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Abstract

We overview CASL, the CoGenT Architecture Specification

Language, a mixed behavioral-structure architecture de-

scription language designed to facilitate fast prototyping

and tool generation for computer architectures with deep

pipelines and complicated timing. We show how CASL can

describe pipelines, dynamic information contexts, and con-

tention using the DLX/MIPS architecture as an example.

1 Introduction

Computer architecture has now embraced multiple instruc-

tion streams for the masses. Multi-core processors and

related strategies lead to much more complex systems—

implying the need for more complex and capable simula-

tors to explore and evaluate designs. Further, the speed of

evolution of architecture requires much more rapid devel-

opment of simulators and matching tools (such as compiler

back-ends). The field needs a framework that can model

these complex systems and produces, automatically, tools

that are efficient.

One of the most effective ways to describe and generate

an architectural simulator is to use of an architectural de-

scription language (ADL), a domain-specific language de-

signed to describe a target architecture’s behavior, timing,

and structure. Ideally, an ADL provides abstractions and

primitives that make descriptions more intuitive and com-

pact. It also removes the need to create tools using general-

purpose languages such as C++, which is more prone to

inaccuracies and errors because of its lower level of abstrac-

tion.

Current ADLs fall into three categories [12]: behavioral,

structural, and mixed. Our primary contribution here is a

detailed description of the design and novel features of the

new mixed ADL CASL, the CoGenT Architecture Spec-

ification Language. CASL aims to provide intuitive and
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Figure 1. The CoGenT Project

powerful means to describe current and future architectures

at a component level of abstraction, without resorting to a

general-purpose language to implement novel components.

CASL includes the following:

1. A component-oriented behavior and structure lan-

guage, with primitives and control structures designed to

capture common micro-architectural idioms.

2. The concept of strands, dynamic execution contexts

that traverse the structural model, e.g., instructions travers-

ing the pipeline, or requests to distributed memory.

3. A rich timing description facility, including the abil-

ity to describe contention, pipelining, and complex timing

without needing to resort to explicit signals as in hardware

description languages such as VHDL [4] or Verilog [16].

We proceed as follows: Section 2 provides an overview

of the CoGenT project and the role of CASL within it; Sec-

tion 3 describes the DLX architecture and explains how

CASL allows the specification author to describe pipelined

structures, dynamic information flow, and contention; Sec-

tion 4 describes related work, and Section 5 concludes.

2 Overview of CoGenT and CASL

CoGenT stands for Co-Generation of Tools, particularly

compilers and simulators. Compiler and simulator tools

for systems research are difficult to develop and coordinate

since each tool is complex in its own right, and both are

dependent on aspects of the target architecture. The Co-

GenT project (Figure 1) addresses this problem by provid-



ing two sets of components: multiple coordinated specifi-

cations that describe the target instruction set architecture

and micro-architecture; and tools that process these speci-

fications and produce compiler and simulator components

such as code generators, instruction schedulers, and simu-

lators at varying degrees of detail. Generating system tools

from the same descriptions ensures that they will always be

consistent, and since tool generation is fast and automatic,

CoGenT allows designers to explore more design space in

less time and reduces programmer-introduced errors.

Prior systems tend to use either a simple language, mak-

ing descriptions unwieldy, or an ADL augmented with

a complete general purpose language, rendering analy-

sis difficult. Instead, we provide multiple coordinated

ADLs, including: CISL, the CoGenT Instruction Speci-

fication Language [7, 8], which describes instruction for-

mats and behavioral semantics; and CASL, the CoGenT Ar-

chitecture Specification Language, which describes micro-

architectural structure, behavior, and timing. We focus here

on CASL. Being a mixed ADL, CASL contains three kinds

of constructs: structural elements in the form of a compo-

nent graph, where components contain an interface and an

implementation; behavioral elements similar to C or Java

functions (called actions in CASL) that describe the behav-

ior of the component; and timing elements that describe the

timing relationships between components and their actions.

We do not cover all CASL syntax here—interested readers

are directed to the CASL manual [17]. A more thorough

treatment of many of the issues covered in this paper can

also be can be found in [3]. Rather, we describe certain

advanced features of CASL, motivated by the DLX archi-

tecture as an example.

