
Synchronous Distributed Load Balancing on Totally Dynamic Networks

Jacques M. Bahi1, Raphaël Couturier1 and Flavien Vernier2

1Laboratoire d’Informatique de l’Université de Franche-Comté (LIFC),
IUT de Belfort-Montbéliard, BP 527,

90016 Belfort CEDEX, France.
email: {jacques.bahi, raphael.couturier}@iut-bm.univ-fcomte.fr

2LISTIC - Polytech’Savoie - Université de Savoie,
Domaine Universitaire,

BP 80439,
74944 Annecy le Vieux cedex, France.
email: flavien.vernier@univ-savoie.fr

Abstract

In this paper, first order diffusion load balancing algo-
rithms for totally dynamic networks are investigated. To-
tally dynamic networks are networks in which the topology
may change dynamically. Some edges or nodes can ap-
pear, disappear or move during the time. In our previous
works on dynamic networks, the dynamism was limited to
the edges. The main result of this study consists in proving
that the load balancing algorithms reduce the unbalance
on arbitrary dynamic networks. Notice that the hypotheses
of our result are realistic and that for example the network
does not have to be maintained connected. To study the be-
havior of these algorithms, we compare the load evolution
by several simulations.

load balancing, totally dynamic networks, iterative algo-
rithm.

1 Introduction

One of the most important problems in distributed pro-
cessing consists in balancing the work load among all pro-
cessors. In distributed systems, the schedules of the load
balancing (LB) problem are iterative in nature and their be-
havior can be characterized by iterative methods derived
from the linear systems theory. Local iterative LB algo-

1-4244-0910-1/07/$20.00 c©2007 IEEE.

rithms were first proposed by Cybenko in [1], they have
been studied and derived by several authors from different
points of view [2, 3, 4, 5]. These algorithms iteratively bal-
ance the load of a node with its neighbors until the whole
network is globally balanced. They have been derived for
use on homogeneous or heterogeneous networks [6] with
fixed topologies or dynamic topologies but where the dy-
namism is limited to the edges of the network [7, 8, 9, 10].
But nowadays, with grid, P2P, Ad-Hoc, sensors networks or
more generally totally dynamic networks, some nodes ap-
pear or disappear in the network during its evolution. More
and more applications are dedicated to these networks and
the diffusion algoritms can be useful for these applications
when no global knowledge can be used.

In this paper, the adaptation on totally dynamic networks
of three LB algorithms - first order diffusion (FOS), re-
laxed diffusion (RFOS) and generalized adaptive exchange
(GAE) - are studied. Totally dynamic networks are net-
works in which the topology may change dynamically.
Some edges or nodes can appear, disappear or move dur-
ing the time. In our previous works on dynamic networks
[8, 10], the dynamism was limited to the edges. The main
result of this study consists in proving that these algorithms
reduce the unbalance of the system on arbitrary totally dy-
namic networks and converge toward the uniform load dis-
tribution if the conditions given in section 3.2 are satisfied.
Notice that the hypotheses of our result are realistic (see
Theorem 1 and Corollary 1), they are coherent with the be-
havior of real dynamic networks.

This paper is organized as follows. Section 2 presents

the related works, we review the diffusion and the dimen-
sion exchange on any static network and dynamic network
where the dynamism is limited to the edges. In Section 3,
we introduce a graph model for totally dynamic networks
and the adaptation of three LB algorithms for these net-
works. Section 4 illustrates the behavior of FOS on various
dynamic topologies and Section 5 concludes this work.

2 Related Works

This section recalls some works on classical diffusion on
static networks and the adaptation of three LB algorithms
on networks with dynamic edges.

2.1 Classical Diffusion on Static Networks

In [1] Cybenko introduced the diffusion LB algorithm,
called First Order Scheme (FOS). This algorithm assumes
that a process i balances its load simultaneously with all
its neighbors. To balance the load, a ratio αij ∈]0, 1[of
load difference between the process i and its neighbor j is
swapped between i and j. For a process i, the LB step with
all its neighbors j is given by

w
(t+1)
i = w

(t)
i +

∑
j αij

(
w

(t)
j − w

(t)
i

)
,

where w
(t)
i is the work load done by process i at time t.

