes different parameters,
some of them purely topological – e.g. number of in-
tercluster copies, load balancing – and some other more
architecture-oriented, which try to look forward to the fol-
lowing phases of the compilation flow – e.g. scheduling,
register allocation.

When (iv) is a coarse-grain reconfigurable network with
a limited number of selectable connections, then the prob-
lem grows in complexity, having to deal with a new group
of constraints. Moreover, if the organization of the intercon-
nection network is strongly hierarchical, as shown in Figure
2, it is hard even to abstract the whole topology as a graph
or to represent it using sufficiently generic data structures.
For instance, since each CN of Figure 2 can directly reach
all the others, the whole topology could be seen as a
graph. But, in this case, it is necessary that the ICA keep
trace of the internal logic of the hierarchy of MUXes, the
paths between clusters are dependent on the current con-
figuration of each MUX, and the number of parallel paths
grows with the capacities of the MUXes as multiplication
factors. With respect to Figure 2, two computation nodes at
different sides of level 0 MUXes are potentially connected
by parallel shortest paths.

Hence, we propose to exploit the hierarchical intercon-
nection organization to decompose the ICA problem in mul-
tiple hierarchical algorithmic passes, each of them consid-
ering only one level of the hierarchy. In the remainder of
this section we present the Hierarchical Cluster Assignment
(HCA), i.e. a hierarchical decomposition of the ICA focus-
ing on the interfaces between adjacent levels of the hierar-
chy.

A few details will be provided about the main cost factor
we have considered in our objective function at each level
of the hierarchy. In the following, we refer to the DSPFabric
instance shown in Figure 2, where the architecture is homo-
geneous and each CN is a single-issue machine exposing
the same set of resources – an ALU and an Address Gener-
ator(AG) to the DMA. Moreover, we refer when needed to
the software modules introduced in the previous section.

We decompose the ICA problem in multiple hierarchical
ICA sub-problems, each of them addressing a specific level
of the communication hierarchy. Each sub-problem is fully
described by a DDG, a Working Set(WS), a constrained PG
and an Inter Level Interface (ILI), and it is identified by a
unique sequence of indexes, representative of its level of
nesting as shown by Figure 8 (a). We will use that indexes
in the following, in order to refer to the input data of each
sub-problem.

In order to distinguish the data structures after ICA from
themselves at the beginning of the algorithm we will use the
over lined notation, e.g. and are the DDG (the
PG, respectively) after ICA. Moreover, we indicate with

the cluster the instruction is assigned to, and
the list of instructions assigned to cluster . Finally,

we label the arcs of with a description of the values
they carry saying that is the list of values on
the arc from the cluster to cluster . We call these values
inter-cluster copies.

The DDG represents the application to clusterize.
The portion of the DDG to consider at a given level
of the hierarchy is specified by the WS, in accord to

and to
Each node of the PG embraces a set of CNs, its resource

table being the unitory of all the RTs of the CNs it includes.
For instance, each node of contains 16 ALUs/AGs,
each node of contains 4 ALUs/AGs and each node of

contains only one ALU/AG, . Figure 8
explains the concept.

 0
,0

 0
,1

  0

16 alu
16 ag

16 alu
16 ag

16 alu
16 ag

16 alu
16 ag

(a) level indexing (b) pattern graph at level 0

Max out Neighs = any 
Max in Neighs = N

0,
1,

2

 0
,3

 0
,2

 0
,3

Figure 8. Problem decomposition

Each arc of the PG represents a potential communica-
tion pattern between two nodes and becomes a real com-
munication pattern at the time an inter-cluster copy is ef-
fectively allocated by the algorithm onto it. The num-
ber of real communication patterns is limited by a group
of constraints, which specifies the maximum number of
input/output neighbors allowed for each node. The con-
straints must ensure that the module Mapper will be able
to map onto the Machine Model. For instance, since
the MUXes capacity at level 0 is , we impose that the
maximum number of input neighbors of a PG node do not
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exceed . On the other hand, since it is possible to broad-
cast a value to more than one neighbor, we do not limit the
number of output neighbors.

The HCA algorithm starts at level 0, mapping
onto . Then the module Mapper maps onto the
first level of the Machine Model Hierarchy, distributing the
copies reported on the arcs over the physical commu-
nication wires and aiming at minimize the merit factor in-
volved at the current level. Since our goal is to minimizes
the II of the loop – as described in the next section – the
Mapper tries to balance the copies in order to decrease
their pressure on a single communication wire, as explained
by Figure 9. is shown by (a): the value produced by
instruction is broadcasted from cluster 0 to clusters 1 and
2, meaning that instruction of the DDG has been assigned
to cluster 0 and some of its successors has been distributed
over clusters 1 and 2. Another broadcasted instruction is

, while all the other copies do not need broadcast. Com-
patibly with the availability of communication wires, the
Mapper uses only one line to broadcast and , moreover
it tries to use all the possible communication patterns to map
the remaining copies, e.g. distributing , and over three
wires, as highlighted by (b).

