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Abstract

Resource scheduling in large-scale, volatile desktop grids
is challenging because resource state is both dynamic and
eclectic. Matching available resources with requests is
not always possible with existing approaches. Partial dis-
semination protocols, such as gossiping, may provide effi-
cient schedules when resource requesters are located near
providers that can meet their needs. However, when re-
questers are distant from available resources, regular infor-
mation dissemination techniques can waste communication
bandwidth with futile messages. Thus, it may be advanta-
geous to attempt to advertise to select remote regions of the
grid, without necessarily also going through all intermedi-
ate nodes. This paper proposes dissemination proxies to in-
crease coverage footprints and reduce dissemination over-
head. We incorporate selecting and adjusting the amount
of proxy nodes into an adaptive dissemination algorithm,
and show that dissemination proxies are able to reduce dis-
semination overhead, and handle available resource distri-
bution scenarios where regular information dissemination
approaches may not produce efficient protocols. We also
report initial results that indicate that randomly selecting
nodes to serve as proxies can perform as well as strategies
that select seemingly better-qualified proxies.

1 Introduction
Resource matching and scheduling in grid environments is
a difficult problem that becomes more challenging in desk-
top grids, due to the scale, heterogeneity, and volatility
of system state. Existing solutions to resource matching
and scheduling are not ideal since resource states can be
more dynamic, and resources are not necessarily always
connected. Unlike deterministic protocols, probabilistic in-
formation dissemination protocols do not guarantee finding
resources. However, they provide robust, efficient and scal-
able approaches to resource matching in highly dynamic en-
vironments, such as large-scale, volatile desktop grids.

We previously described partial dissemination proto-

This research is supported by NSF Award ACI-0133838, DOE Grant DE-
FG02-02ER25526, and NSF Award CNS-0454298.
1-4244-0910-1/07/$20.00 c©2007 IEEE.

cols as alternatives to complete information dissemination
[6]. The goal is to make coverage footprints—the sets of
nodes that receive information about the state of particu-
lar resources—large enough to attract jobs that utilize the
resource, but small enough to keep overhead low. Partial
dissemination reduces the frequency, scope, and/or resolu-
tion of resource state information dissemination relative to
broadcasting in full detail.

Depending on the base dissemination protocol, dissem-
ination aggressiveness can be adapted in different ways.
Probabilistic algorithms, for example, reduce the frequency
and scope (but not the detail). In this model, dissemina-
tion aggressiveness is a function of its frequency, and of the
forwarding probabilities at the intermediate nodes. The dis-
semination protocol can also be optimized to avoid dissem-
inating information unnecessarily. For example, change-
sensitive protocols [6] can filter dissemination packets con-
taining similar, redundant, or unnecessary information.

Aggregation can also be used as a tool for reducing the
overhead of dissemination. If specific information about in-
dividual nodes or clusters causes too much overhead, then
summarized information about all of the nodes at a certain
“level” or aggregated region may provide enough informa-
tion for schedulers to increase the effectiveness of their de-
cisions. Aggregation reduces the scope of dissemination by
limiting the number of dissemination sources.

The most natural approach is to make the resource itself
be the sole source of dissemination; this leads to coverage
footprints with the freshest (and therefore the most accu-
rate) information about a resource being located in that re-
source’s vicinity. This property is attractive because it can
lead to schedulers that select nearby resources for the ap-
plications they are mapping onto the grid, which can re-
duce application startup costs and avoid problems such as
flashcrowding [7].

However, when nearby resources cannot satisfy local
queries, it may be advantageous to advertise to select remote
regions of the grid, without necessarily also going through
all intermediate nodes. Therefore, another partial dissemi-
nation possibility—one that is the subject of this paper—is
to introduce dissemination proxies to alter the source of dis-
semination. A node may decide to target particular remote
dissemination proxies, unicast information packets to them,



and have them distribute that information to their proximi-
ties. Adaptation can be built into this strategy by changing
the number and location of proxies based either on the suc-
cess of using them for previous disseminations, or on the
intended extent of dissemination, for example.