In [1] Cybenko also introduced the dimension exchange
(DE) algorithm dedicated to binary hypercube topologies.
This algorithm assumes that a node i can balance its load
with only one of its neighbors at each time step. The choice
of a neighbor j is realized using the dimension of the hy-
percube. This algorithm has been generalized for arbitrary
topologies in [4, 5], it is called GDE for Generalized Di-
mension Exchange. For a process i the GDE algorithm is
defined by

w
(t+1)
i = w

(t)
i + λ

(
w

(t)
j − w

(t)
i

)
if i balances its load

with a neighbor j,

= w
(t)
i otherwise,

where λ ∈]0, 1[is the exchange parameter.

2.2 LB on Networks with Dynamic Edges

Various papers study the LB problem on dynamic net-
works but they limit their studies to the volatility of edges
and do not deal with the volatility of nodes. In [7, 8, 9, 10]
the authors introduce two different studies of diffusion LB
algorithms on networks with dynamic edges. In [8] a net-
work with dynamic edges is represented by a graph G(t) =
(V, E, E

(t)
B), where V is the set of vertices (processors), E

is the set of edges (communication links) and E
(t)
B is the set

of broken edges at time t. As in static networks, the number
of vertices is constant: |V | = n. The FOS algorithm on this
kind of networks is given by Equation 1.

w
(t+1)
i = w

(t)
i +

∑
j αij(w

(t)
j − w

(t)
i) for all living

edges (i, j).
(1)

A living edge (i, j) at time t is an edge that exists ((i, j) ∈
E) and that is not broken ((i, j) �∈ E

(t)
B). Equation 1 is

linear and it expresses the vector Equation 2 that updates
load for all nodes at time t.

W (t+1) = M (t)W (t) (2)

Where W (t) is the vector of w
(t)
i and M (t) is defined by

m
(t)
ij =

αij if (i, j) ∈ E ∧ (i, j) �∈ E
(t)
B ∧

i �= j,

1 − ∑
k αik ∀k|(i, k) ∈ E ∧ (i, k) �∈ E

(t)
B

∧i = j
0 otherwise.

M (t) is the diffusion matrix at time t, it represents the adja-
cency matrix of the communication graph at this time step.
The authors prove that this algorithm converges toward the
uniform load distribution under some realistic conditions.

They also give two variants of FOS - relaxed diffusion
(RFOS)[8, 7] and generalized adaptive exchange (GAE) [8]
- for networks with dynamic links.
The relaxed diffusion algorithm is the diffusion algorithm
in which a relaxation parameter β(t) is introduced. This
parameter speeds up the convergence of the classical dif-
fusion algorithm. The relaxed diffusion algorithm may be
described as follows: for a processor i, the exchange of its
workload with its reachable neighbor j is executed as Algo-
rithm 3.

w
(t+1)
i = w

(t)
i + β(t)

∑
j αij(w

(t)
j − w

(t)
i) for all living

edges (i, j)
(3)

In this algorithm, the diffusion matrix is (1 − β(t))Id +
β(t)M (t). Where Id is the identity matrix, M (t) is equal to
the diffusion matrix of FOS and β(t) is the relaxation pa-
rameter at time t.
The main difference between GAE and diffusion algorithm
is that at each LB step, a node balances its load with only
one of its neighbors and selects a new neighbor at each time
step if it is possible. The choice of a neighbor is free, it
can be arbitrary as in GDE algorithm, random or more so-
phisticated. There is only one condition in the choice of a
neighbor j of i: the edge (i, j) must exist and must not be in

E
(t)
B . The GAE algorithm may be described as follows: for

2

a processor i, the exchange of its workload with a neighbor
j is executed as Algorithm 4.

w
(t+1)
i = w

(t)
i + λ(w(t)

j − w
(t)
i) if i balances its load

with its neighbor j,

= w
(t)
i if i does not balance

its load at this time.
(4)

In this case the diffusion matrix at time t is given by:

m
(t)
ij =

λ if i �= j ∧ i balances its load with its
neighbor j,

1 − λ if i = j ∧ i balances its load with a
neighbor k,

1 if i = j ∧ i does not balance its load
with a neighbor k,

0 otherwise,

where j is the chosen neighbor.
In the following section, we study the application of

these three algorithms - diffusion, relaxed diffusion and
GAE - on totally dynamic networks.

