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ABSTRACT
We present core fusion, a reconfigurable chip multiprocessor (CMP)
architecture where groups of fundamentally independent cores can
dynamically morph into a larger CPU, or they can be used as distinct
processing elements, as needed at run time by applications. Core
fusion gracefully accommodates software diversity and incremental
parallelization in CMPs. It provides a single execution model across
all configurations, requires no additional programming effort or spe-
cialized compiler support, maintains ISA compatibility, and leverages
mature micro-architecture technology.

1 INTRODUCTION
Chip multiprocessors (CMPs) hold the prospect of translating
Moore’s Law into sustained performance growth by incorporating
more and more cores on the die. In the short term, on-chip inte-
gration of a modest number of relatively powerful cores may yield
high utilization when running multiple sequential workloads. How-
ever, although sequential codes are likely to remain important, they
alone are not sufficient to sustain long-term performance scalability.
Consequently, harnessing the full potential of CMPs in the long term
makes the widespread adoption of parallel programming inevitable.

Unfortunately, code parallelization constitutes a tedious, time-
consuming, and error-prone effort. Historically, programmers have
parallelized code incrementally to amortize programming effort over
time. Typically, the most promising loops or regions in a sequential
execution of the program are identified through profiling. A subset
of these regions is then parallelized. Over time, more effort is spent
on the remaining code. As CMPs become ubiquitous, we envision a
dynamic and diverse landscape of software products of very different
characteristics and in different stages of development: from purely
sequential, to highly parallel, and everything in between. As a result
of incremental parallelization, applications will exert very different
demands on the hardware across phases of the same run (e.g., sequen-
tial vs. highly parallel code sections within the same program). This
diversity is fundamentally at odds with most CMP designs, whose
composition is “set in stone” by the time they are fabricated.

In this paper, we investigate a novel reconfigurable hardware
mechanism that we call core fusion. It is an architectural technique
that empowers groups of relatively simple and fundamentally inde-
pendent CMP cores with the ability to “fuse” into one large CPU
on demand. We envision a core fusion CMP as a homogeneous
substrate with conventional memory coherence/consistency support,
where groups of up to four adjacent cores and their i- and d-caches
can be fused at run-time into CPUs that have up to four times the
fetch, issue, and commit width, and up to four times the i-cache, d-
cache, branch predictor, and BTB size.

Core fusion has the potential to accommodate software diversity
better: CMPs may be configured for fine-grain parallelism (by pro-
viding many lean cores), coarse-grain parallelism (by fusing many
cores into fewer, but more powerful CPUs), sequential code (by ex-
ecuting on one fused group), and different levels of multiprogram-
ming (by providing as many fused groups as needed, up to capacity).
Core fusion would naturally support incremental parallelization, by
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Figure 1: Conceptual floorplan of an eight-core CMP with core fu-
sion capability. The figure shows a configuration example comprising
two independent cores, a two-core fused group, and a four-core fused
group. The figure is not meant to represent an actual floorplan.

dynamically providing the optimal configuration for sequential and
parallel regions of a particular code, e.g., one large fused group dur-
ing sequential regions, and many small independent cores during par-
allel regions.

2 ARCHITECTURE
Core fusion builds on top of a substrate comprising identical, rela-
tively efficient two-issue out-of-order cores. A bus connects private
L1 i- and d-caches and provides data coherence. On-chip L2 cache
and memory controller reside on the other side of this bus. Cores
can execute fully independently if desired. It is also possible to fuse
groups of two or four cores to constitute larger cores. Figure 1 is an
illustrative example of a CMP comprising eight two-issue cores with
core fusion capability. The figure shows an (arbitrarily chosen) asym-
metric configuration comprising one eight-issue, one four-issue, and
two two-issue CPUs.

We now describe in detail the core fusion support. In the discus-
sion, we assume four-way fusion.

2.1 Front-end
2.1.1 Collective Fetch
A small co-ordinating unit called the fetch management unit (FMU)
facilitates collective fetch. The FMU receives and re-sends relevant
fetch information across cores. The latency from a core into the FMU
and out to any other core is two cycles (Section 4).