Gossip-based information dissemination is flat by na-
ture. Whereas this unstructured communication has benefits
such as scalability, ease of implementation, and low mainte-
nance, it lacks the efficiency of a structured approach. The
goal of proxies is to get the benefits of a structured ap-
proach without having to pay the price of maintaining that
structure. Knowing which nodes to pick as proxies would
seem to be a fundamentally important aspect of the proxy
approach, but making the knowledge of the right proxy lo-
cations available for all grid nodes introduces structure into
the system. One question we seek to answer in this paper is
whether there in fact are better (or best) proxy locations, or
whether we may get the benefits of proxies without the cost
of a structured approach.

2 Related Work

Condor [13], through ClassAds and its matchmaking
framework [11] enables resource management and schedul-
ing in distributed systems. In Condor, resource providers
and requesters advertise characteristics and requirements in
ClassAds. A matchmaking service finds satisfying matches
based on the specified constraints, and then notifies the
two parties. The requester then can use other Condor ser-
vices to contact the provider to have the desired service
performed. This mechanism requires ClassAds from both
parties to make it to the same location to be compared and
eventually matched. Whereas this framework has been suc-
cessful for clusters of computers and in some inter-cluster
configurations, it does not necessarily handle the highly dy-
namic and eclectic state of nodes in desktop Grids. Hope-
fully, our approach will eventually extend the set of envi-
ronments for which Condor’s matchmaking framework ef-
fectively matches resource requesters to providers.

Yalagandula and Dahlin [15] propose a flexible system
called SDIMS to address the aggregation problem in dis-
tributed systems. SDIMS aggregates global information
while giving a detailed view of nearby information. More-
over, it enables administratively isolated aggregation, based
on a distributed hash table (DHT) tree. Thus, multiple
users may get information at different granularities. We use
aggregation to reduce information dissemination overhead,
whereas SDIMS uses it to dynamically adjust the granu-
larity of information abstraction. To adjust the number of
proxies used in our framework as well as the level of ab-
straction, we may borrow ideas from SDIMS in the future.

An alternative approach to resource discovery is to pre-
structure the resources into a hierarchy. This structured ap-
proach can likely keep dissemination overhead lower. How-
ever, additional overhead is needed to maintain the struc-
ture, especially with dynamic resources. This paper ex-
plores the unstructured approach only.

Several existing approaches combine epidemic protocols
with hierarchical multicast structures [5, 10, 12, 18], but
their maintenance requirements make them difficult to scale
to grid environments. Lin and Marzullo propose directional
gossiping in a wide-area network, where a node forwards
information it receives with higher probability to the nodes
that have less connections to itself, and vice versa [9]. The
underlying intuition is that the overhead of gossip protocols
in a wide area network can be reduced by considering the
network topology [14]. However, in wide-area networks,
overhead with directional gossip approximates flooding.

Karp et al. study randomized rumor spreading to dissem-
inate information to the entire network in the minimum pos-
sible number of communication steps [8]. Based on cover-
age characteristics of pull and push algorithms, they divide
the entire coverage process into two parts. The median-
counter algorithm uses push to exponentially increase cov-
erage in the first part, and switches to pull to quadratically
shrink non-coverage in the second part. Our work is sim-
ilar in how remote nodes are selected and information is
sent. However, in our work, the remote nodes disseminate
to their vicinity after being selected, rather than randomly.
Our approach also differs in terms of the targeted coverage:
we aim to cover only some remote parts of the grid, not the
entire network.

3 Implementation

In this section, we describe our approach to proxy-based
grid information dissemination.

3.1 Motivation

The intended benefits of proxy-based aggregate grid infor-
mation dissemination are two-fold. First, it helps increase
dissemination coverage with less overhead than is incurred
with regular information dissemination. This is especially
useful for nodes with similar resource characteristics, such
as a large cluster of computing nodes. One integral goal
of information dissemination—to match resource providers
with requesters—is difficult when all the neighbors of a
node offer the same resources as it does.