3 LB Algorithms on Totally Dynamic Net-
works

This section introduces a graph model for totally dy-
namic networks and the adaptation of the three studied al-
gorithms on these networks.

3.1 Graph Model for Totally Dynamic
Networks

Classically, a static network topology is represented by
a simple undirected connected graph G = (V, E), where V
is the set of vertices and E is the set of edges, E ⊆ V × V .
Each computing processor is a vertex of the graph and each
communication link between two processors i, j is the edge
{i, j} ∈ E between the two vertices i and j (i, j ∈ V). By
definition, each vertex is labeled from 1 to n where n is the
number of processors, thus |V | = n. Let m be the number
of communication links (|E| = m).

A totally dynamic network is a network in which some
nodes can appear or disappear and the links can evolve with
time, like P2P or ad-hoc networks. So, the graph represen-
tation must evolve with time (see Figures 1 and 2). Let us
define V

(t)
A and V

(t)
D respectively the set of nodes appeared

at time t and the set of nodes disappeared at time t, and let us
define E

(t)
A and E

(t)
D respectively the set of edges appeared

at time t and the set of edges disappeared at time t. At
time t a totally dynamic network is represented by a graph
G(t) = (V (t), E(t)), where V (t) is the set of vertices at time
t and E(t) is the set of edges at time t. Indeed, the number

1 3

2

4

1 3

2

4

1 3

2

4

(a) A dynamic network at time t.

1 3

2

4

1 3

2

4

1 3

2

4

(b) A dynamic network at time t +
1.

1 3

2

4

1 3

2

4

1 3

2

4

(c) A dynamic network at time t +
2.

Figure 1. The three first graphs (1(a), 1(b) and
1(c)) illustrate an evolution of a dynamic net-
work. The three last graphs (2(a), 2(b) and
2(c)) illustrate an evolution of a totally dy-
namic network with an appearance and a dis-
appearance of nodes.

of vertices at time t is given by n(t) (|V (t)| = n(t)) and the
number of edges is m(t) (|E(t)| = m(t)). The evolution of
a totally dynamic network can be written as follows.

G(t+1) = (V (t+1), E(t+1))
= (V (t) ∪ V

(t+1)
A \ V

(t+1)
D ,

E(t) ∪ E
(t+1)
A \ E

(t+1)
D),

where V (t+1) = V (t) ∪ V
(t+1)
A \ V

(t)
D and E(t+1) = E(t) ∪

E
(t+1)
A \E

(t)
D . In other words, the set of vertices at time t+1

is the set of vertices at time t plus the vertices appeared at
time t + 1 minus the vertices disappeared at time t + 1. It
should be noted that V (t)∩V

(t+1)
A = Ø - a node can appear

only if it is not in the network yet - and V
(t+1)
D ⊆ V (t) - a

node can disappear only if it is in the network. These two
remarks can be applied to the edges, E(t)∩E

(t+1)
A = Ø and

E
(t+1)
D ⊆ E(t).

3.2 Diffusion Algorithm

In the context of totally dynamic networks, the standard
diffusion scheme requires some adaptations due to the to-
tally dynamic nature of the topology. The main difference

3

1 3

2

4

1 3

2

4

1 3

2

4

(a) A totally dynamic network at
time t with V (t) = {1, 2, 3, 4}
and V

(t)
A = V

(t)
D = ∅.

1 3

5

2

4

1 3

5

2

4

1 3

5

2

4

(b) A totally dynamic network at
time t + 1 with V (t+1) =

{1, 2, 3, 4, 5}, V
(t)
A = {5} and

V
(t)
D = ∅.

1

5

2

4

1

5

2

4

1

5

2

4

(c) A totally dynamic network at
time t + 2 with V (t+1) =

{1, 2, 4, 5}, V
(t)
A = ∅ and V

(t)
D =

{3}.

Figure 2. The three first graphs (1(a), 1(b) and
1(c)) illustrate an evolution of a dynamic net-
work. The three last graphs (2(a), 2(b) and
2(c)) illustrate an evolution of a totally dy-
namic network with an appearance and a dis-
appearance of nodes.

lies in a relevant adaptation of the diffusion matrix that
needs to dynamically integrate information about the links
and nodes modifications.