Fetch Mechanism and Instruction Cache
Each core fetches two instructions from its own i-cache every cycle,
for a total of eight instructions. Fetch is aligned, with core zero gen-
erally responsible for the oldest two instructions. On a taken branch
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Figure 2: Illustrative example of four i-caches organized (a) inde-
pendently or (b) fused. In independent mode, four subblocks and one
tag within each i-cache constitute a cache block. In fused mode, a
cache block spans four i-caches, each i-cache being responsible for a
subblock and a tag replica.
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Figure 3: Configuration-oblivious indexing utilized in branch pre-
diction and BTB. In the figure, i bits are used for indexing and t
for tagging (tagging only meaningful in the BTB). Of course, i and
t are generally not the same for branch predictor and BTB. Because of
aligned fetch, the two tag bits sandwiched between index bits match
the core number in the fused configuration.

(or misprediction recovery), however, the target may not be aligned
with core zero. In that case, lower-order cores skip fetch, and core-
zero-aligned fetch resumes on the next cycle.

On an i-cache miss, an eight-word block is delivered (a) to the re-
questing core if it is operating independently, or (b) distributed across
all four cores in a fused configuration to permit collective fetch. To
support these two options, we make i-caches reconfigurable along the
lines of earlier works [11]. Each i-cache has enough tags to organize
its data in two-word subblocks. When running independently, four
such subblocks and one tag make up a cache block. When fused,
cache blocks span all four i-caches, with each i-cache holding one
subblock and a replica of the cache block’s tag. (How to dynami-
cally switch from one i-cache mode to the other is explained later in
Section 3.) Figure 2 shows an example of i-cache organization in a
fusion group.

During collective fetch, it makes sense to replicate the i-TLB
across all cores in a fused configuration. Notice that this would be ac-
complished “naturally” as cores miss on their i-TLBs, however taking
multiple i-TLB misses for a single eight-instruction block is unneces-
sary, since the FMU can be used to refill all i-TLBs upon a first i-TLB
miss by a core. The FMU is used to gang-invalidate i-TLB entries.

Branches and Subroutine Calls
Prediction. During collective fetch, each core accesses its own
branch predictor and BTB. Because collective fetch is aligned, each
branch instruction always accesses the same branch predictor and
BTB. Consequently, the effective branch predictor and BTB capacity
is four times as large. To accomplish maximum utilization while re-
taining simplicity, branch predictor and BTB are indexed as shown in
Figure 3 regardless of the configuration. We empirically observe no
loss in prediction accuracy when using this “configuration-oblivious”
indexing scheme. Notice that branch predictor and BTB entries re-
main meaningful across configurations as a result of this indexing
scheme.

Each core can handle up to one branch prediction per cycle. PC
redirection (predict-taken, mispredictions) is enabled by the FMU.
Each cycle, every core that predicts a taken branch, as well as every
core that detects a branch misprediction, sends the new target PC
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Figure 4: Example of aligned fetch in fused mode. In the fig-
ure, cores squash overfetched instructions as they receive a predict-
taken notice from Core 2 with a two-cycle delay. The new target
starts at Core 1, and thus Core 0 skips the first fetch cycle. Notice
the banked branch predictor and BTB, the replicated GHR, and the
Core-0-managed RAS.

to the FMU. The FMU selects the correct PC by giving priority to
the oldest misprediction-redirect PC first, and the youngest branch-
prediction PC last, and sends the selected PC to all fetch units. Once
the transfer of the new PC is complete, cores use it to fetch from their
own i-cache as explained above.

Naturally, on a misprediction, misspeculated instructions are
squashed in all cores. This is also the case for instructions “over-
fetched” along the not-taken path on a taken branch, since the target
PC will arrive with a delay of a few cycles. In Figure 4, Core 2 pre-
dicts branch B to be taken. After two cycles, all cores receive this
prediction. They squash overfetched instructions, and adjust their
PC. In the example, the target lands on Core 1, which makes Core 0
skip the initial fetch cycle.