Second, proxy-based dissemination reduces packet over-
head by decreasing (if not completely eliminating) the num-
ber of intermediate nodes that disseminate in between the
source and the destination. If the disseminated information
is of no interest to the intermediate nodes, most messages
are unnecessary. The number of unnecessary messages in-
creases exponentially as the distance between the provider
and the requester becomes larger, even with partial dissem-
ination protocols.

One drawback of using proxies is that information is not
necessarily disseminated more aggressively or with more
frequency to nearby nodes. Proxies essentially provide an
agent for efficient remote advertising. This can increase
coverage at reduced overhead costs, but it can also rein-
troduce problems such as flashcrowding [7] and schedul-
ing applications at distant launch points, thereby increasing



startup costs. Therefore, we advocate the use of proxies for
dissemination primarily when localized approaches do not
succeed in increasing coverage or query satisfaction rates.

3.2 Proxy-based Grid Information Dissemination

We view dissemination proxies as complementary to the
adaptive information dissemination and scoring scheme in-
troduced previously [3, 4]. In particular, we consider the
possibility of an autonomous node (or a neighborhood of
nodes) adjusting the dissemination behavior by switching
dissemination proxies on or off, and adjusting the number
of proxies, under dynamic available resource state. For ex-
ample, proxies can be used to attract remote nodes when
previously matched nearby requesters may not be interested
in the providers anymore.

In our view of proxy-based grid information dissemina-
tion, an autonomous node or a neighborhood of nodes (via
their neighborhood leader) may:

• select a remote node as a proxy,
• request to “attach” to the remote node,
• add the node to its list of active proxy nodes,
• update the proxy nodes with available resource state

periodically,
• evaluate the benefit of each proxy node, and
• detach from a proxy node.
In this model, we call the remote node that receives and

disseminates information to its vicinity the proxy, and the
node that uses a proxy the disseminator. Disseminators “at-
tach” to proxies and act as their clients. Thus, we use the
terms disseminator and client interchangeably in this paper.

A candidate node to which a proxy request may be sent
is called a potential proxy. Our approach selects a potential
proxy at random or from a grid directory service, as ex-
plained in Section 3.2.3. Nodes that receive proxy requests
are autonomous; that is, the decision to accept or refuse an
attachment request is at the receiving node’s discretion.

3.2.1 Neighborhood leaders as proxies

In our model, a node can be a provider, a requester, or both.
Nodes form neighborhoods that consist of small groups
of co-located nodes with similar resource characteristics.
Nodes use local, neighborhood and grid scores to deter-
mine dissemination aggressiveness adaptively. Each score
is a combination of factors that include grid offered load,
local utilization, and query satisfaction rate. Scores are nor-
malized between 1 and 100.1 To minimize the perturbations
caused by adaptation, we define score ranges and compare
the ranges of local, neighborhood and grid scores, as op-
posed to directly comparing the scores themselves. A local,
neighborhood, or grid score may be in the low, normal, or
high range. A neighborhood leader tracks its score range
and adaptively decides to request a remote node for proxy-
based dissemination.

Each neighborhood has a supernode—a neighborhood
leader that is responsible for functions such as membership

1See [4] for details on how scores are calculated.

maintenance [16] and neighborhood score calculation [3].
Each neighborhood leader is also a potential proxy node
for remote nodes that are interested in disseminating in its
neighborhood.

Thus, responsibilities of a neighborhood leaders in-
clude:
• recordkeeping—maintaining the neighborhood score

and neighborhood score range,
• keeping track of aggregate available resource informa-

tion in the neighborhood,
• disseminating aggregate available resource informa-

tion outside the neighborhood,
• disseminating received available resource information

to the neighborhood, and
• gatekeeping—receiving reservation requests and for-

warding them to actual neighborhood members (see
Section 3.2.2 for more information).

Algorithms 1 and 2 detail neighborhood leader tasks.

Algorithm 1 Pseudo-code for neighborhood leader tasks.