The diffusion algorithm with totally dynamic networks
may be described as follows: for a processor i, the exchange
of its workload with its reachable neighbors j is executed as
Algorithm 5.

w
(t+1)
i = w

(t)
i +

∑
j α

(t)
ij (w(t)

j − w
(t)
i) ∀(i, j) ∈ E(t).

(5)
Let us note that in Equation 5 α depends on the time, this is
due to the dynamism of the network. If the network evolves,
α must be able to evolve with it. There exists three clas-
sical methods to compute α - Cybenko [1], Boillat [2] or
optimal [11] choice - but only one is convenient. Cybenko
and optimal choice need a global knowledge of the network,
therefore only the Boillat choice is convenient to a totally
dynamic distributed system. This method of determining α
for a node i only needs a knowledge of neighbors degree.

Indeed, α(t)
ij can be determined by

α
(t)
ij =

1
max(dt(i), dt(j)) + 1

,

where dt(i) is the degree of node i at time t.
Equation 5 is linear and it expresses the vector Equa-

tion 6 that updates load for all nodes at time t.

W (t+1) = M (t)W (t) (6)

Where W (t) is the vector of w
(t)
i and M (t) is defined by

m
(t)
ij =

α
(t)
ij if (i, j) ∈ E(t),

1 − ∑
k α

(t)
ik ∀k|(i, k) ∈ E(t)

0 otherwise.

(7)

M (t) is the diffusion matrix at time t, it represents the adja-
cency matrix of the communication graph at this time step.
Note that the sizes of W (t) and M (t) can vary with time,
they are respectively n(t) and n(t) × n(t). The difference
between Equation 2 and Equation 6 is the construction of
M (t). αij depends on the neighbors number, therefore it
depends on t in Equation 7.

The main problem in LB on totally dynamic networks is
the volatility of the nodes. If we only consider a volatility
of edges, the diffusion algorithm converges towards the uni-
form load distribution according to the conditions given in
[8]. Two cases must be studied for the volatility of nodes,
the first one is when a node appears and the second one is
when a node disappears.

We suppose in this paper that we are in the framework
of static load - the global load of the system is constant - on
totally dynamic networks. The framework of dynamic load
on static networks is studied in [1]. Therefore we consider
that a new node has no work load when it connects itself to
the network and that the work load of a node that disappears
is moved on one or some of its neighbors. It is easy to see
that if a node appears or disappears in the network, the new
system can be unbalanced due to this node.

Let us note that if nodes appear or disappear, it does not
exist a single uniform load distribution. In static and homo-
geneous networks, the uniform load distribution w∗ is given

by w∗ =
P

i w
(t)
i

n , in our case as n depends on t, thus w∗

is not constant. Moreover, the two cases presented above
show that the networks can be unbalanced when nodes ap-
pear or disappear. In fact, our goal on totally dynamic net-
works is to reduce the over load of the system between two
appearances or disappearances of nodes and to reach the
uniform load distribution if no node appears or disappears.

To give our main result, we need the following definition:

Definition 1. A superposed communication graph between
the times t and t + n, denoted Gt,t+n, is such that any ap-
pearance or disappearance of nodes can only occur at time

4

t (n(t) = n(t+i), ∀i ∈ [t, t + n]). This graph contains all
nodes available at time t and all edges (i, j) used for load
balancing between the times t and t + n.

1 3

2

4

1 3

2

4

1 3

2

4

(a) Communication graph at time
t − 1.

1 3

5

2

4

1 3

5

2

4

1 3

5

2

4

(b) Communication graph at time t.

1 3

5

2

4

1 3

5

2

4

1 3

5

2

4

(c) Communication graph at time
t + 1.

1 3

5

2

4

1 3

5

2

4

1 3

5

2

4

(d) Superposed communication
graph Gt,t+1 between t and t + 1.

Figure 3. Three communications graphs and
the superposed communication graph Gt,t+1

between times t and t + 1. The super-
posed communication graph Gt−1,t+1 cannot
be defined because the nodes number has
changed between t − 1 and t.