Global History. Because each core is responsible for a subset of
the branches in the program, having independent and unco-ordinated
history registers on each core may make it impossible for the branch
predictor to learn of their correlation. To avert this situation, the
GHR can be simply replicated across all cores, and updates be co-
ordinated through the FMU. Specifically, upon every branch predic-
tion, each core communicates its prediction–whether taken or not
taken–to the FMU. Additionally, as discussed, the FMU receives non-
speculative updates from every back-end upon branch mispredictions.
The FMU communicates such events to each core, which in turn up-
date their GHR. Upon nonspeculative updates, earlier (checkpointed)
GHR contents are recovered on each core. The fix-up mechanism
employed to checkpoint and recover GHR contents can be along the
lines of the outstanding branch queue (OBQ) mechanism in the Alpha
21264 microprocessor [9].

Return Address Stack. As the target PC of a subroutine call is sent
to all cores by the FMU (which flags the fact that it is a subroutine
call), core zero pushes the return address into its RAS. When a return
instruction is encountered (possibly by a different core from the one
that fetched the subroutine call) and communicated to the FMU, core
zero pops its RAS and communicates the return address back through
the FMU. Notice that, since all RAS operations are processed by core
zero, the effective RAS size does not increase when cores are fused.
This is reasonable, however, as call depth is a program property that is
independent of whether execution is taking place on an independent
core or on a fused configuration.

Handling Fetch Stalls
On a fetch stall by one core (e.g., i-cache miss, i-TLB miss, fetch-
ing two branches), all fetch engines must also stall so that correct
fetch alignment is preserved. To accomplish this, cores communicate
stalls to the FMU, which in turn informs the other cores. Because
of the latency through the FMU, it is possible that the other cores
may overfetch, for example if (a) on an i-cache or i-TLB miss, one
of the other cores does hit in its i-cache or i-TLB (unlikely in prac-
tice, given how fused cores fetch), or (b) generally in the case of two
back-to-back branches fetched by the same core that contend for the
predictor (itself exceedingly unlikely). Fortunately, the FMU latency
is deterministic: Once all cores have been informed (including the
delinquent core) they all discard at the same time any overfetched
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Figure 5: Rename pipeline (top) and illustrative example of SMU
organization (bottom). R0 has a valid mapping in core three, whereas
R1 has four valid mappings (one in each core). Only six architectural
registers are shown.
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Figure 6: Simplified diagram of core fusion’s distributed ROB. In
the figure, ROB 1’s head instruction pair is not ready to commit, which
is communicated to the other ROBs. Speculative and conventional
heads are spaced so that the message arrives just in time (2 clock cy-
cles in the example). Upon completion of ROB 1’s head instruction
pair, a similar message is propagated, again arriving just in time to
retire all four head instruction pairs in sync.

instruction (similarly to the handling of a taken branch before) and
resume fetching in sync from the right PC—as if all fetch engines
had synchronized through a “fetch barrier.”

2.1.2 Collective Decode/Rename
After fetch, each core pre-decodes its instructions independently.
Subsequently, all instructions in the fetch group need to be renamed
and steered. (As in clustered architectures, steering consumers to the
same core as their producers can improve performance by eliminating
communication delays.) Renaming and steering is achieved through
a steering management unit (SMU). The SMU consists of: a global
steering table to track the mapping of architectural registers to any
core; four free-lists for register allocation (one for each core); four
rename maps; and steering/renaming logic (Figure 5). The steer-
ing table and the four rename maps together allow up to four valid
mappings of each architectural register, and enable operands to be
replicated across multiple cores. Cores still retain their individual
renaming structures, but these are bypassed when cores are fused.

Figure 5 depicts the high level organization of the rename pipeline.
After pre-decode, each core sends up to two instructions to the SMU
through a set of links. In our evaluation, we assume a three-cycle
cross-core communication over a repeated link (Section 4). Three
cycles after pre-decode, the SMU receives up to two instructions and
six architectural register specifiers (three per instruction) from each
core. After renaming and steering, it uses a second set of links to
dispatch no more than six physical register specifiers, two program
instructions, and two copy instructions to each core. (Copy instruc-
tions have a separate, dedicated queue in each core (Section 2.2.1).)
Restricting the SMU dispatch bandwidth in this way keeps the wiring
overhead manageable, lowers the number of required rename map
ports, and also helps achieve load balancing. In our evaluation (Sec-
tion 5), we accurately model the latency of the eight-stage rename
pipeline when running in fused mode, as well as the SMU dispatch
bandwidth restrictions.