1: Register itself as a neighborhood leader on the grid.
2: repeat
3: Poll local scores from neighborhood members,
4: Calculate the neighborhood score,
5: Determine the neighborhood score range,
6: Calculate aggregate available resource state for the

neighborhood,
7: Disseminate aggregate available resource state to the

grid,
8: Send aggregate available resource state to proxies,
9: Adjust the number of proxies,

10: repeat
11: for all reservation requests received do
12: Pick an actual provider among neighborhood

members
13: Forward the reservation request to that node
14: end for
15: for all proxy requests received do
16: if client limit is not reached then
17: Accept proxy request
18: Put the node in clients list
19: else
20: Refuse proxy request
21: end if
22: end for
23: for all drop requests received do
24: Remove sender from client list
25: end for
26: for all received aggregate available resource state

do
27: Update local client list
28: Disseminate to neighborhood
29: end for
30: until current cycle ends
31: until simulation ends



Algorithm 2 Pseudo-code for adjusting number of proxies
at a neighborhood leader.

1: if neighborhood score range is lower than grid score
range then

2: if active proxy limit is not reached then
3: Pick a potential proxy node
4: Send a proxy request to potential proxy node
5: if request is accepted then
6: Add the potential proxy node to active proxy list
7: end if
8: end if
9: else if neighborhood score range is higher than grid

score range then
10: Pick a random proxy node from active proxy list
11: Send a drop proxy message to proxy node
12: Remove node from active proxy list
13: end if

3.2.2 Resource state aggregation

Neighborhood members do not disseminate autonomously
as in our previous work [4, 3], instead the neighborhood
leader maintains and disseminates the aggregate available
resource state on the grid. To determine aggregate available
resource state, we add local available resource state infor-
mation to the periodically exchanged status messages be-
tween neighborhood leader and members to maintain the
neighborhood score.

Thus the neighborhood leader receives the available re-
source state from each member periodically, and updates
aggregate resource state accordingly. Since the neighbor-
hood leader is the only disseminator for the neighborhood,
resource reservation requests for aggregate resources come
to the neighborhood leader as well. The neighborhood
leader then forwards each request to a neighborhood mem-
ber, and decreases aggregate available resources. After re-
source scheduling is complete (i.e. both parties accept the
schedule), the provider informs its leader with the next peri-
odic available resource state update, and the neighborhood
leader uses this update to verify aggregate resource state.

3.2.3 Selecting a proxy

The neighborhood leader may pick the potential proxy node
by one of the following methods:

• Well-connected, designated (WCD)—picking a set of
nodes that have at least eight connections to other
nodes and that are well-distributed across the network,
or

• Random—sending a random-walk packet that gets for-
warded for a random hop count; whichever node the
packet stops at acts as the proxy for that dissemination.

Well-connected, designated nodes may not be the “best”
possible proxy nodes for increasing coverage footprints.
However, a complete analysis would require testing all pos-
sible proxy nodes in all different topologies. Therefore, we
use well-connected, designated nodes as a heuristic, with

the intuition that they might provide a basis for compar-
ison with random proxies. To exploit the spatial locality
of neighborhood query generation, we also ran tests us-
ing execution history as another alternative proxy selection
method, with the intuition that when a requester is asking
for resources, there is a higher possibility that other re-
questers may be asking for similar resources. Execution his-
tory was something that worked well in [2], but in our tests
with proxies, it underperforms the random method. Thus
we do not report results for this method in this paper.

Algorithm 3 gives proxy selection details for the WCD
method, wherein a leader election scheme such as in [16]
may pick nodes at optimal locations in each neighborhood
in terms of average distance to all other neighborhood mem-
bers. Thus, there is reason to believe those neighborhood
leaders to be attractive candidates as potential proxy nodes
to disseminate into that neighborhood. However, making
available the locations of all neighborhood leaders on the
grid requires a structuring approach with state information
kept at special nodes throughout the grid; this incurs the
overhead of all structured approaches.

Alternatively, in the random method, nodes may use re-
quest forwarding: when a node receives a proxy request,
it may either accept the request, or forward the request to
its neighborhood leader. We have promising results with
request forwarding and plan to use random proxies with re-
quest forwarding to trade off between the cost of making
optimal locations at each neighborhood available to all grid
nodes, and proxy-based dissemination overhead when such
information is not available. For the results reported in this
paper, however, we use well-connected, designated nodes
with the intuition that they may be better locations for ad-
vertising available resource state.