Theorem 1. Algorithm 5 reduces the unbalance between
two modifications of nodes number and converges toward
the uniform load distribution if the time between two modi-
fications tends to ∞, if and only if to any time t corresponds
a time t+n such that the superposed communication graph
Gt,t+n is a connected graph.

Proof. It is sufficient to apply the convergence results on
networks with dynamic edges given in [8], respecting the
previous remarks about the goal of the algorithm.

It should be noted that, if a node connects and discon-
nects itself infinitely to the network, the algorithm cannot
reach the uniform load distribution.

Corollary 1. If the conditions of Theorem 1 are not
reached between two modifications of nodes number, The-
orem 1 can be applied on each connected sub-graph of the
superposed communication graph. Indeed, the unbalance
of the global system can be reduced.

Proof. If each connected sub-network (sub-graph) is stud-
ied separately, each of them can be considered as a static
network between these modifications and the result given in
[1] can be applied for each sub-network.

3.3 Relaxed Diffusion Algorithm

The relaxed diffusion algorithm is the diffusion algo-
rithm in which we introduce a relaxation parameter [8, 7].
So in the totally dynamic networks case, the diffusion ma-
trix M (t) is defined by Equation 7 like the diffusion algo-
rithm. The main problem of the relaxed diffusion algorithm
concerns the relaxation parameter β(t). Let us recall that
β(t) is defined by:

β(t) = min
(

R(t),
2

2 − (s(t) + l(t))

)
, (8)

where s(t) and l(t) are respectively the smallest and the sec-
ond largest eigenvalue of M (t), and R(t) is the relation such
that W (t) stays positive if β(t) ≤ R(t). R(t) is defined by:

R(t) = min
i

w
(t)
i

(1 − M
(t)
ii)(w(t)

i − w
(t)
min)

∀w
(t)
i �= 0,

where w
(t)
min = mini w

(t)
i .

When the dynamism is limited to the edge, the relation
R(t) is an isotone function, but in a totally dynamic case it
is not isotone. In this case β(t) must be re-computed at each
time step and β(0) cannot be used for each time. Moreover
the calculation of β(t) needs a global information about the
network and this is not convenient on distributed systems.
However, an estimation of β(t) can be given: it is known
that β(t) ∈ [1, 2], and the most pessimist estimation of R(t)

is 1

1−M
(t)
ii

. Despite this main problem, Corollary 2 can be

given.

Corollary 2. For β chosen according to 8 and under the
assumption of Theorem 1, the relaxed diffusion algorithm
on totally dynamic networks reduces the unbalance between
two modifications of nodes number and converges toward
the uniform load distribution if the time between two modi-
fications tends to ∞.

Proof. It is sufficient to apply the results of [12].

3.4 Dimension Exchange Algorithm

As presented in Section 2.2 the GAE algorithm balances
the load by peer of processors- a node balances its load with
only one of its neighbors at each time step - according to a
strategy to determine the peer of processors. The dynamism
of the network must be taken into account by the strategy,
a neighbor can be chosen only if it exists and only if the

5

edge with this neighbor is alive . Thus, Algorithm 4 that
gives the exchange of workload between a processor i and
its neighbor j does not change, it is recalled as follows:

w
(t+1)
i = w

(t)
i + λ(w(t)

j − w
(t)
i) if i balances its load

with its neighbor j,

= w
(t)
i if i does not balance

its load at this time.

Let us note B
(t)
i the set that contains the neighbor b

(t)
i of

i with which it balances its load, if i does not balance its
load with any neighbor at time t, B

(t)
i is empty. b

(t)
i is

the neighbor of i chosen by a strategy, so b
(t)
i ∈ V (t) and

(i, b(t)
i) ∈ E(t). With this definition, the diffusion matrix

M (t) becomes:

m
(t)
ij =

λ if (i, j) ∈ E(t) ∧ i �= j ∧ j ∈ B
(t)
i ,

1 − λ ∃k|k ∈ B
(t)
i ∧ (i, k) ∈ E(t) ∧ i = j

1 B
(t)
i = ∅ ∧ i = j

0 otherwise.
(9)

Corollary 3. GAE reduces the unbalance between two
modifications of nodes number and converges toward the
uniform load distribution if the time between two modifica-
tions tends to ∞ under the assumption of Theorem 1.