0 1

23

x
0 1

23
   k

x

a
b c

    x

a
,b

,c

z

z

z

,h

k,h

ILI0,1

in1: z

ILI0,2 ILI0,3

in1: z
out0:k,h

in0: a
in1: b 
in2: c
in3: k,h
out3: z

  (a) (b) (c)

in0: x

ILI0,0

out1: a
out2: b
out3: c

out0: x in0: x

Figure 9. (a) PG after ICA. (b) Copy distribution. (c) ILIs
to subproblems

The Mapper generates also four ILI
( ), each of them reporting the in-
put/output copies between level and – –
as shown by Figure 9 (c). For instance, reports that
there are four input lines to the subproblem carrying

, , and , respectively, and one output line carrying
. More in general, the Mapper produces an ILI for each

subproblem of the current one.
Now the communication paths at level 0 of the hier-

archy has been allocated and the process can be iterated
through all the nested levels, until a leaf problem is reached.
Each subproblem loads the ILI interface given by its father
and exploits the information about the incoming and outgo-
ing connections for completing its PG with special nodes,
which allow to maintain the communication flow between
adjacent levels coherent.

A special input node is added for each incoming wire.
It contains the list of copies pumped from the father into

the current level, and it is connected by potential patterns to
all the other nodes, meaning that the ingoing values can be
broadcasted to all the clusters.

At the same manner, a special output node is added for
each outgoing wire, containing the list of copies sent to the
father. All the nodes are connected by potential patterns to
all the output nodes and a new constraint is added to the
problem, requiring that there must exist only one real pat-
tern (only one arc) between a cluster and an output node –
i.e. multiple clusters sending values on the same wire are
avoided, in accord to the MUXes unary fan-in.

Figure 10 depicts the concept, considering the subprob-
lem and the of Figure 9. (a) shows a portion of
the DDG, where the WS is highlighted in light-grey. Ingo-
ing copies are and , which are incoming from two input
wires, and outgoing copies are on a single output wire.
The PG completed with input and output nodes is drawn in
(b), where it is also reported the additional constraint – here
called outNode MaxIn – which enforce to select only one
arc to connect a cluster to an output node. (c) shows the
PG after ICA, highlighting only the real patterns (those arcs
that carry at least one copy). Let us notice that, in order to
satisfy the additional constraint, both the instruction and

has been assigned to the same cluster.

x

 x  x x  x  x x

m

 h
 k

z

n p
0 1

23

n

n

MaxInNeighs=N
MaxOutNeighs = any
outNode_MaxIn = 1

(a) (b) (c)

 z  x x  z

k,h
k,h

         Interface: ILI0,2

k,h

m,p

p

Figure 10. (a) A DDG portion, WS shown in grey. (b)
PG completed with special nodes. (c) Real patterns after
ICA.

Finally, when the Mapper has to deal with includ-
ing special nodes, as that one shown in (c), it must consider
that there are incoming/outgoing connections from/to the
outer level that cannot be used for copy distribution, par-
tially limiting the reconfiguration space. These connections
must be preallocated by the Mapper, being the glue be-
tween the outer and the inner level. Figure 11 shows the
preallocated wires, w.r.t the of Figure 10 (c).

Working in this manner ensures that the copies flow bal-
ance at each level is kept coherent, guaranteeing the gen-
eration of legal code. The generation of good quality code
is instead controlled by the cost functions involved at each
subproblem.

At the end of HCA, a post processing pass exploits the
informations held at the leaves of the problem hierarchy,
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Figure 11. Preallocation of communication wires from/to
the outer level.

in order to build the final DDG. Each DDG node is as-
signed to a CN and receive primitives are added as new
DDG nodes, which perform the migration of the operands
between different CNs.

All the connections are then allocated, producing the fi-
nal topology of the architecture and a coherency checker
verifies if the DDG is compatible with the topology itself.
More precisely it checks for the presence of a communi-
cation paths on the final architecture between each pair of
cluster that contains dependent nodes of the DDG.

In our compilation flow, the cluster assignment phase
will be followed by a modulo scheduling [20] pass on the
clusterized DDG. Hence, the main cost factor we want to
keep low in the objective function is the Minimum Ini-
tiation Interval of the loop (MII) [20] [21], computed as

, where is the MII
at level 0 of HCA and

. The MII on a single cluster is computed by con-
sidering the maximum between the MII given by data con-
straints, , and the MII given resource constraints

[20], also taking into account a term of copy pres-
sure computed considering the intercluster copies flowing
on the PG arcs.

5 Experimental Results
In order to check the correctness of our HCA tech-

nique, we have clusterized four DDGs of significant loops
of multimedia applications, i.e. fir2dim, idcthor,
mpeg2inter and h264deblocking.