Algorithm 3 Pseudo-code for picking a potential proxy
node in the WCD method.

1: if candidateProxyList is not populated then
2: Create a local copy of well-connected, designated

potential proxies registry, candidateProxyList
3: end if
4: for all new proxy node requests do
5: Pick the first entry in candidateProxyList
6: Send a proxy request to remote node
7: if request is accepted then
8: Move the node from candidateProxyList to active-

ProxyList
9: else

10: Move the node to the end of the candidateProx-
yList

11: end if
12: end for

4 Simulation and Results
We use the Scalable Simulation Network Framework
(SSFNet) [1] to simulate the system, and GT-ITM [17] to



generate network topologies. We use a 600-node transit-
stub topology at the network level and a power-law topology
in the overlay. All simulations execute for 100 cycles; each
data point represents the average of 180 runs, 20 separate
runs with different random seeds. For each run, we report
an average of nine tests with initial dissemination probabil-
ities Pi = 0.1 to 0.9.

In our model, a resource is characterized by a resource
descriptor tuple (T, U, S), where T refers to the Type of re-
source, U refers to available resource Units, and S refers to
available time Slots. A request is characterized by the same
three parameters contained in the descriptor. Providers dis-
seminate available resource state in this tuple format, which
then gets stored in information repositories at remote nodes.
A query is satisfied if the following relationship holds be-
tween the resource tuple (Tr, Ur, Sr) and the query tuple
(Tq, Uq, Sq):

(Tr = Tq) ∧ (Ur ≥ Uq) ∧ (Sr ≥ Sq).

We report dissemination overhead in terms of the total
number of hops travelled by information packets. We report
query satisfaction rates as the ratio of satisfied queries over
the total number of queries generated.

The experiments in this section are organized as fol-
lows. Section 4.1 shows how proxy-based dissemination
reduces dissemination overhead and increases query satis-
faction rates with well-connected, designated (WCD) prox-
ies. In Section 4.2, we study an alternative proxy selection
method with random proxies; and compare its performance
to well-connected, designated (WCD) proxies. Section 4.3
details each proxy selection method, and Section 4.4 helps
verify the results by studying additional cases.

4.1 Well-Connected, Designated Proxies

We report the behavior of a proxy based information dis-
semination scheme under different resource characteristics.
For the proxy-based dissemination results reported in Sec-
tions 4.1.1 and 4.1.2, nodes pick well-connected, designated
proxies from a central registry as explained in Section 3.2.3.

We run a total of 16 tests in two groups, and report their
overhead and query satisfaction rates. In Section 4.1.1,
we report 12 basic tests based on relationships between
providers and requesters. In Section 4.1.2, we report results
of four additional tests that have more participating nodes
and neighborhoods in the simulation.

4.1.1 Relationships between providers and requesters

Tests 1 through 12 vary the following factors that affect the
performance of partial dissemination protocols: (1) relative
locations of provider and requester nodes, (2) query gener-
ation style, and (3) system saturation level.

We study the providers and the requesters in two node
placement configurations. In the first configuration (c1),
two sets of four providers each form two neighborhoods
(called PN1 and PN2 respectively). They are each placed
at a corner of the grid such that they are far from each

Table 1. 12 tests that represent basic relationships between
providers and requesters in terms of resource characteristics and
relative positions.

Test
Case

Place-
ment

Resource
Provider

Beaming Saturation
Level

1 c1 Both None Su

2 c1 Both None S

3 c1 Both None So

4 c2 Both None Su

5 c1 PN1 None Su

6 c1 PN1 R1 Su

7 c1 PN1 None S

8 c1 PN1 R1 S

9 c1 Both Both S

10 c1 PN1 Both S

11 c2 Both Both S

12 c2 PN1 Both S

other. Two requesters, R1 and R2, are also added to the
two neighborhoods PN1 and PN2 to form close groups with
their respective providers. In the second configuration (c2),
we place PN1, PN2, R1, and R2 at four mutually remote
corners of the grid. In each specific test case, either both
PN1 and PN2, or only PN1 provide resources.