The SMU uses the incoming architectural register specifiers and

the four free lists to steer up to eight instructions every pipeline cycle.
Each instruction is assigned to one of the cores via a modified version
of dependence based steering [14] that guarantees that each core is
assigned no more than two instructions. Copy instructions are also
created in this cycle.

In the next cycle, instructions are renamed. Since each core re-
ceives no more than two instructions and two copy instructions, each
rename map has only six read and eight write ports. The steering ta-
ble requires eight read and sixteen write ports (note that each steering
table entry contains only a single bit, and thus the overhead of multi-
porting this small table is relatively low). If a copy instruction cannot
be sent to a core due to bandwidth restrictions, renaming stops at the
offending instruction that cycle, and starts with the same instruction
next cycle, thereby draining crossbar links and guaranteeing forward
progress.

As in existing microprocessors, at commit time, any instruction
that renames an architectural register releases the physical register
holding the prior value (now obsolete). This is accomplished in core
fusion easily, by having each ROB send the register specifiers of com-
mitting instructions to the SMU. Register replicas, on the other hand,
can be disposed of more aggressively, provided there is no pending
consumer instruction in the same core. (Notice that the “true” copy
is readily available in another core.) We employ a well-known mech-
anism based on pending consumer counts [12, 13]. Naturally, the
counters must be backed up on every branch prediction. Luckily, in
core fusion these are small: four bits suffice to cover a core’s entire
instruction window (16 entries in our evaluation).

2.2 Back-end
Each core’s back-end is essentially quite typical: separate floating-
point and integer issue queues, a physical register file, functional
units, load/store queues, and a ROB. Each core has a private L1 d-
cache. L1 d-caches are connected via a split-transaction bus and are
kept coherent via a MESI-based protocol. When cores get fused,
back-end structures are co-ordinated to form a large virtual back-end
capable of consuming instructions at a rate of eight instructions per
cycle.

2.2.1 Collective Execution
Operand Crossbar
To support operand communication, a copy-out and a copy-in queue
are added to each core. Copy instructions wait in the copy-out queue
for their operands to become available, and once issued, they trans-
fer their source operand and destination physical register specifier to
a remote core. The operand crossbar is capable of supporting two
copy instructions per core, per cycle. In addition to copy instructions,
loads use the operand crossbar to deliver values to their destination
register (Section 2.2.2). In our evaluation (Section 5), we accurately
model latency and contention for the operand crossbar, and quantify
its impact on performance.

Wake-up and Selection
When copy instructions reach the consumer core, they are placed in
a FIFO copy-in queue. Each cycle, the scheduler considers the two
copy instructions at the head, along with the instructions in the con-
ventional issue queue. Once issued, copies wake up their dependent
instructions and update the physical register file, just as regular in-
structions do.

Reorder Buffer and Commit Support
Fused in-order retirement requires co-ordinating four ROBs to com-
mit in lockstep up to eight instructions per cycle. Instructions allocate
ROB entries locally at the end of fetch. If the fetch group contains
less than eight instructions, NOPs are allocated at the appropriate
cores to guarantee alignment (Section ?? quantifies the impact that
these “ROB bubbles” have on performance). Of course, on a pipeline
bubble, no ROB entries are allocated.

When commit is not blocked, each core commits two instructions
from the oldest fetch group every cycle. When one of the ROBs is
blocked, all other cores must also stop committing on time to en-
sure that fetch blocks are committed atomically in order. This is
accomplished by exchanging stall/resume signals across ROBs. To
accommodate the inevitable (but deterministic) communication de-



lay, each ROB is extended with a speculative head pointer in addi-
tion to the conventional head and tail pointers 6. Instructions always
pass through the speculative ROB head before they reach the actual
ROB head and commit. Instructions that are not ready to commit by
the time they reach the speculative ROB head stall immediately, and
send a “stall” signal to all other cores. Later, as they become ready,
they move past the speculative ROB head, and send a “resume” sig-
nal to the other cores. The number of ROB entries between the spec-
ulative head pointer and the actual head pointer is enough to cover
the communication latency across cores. This guarantees that ROB
stall/resume always take effect in a timely manner, enabling lockstep
in-order commit. In our experiments (Section 5), we set the commu-
nication latency to two cycles, and consequently the actual head is
separated from the speculative head by four instruction slots on each
core at all times.