The first is a 2-dimensional fir filter, taken from the Dsp-
Stone [26] benchsuite, the second is the Inverse Discrete
Cosine Transform, taken from OpenDivx [16], the third is
the interpolation filter of mpeg2 decoding algorithm and the
latter is the row deblocking of h.264 algorithm.

The DDGs have been generated by an internal compiler
front-end provided by STMicroelectronics. We have then
used the HCA approach to clusterize them onto several
instances of 64-clusters DSPFabric architecture, differing
each from the other by the bandwidth parameters ,
and shown by Figure 2. Table 1 reports the best results
only, achieved for an architecture with , and

. What emerged during our experiments is that lower
bandwidths cause a rapid degradation of the clusterization
quality, since the interconnection network is not able to dis-

tribute the high number of intercluster copies, which are the
main limiting factor to the final MII.

As the focus of this paper is neither to explore the archi-
tecture design space, e.g. tune the capacities of the MUXes,
nor to optimize the heuristic pass involved at each non-
hierarchical level, but we accurately checked that the HCA
pass generates a legal clusterization, maintaing the coher-
ence between adjacent levels. It is checked by the coherency
checker at the end of HCA process, as described in previous
section.

Hence, Table 1 focuses the attention on the legality of
the final result, without listing the complete gamma of ar-
chitecture exploration and heuristic tuning experiments we
have performed. However, few words should be spent on
the value of the MII we have achieved after clustering; as
can be observed, this value is quite close to the theoreti-
cal optimum computed on an equivalent issue width unified
bank machine. We remark that this value of MII is a lower
bound for the following phase of modulo scheduling and we
guess that it could increase dramatically unless we take into
account scheduling aware cost factors – e.g. register pres-
sure – at clustering phase. This will be part of planned fu-
ture work, when we will implement the modulo scheduling
phase, the register allocation and the DMA programming,
the latter in order to keep the loop execution synchronous
with the memory accesses. Moreover, we plan to test the
code generated by the whole toolchain directly on an on-
silicon prototype, which will be provided soon by STMi-
croelectronics.

Table 1. HCA test on four multimedia applica-
tion loops

Loop N Instr MIIRec MIIRes Legal clusterization Final MII
fir2dim 57 3 2 yes 3
idcthor 82 1 2 yes 3
mpeg2inter 79 6 2 yes 8
h264deblocking 214 3 4 yes 6

6 Related Works
Reconfigurable loop accelerators such as GARP [10]

and Morphosys [15] achieve good speedups with regard to
general-purpose processor. Both are FPGA like with recon-
figurable cells and mesh-based interconnections, but just the
latter presents a fixed three level hierarchical interconnec-
tion network. Another mesh-based reconfigurable worksta-
tion is RAW [13]. It’s realized by a mesh of modified MIPS
with local caches and it provides both static and dynamic
configurable communication network with variable delay.

Architectures based on linear arrays (RaPiD [9] and
PipeRench [8]) are characterized by arrays of fixed size
ALUS, immersed in a reconfigurable interconnect. They
are designed aiming on mapping pipelines onto it.

PADDI-2 [25] shares several design aspects with DSP-
Fabric, in particular way the two level hierarchical connec-
tions among PEs. Previous published works on RCP and
DSPFabric are [6] [3].

Algorithms for instruction assignment on clustered ar-
chitectures have been proposed by Desoli [7] and Lapinskii
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et al. [12] [11]. Chu et al. [4] proposed a hierarchical algo-
rithm to iteratively partition a DDG on a clustered machine,
but the target architecture considered by the authors is not
hierarchical itself and is not reconfigurable.

Scheduling aware ICA approaches can be found in [2],
[1] and [22]. Lee et al. has proposed integrated approach for
clustering and scheduling on a Raw machine [13]. Another
space-time scheduling approach can be found in [17].

Modulo scheduling aware ICA is presented by Nystrom
and Eichenberger [18], while a unified distributed mod-
ulo scheduling algorithm is described in [5]. Convergent
Scheduling [14] is an interactive and flexible framework for
performing cluster assignment and scheduling over recon-
figurable architectures. Finally, Modulo Graph Embedding
[19] is a 3-D technique for performing space-time mod-
ulo scheduling for reconfigurable hardware. All the cited
works do not handle hardware with hierarchical reconfig-
urable connections explicitly.

7 Conclusions and Future Works
In this paper we have introduced an innovative hierarchi-

cal cluster assignment framework. It is aimed at exploiting
emergent massive parrallel clustered VLIW architectures
with reconfigurable interconnection network. For large (say
more than 32) hierarchical clusters network reconfigurabil-
ity causes an explosion of the number of feasible topologies.
To make this problem tractable, we have carefully designed
a novel decomposition approach, which considerably cuts
the state-space exploration of subproblems in accord with
the hierarchy of the interconnections. On going research
aims at tuning of the heuristics and cost functions used to
perform cluster allocation in order to take into account more
scheduling aware parameters, e.g. the register pressure.
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