We also vary resource characteristics: R1 and R2 either
generate queries during the entire simulation (constant) or
they beam queries in alternating periods of dissemination
cycles. (ON, OFF, ON, OFF, etc.). Further, we vary the
ratio of available resources (AR) versus offered load (OL),
and study three resource saturation levels:
• under-saturated (Su), where AR = OL ∗ 3,
• saturated (S), where AR = OL, and
• over-saturated (So), where AR = OL/3.
In all the tests, resource state aggregation helps decrease

dissemination overhead by decreasing the number of dis-
semination sources. The adaptive proxy selection algorithm
also affects dissemination overhead by adjusting the num-
ber of proxies (see Algorithm 2 for more details).

For each test, we report the proxy-based dissemination
performance normalized to the non-proxy baseline for both
dissemination overhead and query satisfaction rate. Table 1
summarizes each test case, and Table 2 shows results.

In general, Table 2 shows that proxy-based dissemina-
tion reduces overhead in most tests, up to 34%, and it
matches query satisfaction rates of regular information dis-
semination. Moreover, it improves query satisfaction rates
by up to 18%, in some cases with higher query satisfaction
rates and lower overhead.

Tests 1–6 show that proxy-based dissemination is bet-
ter when the system is not under-saturated. In particular,
proxy-based dissemination reduces overhead by 33% on a
saturated system, and also by 29% on an over-saturated
system. On the other hand, proxy-based dissemination
has higher overhead than regular information dissemination



Table 2. Proxy-based dissemination performance in terms of over-
head and query satisfaction rate, for isolated test cases. Proxy-
based dissemination has up to 44% higher overhead, due to under-
saturated system. On the other hand, proxy-based dissemination
reduces overhead up to 34% when the system is saturated. More-
over, it matches query satisfaction rate of regular information dis-
semination within 18%, and improves it by up to 18%.

Overhead Query Satisfaction
Test No

Proxy
Proxy Ratio No

Proxy
Proxy Ratio

1 20,593 29,676 1.44 99.73% 93.99% 0.94

2 18,909 12,597 0.67 91.56% 91.01% 0.99

3 71,586 50,826 0.71 30.62% 27.69% 0.90
4 98,315 83,317 1.18 96.71% 94.36% 0.98
5 27,639 34,825 1.26 90.16% 80.24% 0.89
6 29,298 38,673 1.32 87.81% 71.74% 0.82

7 26,759 17,661 0.66 84.17% 74.59% 0.89

8 30,154 22,012 0.73 81.14% 81.32% 1.00

9 25,366 19,278 0.76 93.32% 95.60% 1.02

10 31,129 24,814 0.80 86.93% 93.75% 1.08

11 91,024 62,839 0.69 87.04% 90.69% 1.04

12 35,677 24,575 0.69 75.94% 89.65% 1.18

when the system is under-saturated. In Tests 1 and 4–6,
the adaptive algorithm generates more aggressive dissemi-
nation protocols on-the-fly, to attract more requesters. This
in turn causes higher dissemination overhead with more dis-
semination sources in proxy-based dissemination.

Beaming in query generation in Tests 6 and 8 causes
the provider neighborhood (PN1) to increase aggressiveness
in both proxy-based and regular information dissemination
(Test 5 compared to Test 6, and Test 7 compared to Test 8).
With beaming, the increase in aggressiveness is higher in
proxy-based dissemination, thus higher overhead ratios in
Tests 6 and 8, compared to Tests 5 and 7, respectively.

Tests 9–12 show that proxy-based dissemination perfor-
mance is not affected by the distance between the providers
and the requesters. Under different resource characteristics,
proxy-based dissemination reduces message overhead up to
31%, while it exceeds query satisfaction rates of regular in-
formation dissemination in all cases. With proxy-based dis-
semination, the increase in overhead is higher in Test 10
compared to Test 9, due to single provider neighborhood
satisfying requests of both close and distant requesters. This
effect is not visible in Tests 11 and 12, because of the rela-
tively distant placement of requesters and providers.