2.2.2 Load/Store Queue Organization
Our scheme for handling loads and stores is conceptually similar to
clustered architectures [2, 5, 7, 10, 15]. However, while most propos-
als in clustered architectures choose a centralized L1 data cache or
distribute it based on bank assignment, we keep the private nature of
L1 caches, requiring only minimal modifications to the CMP cache
subsystem.

Instead, in fused mode, we adopt a banked-by-address load-store
queue (LSQ) implementation. This allows us to keep data coherent
without requiring cache flushes after dynamic reconfiguration, and to
support elegantly store forwarding and speculative loads. The core
that issues each load/store to the memory system is determined based
on effective addresses. The two bits that follow the block offset in
the effective address are used as the LSQ bank-ID to select one of the
four cores, and enough index bits to cover the L1 cache are allocated
from the remaining bits. The rest of the effective address and the
bank-ID are stored as a tag. Making the bank-ID bits part of the tag
is important to properly disambiguate cache lines regardless of the
configuration.

Effective addresses for loads and stores are generally not known
at the time they are renamed. This raises a problem, since at rename
time memory operations need to allocate LSQ entries from the core
that will eventually issue them to the memory system. We attack
this problem through LSQ bank prediction [2, 3]. Upon pre-decoding
loads and stores, each core accesses its bank predictor by using the
lower bits of the load/store PC. Bank predictions are sent to the SMU,
and the SMU steers each load and store to the predicted core. Each
core allocates load queue entries for the loads it receives. On stores,
the SMU also signals all cores to allocate dummy store queue en-
tries regardless of the bank prediction. Dummy store queue entries
guarantee in-order commit for store instructions by reserving place-
holders across all banks for store bank mispredictions. Upon effective
address calculation, remote cores with superfluous store queue dum-
mies are signaled to discard their entries (recycling these entries re-
quires a collapsing LSQ implementation). If a bank misprediction is
detected, the store is sent to the correct queue. Of course, these mes-
sages incur delays, which we model accurately in our experiments.

In the case of loads, if a bank misprediction is detected, the load
queue entry is recycled (LSQ collapse) and the load is sent to the
correct core. There, it allocates a load queue entry and resolves its
memory dependences locally. Notice that, as a consequence of bank
mispredictions, loads can allocate entries in the load queues out of
program order. Fortunately, this is not a problem, because load queue
entries are typically tagged by instruction age. However, there is a
danger of deadlock in cases where the mispredicted load is older than
all other loads in its (correct) bank and the load queue is full at the
time the load arrives at the consumer core. To prevent this situation,
loads search the load queue for older instructions when they cannot
allocate entries. If no such entry is found, a replay trap is taken, and
the load is steered to the right core. Otherwise, the load is buffered
until a free load queue entry becomes available.

Address banking of the LSQ also facilitates load speculation and
store forwarding. Since any load instruction is free of bank mispre-
dictions at the time it issues to the memory system, loads and stores
to the same address are guaranteed to be processed by the same core.

Moreover, because fetch is aligned in all cases, we can easily lever-
age per-core load wait tables (LWT) [9] along the lines of the Alpha
21264. At the time a load is fetched, if the load’s LWT entry bit is
set, the load will be forced to wait until all older stores in its (final)

core have executed (and all older dummy store queue entries in that
core have been dealt with).1

When running parallel applications, memory consistency must be
enforced regardless of the configuration. We assume relaxed con-
sistency models where special primitives like memory fences (weak
consistency) or acquire/release operations (release consistency) en-
force ordering constraints on ordinary memory operations. Without
loss of generality, we discuss the operation of memory fences below.
Acquire and release operations are handled similarly.