Proof. This is a particular case of Theorem 1 by using M (t)

defined by Equation 9. Let us recall that M (t) represents the
communication graph at time t (see [8]).

4 Experimentation

This section presents two experiments of the FOS algo-
rithm on totally dynamic networks. In the first one the nodes
appear and disappear in the network and in the second ex-
perimentation a node moves and goes through the network.
These experiments have been realized in Java with Jace [13]
- Java Asynchronous Computation Environment - to man-
age the totally dynamic networks. The Jace console al-
lows to dynamically manage the used network: some nodes
can be added or retrieved during the computation of tasks.
These experiments are real implementations on a cluster,
only the managed load is virtual, it is represented by a real.
It is not represented by an integer value to simplify the ex-
periments. The first experimentation uses totally dynamic
networks that start with only one node, some nodes appear
during a first stage of the computation and disappear during
a second stage to finish with only one node. Three classical
topologies have been studied. The first topology is a ring
composed of 1 to 20 nodes, when a node appears (at each
second) it is connected between the first and the last node of
the ring to give a ring with n+1 nodes. In the second stage,

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600 700

Lo
ad

iterations

Max.
Min.

w*

(a) Ring.

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300
Lo

ad
iterations

Max.
Min.

w*

(b) Mesh.

Figure 4. Load evolution on classical dy-
namic networks

the node that has the smallest index disappears (each 30s)
to give a ring with n − 1 nodes. The second topology is a
2 dimensional mesh from 1x4 to 5x4, the nodes appear and
disappear (each 5s) by lines of 4 nodes. The last topology
is a star with two levels (see Figure 5(a)), the first level is
composed of 6 nodes and the second one of 12 nodes, thus
each node of the first level is connected to 2 nodes of the
second level (a node appears/disappears each 5s). The re-
sults of FOS on these networks are given by Figures 4 and 5.
These figures show for each studied topology the load of the
most loaded node, the load of the least loaded node and the

value of w∗(t) given by w∗(t) =
∑n(0)−1

i=0 w
(0)
i /n(t) where

n(t) is the number of nodes in the network at time t. Re-
call that

∑n(0)−1
i=0 w

(0)
i =

∑n(t)−1
i=0 w

(t)
i . We can observe on

each figure the two stages - appearance and disappearance
of nodes - and the impact of the interval of nodes number
modification. In the ring topology the nodes appear too fast
to reach a uniform load distribution between 2 appearances

6

0 41

2 3

7

8

Level 2

Level 1

(a) Star topology.

 0

 5

 10

 15

 20

 0 50 100 150 200 250

Lo
ad

iterations

Max.
Min.

w*

(b) Star.

Figure 5. A 2 levels star topology and its cor-
responding load evolution.

(Figure 4(a)). In the other topologies (Figures 4(b), 5(b)),
the interval of appearance/disappearance is long enough to
illustrate the impact of the dynamism. In the figures each
peak on the least loaded line corresponds to an appearance
and each peak on the most loaded line corresponds to a dis-
appearance. These peaks are induced by our context, when
a node appears it has no load and when a node disappears it
gives its load to one of its neighbors. This first experimen-
tation only illustrates the appearance and disappearance of
nodes. The next one shows the impact of a node that goes
through an arbitrary network topology. Figure 6(a) repre-
sents the network with the path of node 10. Along its way,
node 10 connects and disconnects to the nearest nodes of
the path. Figure 6(b) illustrates the behavior of the most
and the least loaded node. This figure can be split in 5 steps.
The first one is the building of the network, it is short, the 9
nodes of the network appear in 9 iterations. The second step
corresponds to a static network, no node appears or disap-

0 10

1

2 5

3

6

7

8

9

4

(a) Network with path of node 10.

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140 160 180 200

Lo
ad

iterations

Max.
Min.

w*

Step 2 Step 4 Step 5

St
ep

 1

St
ep

 3

(b) Unbalance evolution.

Figure 6. Load balancing on an arbitrary net-
work with a node that goes through it.

pears and the LB algorithm converges towards the uniform
load distribution. The third step is limited by the two peaks
on the middle of the figure, one for the appearance and the
other for the disappearance of node 10. The next step is
equivalent to the second and the last step is the destruction
of the network. The remarks about the first and last steps
are the same as the first experiments. The second and fourth
steps correspond to a static network. When the node goes
through the network, it disturbs the balance twice (near it-
erations 75 and 85). The first time, the LB algorithm takes
a little more time to correct the unbalance than the second
time. This is due to the fact that node 10 moves the unbal-
ance throughout the network.