4.1.2 More providers and requesters

We report performance of the isolated test cases in the previ-
ous section. In this section, we distribute the providers and
requesters on the grid, and increase the number of neighbor-
hoods. We report the performance of four additional tests in
Table 3, where the providers form a neighborhood central to
the grid, and the requesters form a distributed neighborhood

Figure 1. Distributed neighborhood nodes on the topology. Black
circles denote providers, black triangles, hexagons and trapezoids
denote requester groups. Empty rectangles denote other grid
nodes. 12 requester nodes form the distributed requester neigh-
borhood at three parts of the grid and 12 provider nodes form the
provider neighborhood.

Table 3. Proxy-based dissemination performance in terms of over-
head and query satisfaction rate, for generalized test cases. Proxy-
based dissemination reduces dissemination overhead by up to 65%
while increasing query satisfaction rates up to 19%.

Overhead Query Satisfaction
Test No

Proxy
Proxy Ratio No

Proxy
Proxy Ratio

13 164,087 58,079 0.35 70.34% 76.62% 1.09

14 115,658 58,145 0.50 45.98% 55.71% 1.19

15 149,952 57,756 0.39 83.55% 86.96% 1.04

16 123,686 63,684 0.52 78.65% 82.14% 1.04

at the three edges of the grid, as Figure 1 shows. In each test,
we vary available resource and offered load characteristics.

Table 3 shows that the benefits of proxy-based informa-
tion dissemination are not specific to the tests cases we re-
port in the previous section. Proxy-based dissemination re-
duces overhead by 56% on average, and as much as 65%. In
all the cases we report, proxy-based dissemination results in
better query satisfaction rates, up to 19%, compared to cases
where no proxies are used.

4.2 Randomly Selected Proxies

In the WCD method, we use the six most connected nodes
as proxies. For each of the 20 runs in the WCD method, we
pick three of the six proxies and use the same proxies across
all tests. To study whether the benefits of proxies are only
observable with the WCD method or not, we run more tests
with both methods. Figure 2, and Tables 4 and 5 compare
the performance of the random method to the WCD method,
for the four tests reported in Section 4.1.2.

Figure 2 shows that picking proxy nodes at random per-
forms close to the WCD method. We observe that the WCD
method has both higher dissemination overhead and higher
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Figure 2. Performance of the random and WCD methods. The
random method matches query satisfaction rates of the WCD
method with less overhead.

Table 4. Comparison of the random and WCD methods in terms
of redundant message ratio and average dissemination probabil-
ity. Redundant message ratio of the WCD method is lower than
the random method. The WCD method has also less aggressive
dissemination protocols due to better locations of proxy nodes.

Redundant mes-
sage ratio

Average dissemi-
nation probability

Tests Random WCD Random WCD

13 0.49 0.48 0.64 0.60
14 0.49 0.47 0.28 0.25
15 0.50 0.48 0.62 0.59
16 0.55 0.52 0.37 0.32

Table 5. Comparison of the random and WCD methods in terms
of average distance between proxy node and the disseminator, and
average edge count of proxies. Lower average edge count con-
tributes to lower overhead with the random method.

Average distance Average edge
count of proxies

Tests Random WCD Random WCD

13 6.75 7.22 3.85 8.83
14 6.90 7.22 3.72 8.83
15 6.85 7.22 3.57 8.83
16 6.78 7.22 3.57 8.83

query satisfaction rates, because we use the most connected
nodes, which leads to higher query satisfaction rates. How-
ever, the increase in message overhead does not justify the
relative increase in query satisfaction rates.

Table 4 shows that redundant message ratio (i.e. the ra-
tio of extra information packets sent per single piece of in-
formation) of the WCD method is lower than the random
method. The WCD method also have lower average dissem-
ination probabilities, thus they produce less aggressive pro-
tocols. This does not result in less overhead however, due
to higher number of links in the WCD method, as shown in
Table 5.

Table 6. Details of each run in Test 13, sorted by query satisfaction
rate for the random and WCD methods. Query satisfaction rate and
dissemination overhead.