For the correct functioning of synchronization primitives in fused
mode, fences must be made visible to all load/store queues. We
achieve this by dispatching these operations to all the queues, but
having only the copy in the correct queue perform the actual syn-
chronization operation. The fence is considered complete once each
one of the local fences completes locally and all memory operations
preceding each fence commit. Local fence completion is signaled
to all cores through a one-bit interface in the portion of the operand
crossbar that connects the load-store queues.

3 DYNAMIC RECONFIGURATION
Our discussion thus far explains the operation of the cores in a
static fashion. This alone may improve performance significantly,
by choosing the CMP configuration most suitable for a particular
workload. However, support for dynamic reconfiguration to respond
to software changes (e.g., dynamic multiprogrammed environments
or serial/parallel regions in a partially parallelized application) can
greatly improve versatility, and thus performance.

In general, we envision run-time reconfiguration enabled through
a simple application interface. The application requests core fu-
sion/split actions through a pair of FUSE and SPLIT ISA instructions,
respectively. In most cases, these requests can be readily encapsu-
lated in conventional parallelizing macros or directives. FUSE and
SPLIT instructions are executed conditionally by hardware, based on
the value of an OS-visible control register that indicates which cores
within a fusion group are eligible for fusion. To enable core fusion,
the OS allocates either two or four of the cores in a fusion group
to the application when the application is context-switched in, and
annotates the group’s control register. If, at the time of a FUSE re-
quest, fusion is not possible (e.g., in cases where another application
is running on the other cores), the request is simply ignored. This
is possible because core fusion provides the same execution model
regardless of the configuration.

We now explain FUSE and SPLIT operations in the context of
alternating serial/parallel regions of a partially parallelized applica-
tion that follows a fork/join model (typical of OpenMP). Other uses
of these or other primitives (possibly involving OS scheduling deci-
sions) are left for future work.

FUSE operation. After completion of a parallel region, the applica-
tion may request cores to be fused to execute the upcoming sequen-
tial region. (Cores need not get fused on every parallel-to-sequential
region boundary: if the sequential region is not long enough to amor-
tize the cost of fusion, execution can continue without reconfiguration
on one of the small cores.) If fusion is not allowed at this time, the
FUSE instruction is turned into a NOP, and execution continues unin-
terrupted. Otherwise, all instructions following the FUSE instruction
are flushed; the FMU, SMU, and the i-caches are configured; and
the rename map on the core that commits the FUSE instruction is
transferred to the SMU. Data caches do not need any special actions
to be taken upon reconfigurations: the coherence protocol naturally
ensures correctness across configuration changes. Finally, the FMU
signals the i-caches to start fetching in fused mode from the instruc-
tion that follows the FUSE instruction in program order.

SPLIT operation. The application advises the fused group of an up-
coming parallel region using a SPLIT instruction. When the SPLIT
instruction commits, in-flight instructions are allowed to drain, and
enough copy instructions are generated to gather the architectural
state into core zero’s physical register file. When the transfer is com-
plete, the FMU and SMU are reconfigured, and core zero starts fetch-

1We prefer LWT’s simplicity over a store set predictor solution [4, 6]. Nev-
ertheless, load speculation in core fusion can also be implemented using store
set predictors [6], with a few changes that we describe in our WCED ’06 pa-
per [8].



Processor
Frequency 4.0 GHz
Fetch/issue/commit 2/2/2
Int/FP issue queues 16/16
ROB entries 48
Integer FUs 1×ALU 1×AGU 1×Br 1×Mul/Div
Floating-point FUs 1×ALU 1×Mul/Div
Int/FP registers 32+40 / 32+40 (Architectural+Rename)
Max. br. pred. rate 1 taken/cycle
Br. predictor Alpha 21264
Br. penalty 7 cycles minimum (14 cycles when fused)
Max. unresolved br. 12
BTB size 512 entries, direct mapped
RAS size 32 entries
Ld/St queue entries 12/12
Bank predictor 2K-entries
Memory Disambiguation Perfect
iL1/dL1 size 16 kB
iL1/dL1 block size 32B/32B
iL1/dL1 associativity DM/4-way
iL1/dL1 ports 1 / 2
iL1/dL1 round-trip 2/3 cycles (uncontended)
iL1/dL1 MSHR entries 8

Memory System
Coherence protocol MESI
Consistency model Release consistency
System bus transfer rate 32GB/s
Shared L2 4MB, 64B block size
Shared L2 associativity 8-way
Shared L2 banks 16
L2 MSHR entries 16/bank
L2 round-trip 32 cycles (uncontended)
Memory round-trip 320 cycles (uncontended)

Table 1: Baseline two-issue core and memory system parameters.