7

5 Conclusion

This paper extends the diffusion load balancing models
- First Order, Relaxed First Order and GAE - to totally dy-
namic networks. Totally dynamic networks are networks in
which some edges or nodes can appear, disappear or move
during the time. They are useful when the topology may
change as it is the case in Ad-Hoc, P2P or sensor networks
and are well-suited for large problems that need to share
computations among distant processors, as it is the case
in grid computing. In our previous work on dynamic net-
works, the dynamism was limited to the edges.

To the best of our knowledge, this work is the first one
which takes into account volatility of nodes for the diffu-
sion like algorithms. The main result of this paper is that we
have given the necessary and sufficient conditions to reduce
the unbalance in the totally dynamic network frameworks.
We prove that the studied algorithms always decrease the
unbalance and reach a uniform load distribution if the con-
ditions of Theorem 1 are satisfied. Finally the paper is con-
cluded by significant experiments, leading to interesting re-
sults. These experiments include node or link appearance
or disappearance and a node move. This first work will be
continued by implementing these algorithms on a real appli-
cation and by deploying them on real Ad-Hoc, P2P or any
totally dynamic network environment.

References

[1] G. Cybenko. Dynamic load balancing for distributed
memory multiprocessors. Journal of Parallel and Dis-
tributed Computing, 7:279–301, 1989.

[2] J.E. Boillat. Load balancing and poisson equation
in a graph. Concurrency: Practice and Experience.,
2(4):289–313, 1990.

[3] C.Z. Xu and F.C.M. Lau. Optimal parameters for
load balancing with the diffusion method in mesh net-
works. Parallel Processing Letters, 4(1-2):139–147,
1994.

[4] S.H. Hosseini, B. Litow, M. Malkawi, J. McPherson,
and K. Vairavan. Analysis of a graph coloring based
distributed load balancing algorithm. Journal of Par-
allel and Distributed Computing, 10:160–166, 1990.

[5] C.Z. Xu and F.C.M. Lau. Analysis of the generalized
dimension exchange method for dynamic load balanc-
ing. Journal of Parallel and Distributed Computing,
16(4):385–393, 1992.

[6] R. Elsässer, B. Monien, and R. Preis. Diffusion
schemes for load balancing on heterogeneous net-

works. Theory of Computing Systems, 35:305–320,
2002.

[7] J.M. Bahi, R. Couturier, and F. Vernier. Accelerated
diffusion algorithms on general dynamic networks.
5th International Conference, PPAM Czestochowa,
Poland, pages 77–82, 2003.

[8] J.M. Bahi, R. Couturier, and F. Vernier. Syn-
chronous distributed load balancing on dynamic net-
works. Journal of Parallel and Distributed Comput-
ing, 65(11):1397–1405, 2005.

[9] R. Elsässer, B. Monien, and S. Schamberger. Load
balancing in dynamic networks. In 7th International
Symposium on Parallel Architectures, Algorithms and
Networks, 2004.

[10] F. Vernier. Algorithmique itérative pour l’équilibrage
de charge dans les réseaux dynamiques. PhD thesis,
Université de Franche-Comté (France), 2004.

[11] C.Z. Xu, B. Monien, R. Lüling, and F.C.M. Lau. An
analytical comparison of nearest neighbor algorithms
for load balancing in parallel computers. In 9th Inter-
national Parallel Processing Symposium, pages 472–
479. IEEE Computer Society Press, 1995.

[12] A. Berman and R.J. Plemmons. Nonnegative Matri-
ces in the Mathematical Sciences. Academic Press,
SIAM, Philadelphia, third edition, 1979 edition, 1994.

[13] J. Bahi, S. Domas, and K. Mazouzi. Jace : a java en-
vironment for distributed asynchronous iterative com-
putations. In 12-th Euromicro Conference on Parallel,
Distributed and Network based Processing, PDP’04,
pages 350–357. IEEE computer society press, 2004.

8