Query Satisfaction Rate Dissemination Overhead
Random WCD Random WCD

0.7777 0.8053 54,293 51,098
0.7725 0.7895 36,154 50,963
0.7698 0.7895 27,984 40,449
0.7640 0.7854 31,853 43,918
0.7597 0.7848 35,512 40,636
0.7595 0.7825 29,283 45,053
0.7569 0.7825 26,395 41,910
0.7567 0.7825 33,470 41,306
0.7553 0.7789 27,200 44,496
0.7537 0.7784 30,577 46,214
0.7522 0.7690 38,963 50,731
0.7520 0.7649 31,059 50,616
0.7415 0.7649 35,054 46,724
0.7398 0.7643 26,592 55,278
0.7395 0.7591 31,474 53,208
0.7316 0.7561 29,086 49,907
0.7310 0.7532 25,812 51,501
0.7287 0.7526 28,115 44,291
0.7275 0.7304 30,492 53,697
0.7222 0.7234 42,293 55,156

4.3 Proxy Selection Alternatives in Detail

To verify our results in the previous section, we now report
details of each run for Test 13. Table 6 gives details for the
random and WCD methods.

Table 6 reveals that proxy-based dissemination algo-
rithm behavior does not depend on the particular nodes
picked. In the long run, picking random proxies allows
proxy-based dissemination to achieve performance compa-
rable to picking better proxy nodes.

On the other hand, the best case performance of the
random method (i.e. first row in Table 6 for the random
method) in terms of query satisfaction rate is better than
half of the results with the WCD method, and on average it
is within 7% of the WCD method. Moreover, the random
method achieves dissemination coverage comparable to the
WCD method, with much less overhead in most cases. The
dissemination overhead is between 40 to 55 thousands of
packets in the WCD method, while it is between 25 to 54
thousands of packets in the random method.

4.4 Random Neighborhoods

In the previous sections, we report performance numbers for
one configuration, as explained in Section 4.1.2. To further
verify our results, we run the same proxy selection alter-
natives for a more generalized case, where three providers
and three requesters form random provider and requester
neighborhoods as follows. For each neighborhood, a ran-
dom node is picked as the neighborhood leader. Each neigh-
borhood leader disseminates a marker packet, and asks its



neighbors to apply for membership to the neighborhood.
The neighborhood leader picks the first five nodes among
responding nodes, and form the neighborhood.

Thus, in each test, three neighborhoods (with five nodes
in each neighborhood) participate in resource matching.
The configuration is comparable to that of Test 13 in Sec-
tion 4.1.2. The system is saturated, and requesters gen-
erate queries uniformly in each dissemination cycle. Ta-
ble 7 shows results. We observe that in general, the random
method performance is comparable to the WCD method.
Thus, it is not necessary to make available the “best” loca-
tions of potential dissemination nodes on the grid.

Table 7. Details of random neighborhoods, for the random and
WCD methods. Redundant message ratio, average dissemination
probability, average distance between disseminator and proxies,
and average edge count of proxies.

Random WCD

Query satisfaction rate 61.05% 67.07%
Dissemination overhead (packets) 48,763 74,307

Redundant message ratio 0.56 0.53
Average dissemination probability 0.41 0.40

Average distance 6.78 6.86
Average edge count of proxies 3.59 8.83

5 Summary
Proxy-based information dissemination can help increase
coverage footprints and reduce packet overhead by shrink-
ing the scope of dissemination. In particular, we show that
dissemination proxies can reduce overhead by up to 65%
and improve query satisfaction rates by up to 19%.

Some neighborhood members have shorter average dis-
tance to other members, or a larger average edge count,
making them desirable as potential proxy locations. Find-
ing these nodes is difficult, however, even if a disseminator
had full information about all potential proxy locations in
a grid. Such a strategy could also potentially create bottle-
neck locations, if most disseminators prefer a small sub-
set of nodes as proxies. We show that selecting proxies
at random, which avoids both of these problems, performs
comparably to picking intuitively “better” nodes as prox-
ies. Thus, in large-scale volatile desktop grids, proxy-based
grid information dissemination can increase the efficiency
of matching resource requesters to providers.
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