CoreFusion 8x2-issue
FineGrain-2i 9x2-issue
CoarseGrain-4i 4x4-issue
CoarseGrain-6i 2x6-issue
Asymmetric-4i 1x4-issue + 6x2-issue
Asymmetric-6i 1x6-issue + 4x2-issue

Table 2: Composition of the evaluated CMP architectures.

ing from the instruction that follows the SPLIT in program order. The
other cores remain available to the application (although the OS may
re-allocate them at any time after this point).

4 EXPERIMENTAL SETUP
4.1 Architecture
We evaluate the performance potential of core fusion by comparing it
against five static homogeneous and asymmetric CMP architectures.
As building blocks for these systems, we use two-, four-, and six-
issue out-of-order cores. Table 1 shows the microarchitectural config-
uration of the two-issue cores in our experiments. Four- and six-issue
cores have two and three times the amount of resources as each one of
the two-issue cores, respectively, except that first level caches, branch
predictor, and BTB are four times as large in the six-issue core (the
sizes of these structures are typically powers of two). Across differ-
ent configurations, we always maintain the same parameters for the
shared portion of the memory subsystem (system bus and lower levels
of the memory hierarchy). All configurations are clocked at the same
speed (this mainly favors the wide-issue cores). We conservatively
model core fusion’s fetch, operand, and commit communication la-
tencies to be equal to two cycles, and due to its wider links, we set the
latency of the rename communication to three cycles (which makes
the rename pipeline add up to eight cycles). The details regarding
core fusion latencies can be found in our WCED ’06 paper [8].

SPEC OpenMP Description Input set
SWIM-OMP Shallow water model MinneSpec-Large
EQUAKE-OMP Earthquake model MinneSpec-Large

NAS OpenMP
MG Multigrid Solver Class A

Table 3: Simulated parallel applications and their input sizes.

Since we explore an inherently area-constrained design space,
choosing the right number of large and small cores requires esti-
mating their relative areas. Details can be found in our WCED ’06
paper [8]. Table 2 details the number and type of cores used in
our studies for all architectures we model. Our core-fusion-enabled
CMP consists of eight two-issue cores. Two groups of four cores
can each be fused to synthesize two large cores on demand. For
our coarse-grain CMP baselines, we experiment with a CMP con-
sisting of two six-issue cores (CoarseGrain-6i) and another coarse-
grain CMP consisting of four four-issue cores (CoarseGrain-4i). We
also model an asymmetric CMP with one six-issue and four two-issue
cores (Asymmetric-6i), and another asymmetric CMP with one four-
issue and six two-issue cores (Asymmetric-4i). Finally, we model a
fine-grain CMP with nine two-issue cores (FineGrain-2i). The ninth
core is added to compensate for any optimism in the area estimates
for six- and four-issue cores, and for the area overhead of core fu-
sion. We have verified that all the parallel applications in the paper
(Section 4.2) use this ninth core effectively.

4.2 Applications
We derive our evolving workloads from existing applications by fol-
lowing a methodology that aims at mimicking an actual incremental
parallelization process. Specifically, we use Swim-OMP and Equake-
OMP from the SPEC OpenMP suite, and MG from the OpenMP ver-
sion of the NAS benchmarks to synthesize our evolving workloads.
These applications contain multiple parallel regions that exploit loop-
level parallelism [1]. We emulate the incremental parallelization pro-
cess by gradually transforming sequential regions into parallel re-
gions, obtaining more mature versions of the code at each turn. To do
this, we first run each application in single-threaded mode and pro-
file the run times of all regions in the program. We then create an
initial version of the application by turning on the parallelization for
the most significant region while keeping all other regions sequential.
We repeat this process until we reach the fully parallelized version,
turning on the parallelization of the next significant region at each
step along the process.

5 EVALUATION
Figure 7 compares the performance of all six CMP configurations on
our evolving workloads. Each graph shows the speedups obtained
by each architecture as applications evolve from sequential (stage
zero) to highly parallel (last stage). When running on the asymmet-
ric CMPs, we schedule the master thread on the large core so that
sequential regions are sped up. Parallel regions are executed on all
cores.2 We evaluate our proposal by applying dynamic core fusion
to fuse/split cores when running sequential/parallel regions, respec-
tively.

When applications are not parallelized (stage zero), exploiting ILP
is crucial to obtaining high performance. As a result, coarse-grain
CMPs, asymmetric CMPs and CoreFusion all enjoy speedups over
the fine-grain CMP. In this regime, performance is strictly a function
of the largest core on the chip. CoreFusion outperforms all but the
six-issue configurations, due to its ability to exploit high levels of
ILP.

In the intermediate stages, significant portions of the applications
are still sequential, and exploiting ILP is still crucial for getting opti-
mum performance. Asymmetric-6i’s monolithic core marginally out-
performs CoreFusion’s fused core, but as a result of dynamic fusion
and fission, CoreFusion enjoys a higher core count on parallel re-
gions, thereby exploiting higher levels of TLP. Asymmetric-4i has
two more cores than Asymmetric-6i, but the application does not

2We also experimented with running parallel regions on small cores only,
but found that the results were inferior.
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Figure 7: Speedup over stage zero run on FineGrain-2i.

yet support enough TLP to cover the performance hit with respect
to Asymmetric-6i’s six-issue core on sequential regions. Because of
the scarcity of TLP in this evolutionary stage, FineGrain-2i performs
worst among all architectures.

Eventually, enough effort is expended in parallelization to convert
each program into a highly parallel application. In MG, performance
is determined strictly by core count. FineGrain-2i obtains the best
speedup (6.7), followed immediately by CoreFusion (6.5). Architec-
tures that invest in ILP (Asymmetric-6i and CoarseGrain-6i) take a
significant performance hit (speedups of 4.5 and 2.7, respectively).
In Swim-OMP and Equake-OMP, CoreFusion still performs the best,
followed closely by the fine-grain CMP. This is because these ap-
plications, even at this parallelization stage, have sequential regions,
on which CoreFusion outperforms FineGrain-2i through dynamic fu-
sion. Note, however, that statically allocating a large core to obtain
speedup on these regions does not pay off, as evidenced by the lower
performance of Asymmetric-4i and -6i compared to CoreFusion. At-
tempting to exploit ILP in these regions is worthwhile only if it does
not adversely affect the exploitation of TLP.

In summary, performance differences between the best and the
worst architectures at any parallelization stage are high, and more-
over, the best architecture at one end of the evolutionary spectrum
performs worst at the other end. As applications evolve through the
incremental parallelization process, performance improves on all ap-
plications. Throughout this evolution, CoreFusion is the only archi-
tecture that consistently performs the best or rides close to the best
configuration. While all static architectures get “stuck” at some (dif-
ferent) point along the incremental parallelization process, core fu-
sion adapts to the changing demands of the evolving application and
obtains significantly higher overall performance.

6 CONCLUSIONS
In this paper, we have introduced a novel reconfigurable CMP archi-
tecture that we call core fusion, which allows relatively simple CMP
cores to dynamically fuse into larger, more powerful processors. The
goal is to accommodate software diversity gracefully, and to dynam-
ically adapt to changing demands by workloads. We have presented
a complete hardware solution to support core fusion. In particular,
we have described complexity-effective solutions for collective fetch,
rename, execution, cache access, and commit, that respect the funda-
mentally independent nature of the base cores. The result is a flexible
CMP architecture that can adapt to a diverse collection of software,
and that rewards incremental parallelization with higher performance
along the development curve. It does so without requiring higher soft-
ware complexity, a customized ISA, or specialized compiler support.
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