3 Modeling a Processor Using CASL

We will now use the MIPS/DLX architecture (DLX for

short) to introduce parts of the design of CASL. Even an

in-order architecture such as the DLX presents a number of

interesting modeling issues, particularly related to hazards,

pipeline structures, and contention.

3.1 Overview of the DLX architecture

DLX [10] is a general purpose processor adapted for ed-

ucational purposes from a MIPS [6] micro-architecture.

DLX has a single five-stage in-order integer pipeline with

a three-ported (two read, one write) register file, a forward-

ing network, and simple branch prediction. The stages in-

clude instruction fetch (IF), instruction decode (ID), ex-

ecute (EX), memory access (MEM), and register write-

back/commit (WB). Latches connect the stages to provide

storage between cycles.

EX WBMEM

IF/ID ID/EX EX/MEM MEM/WB

IF ID

L2/Mem

Regs
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(b)

(c) (c)(d) (d)

(d)(d)

ICache
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Figure 2. DLX and Memory Structure

We offer an abstract view of this pipeline in Figure 2. In

addition to the pipeline and register file, we include a sim-

ple memory hierarchy consisting of separate instruction and

data L1 caches and a unified L2/Memory system. We also

identify four different means of communication between

the different components (stages, latches, and memory el-

ements): conventional inter-stage communication (a), for-

warding logic (b), communication with the register file (c),

and communication with the memory hierarchy (d).

We use this example to illustrate how CASL supports

describing pipeline component structures, information flow

between components, and contention, in a succinct and in-

tuitive manner.

3.2 Pipeline Support for the DLX

While CASL’s features support simple forms of commu-

nication between components, it also provides support for

more complex parallel communication. One common form

is producer-consumer parallelism, i.e, pipelining, (a) in Fig-

ure 2. CASL implements pipeline support using two types

of elements: an extensible library of components that ease

describing pipeline connectivity, capacity, and functional-

ity; and a novel language construct called a strand that de-

scribes the control and routing of a related group of infor-

mation traversing the pipeline.

The CASL components that support pipelining are

stages, buffers, and connectors. Unlike conventional CASL

components, which have arbitrary interfaces that contain

simple (non-component) types, pipeline components ref-

erence other components in their connection lists, handle

strands, and must implement certain pre-defined interfaces.

A stage component gives the behavioral specification for

one or more stages of a pipeline. For example, the fetch

stage for a simple MIPS-style pipeline would contain be-

havioral code for fetching instruction words from the i-

cache. The only pre-defined action a stage must implement

is the visit() action, which performs the stage’s work.

Buffer components track strands as they move from stage

to stage. Each CASL strand, at any point in time, is held in
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Figure 3. DLX Pipeline Structure Using CASL Components

exactly one buffer. This is not a limitation on the power of

strands because strands can also produce and consume other

strands, so CASL can simulate strand splitting for applica-

tions such as predicated speculative execution. The simplest

implementation of a buffer is a latch, which can hold one

strand. Buffers can also possess more involved behavior

such as issue logic. Buffers must provide actions for query-

ing their available capacity and sending or receiving strands

from other pipeline elements.

Connection components provide detailed routing and

connection behavior between buffers and stages. Connec-

tions query the capacity of buffers and push or pull strands

through the stage servicing the buffer. Connections also can

express many-to-one and one-to-many connectivity. For ex-

ample, the issue stage in most multi-issue processors in-

volves routing from a single issue stage to multiple execute

stages’ reservation stations. In this case one uses a one-to-

many connector customized to the issue constraints of the

architecture.

Building a pipeline in CASL involves integrating these

three types of components into a structure that corresponds

closely to the modeled pipeline. We have found buffer-

stage-connector chains to be most useful for this. Con-

nectors drive the pipelined system: they pull strands out of

buffers, send them through stages, and dispatch them to the

buffers of the next stage.

Figure 3 shows an example pipeline using this pattern for

the DLX. We omit the forwarding and storage (e.g., regis-

ter) elements for clarity. This example has the five stages

mentioned previously, a buffer attached to the beginning of

the latter four stages, and a series of one-to-one (C1-1) con-

nectors joining the stages and buffers. Each stage except

for IF is preceded by a corresponding buffer that stores a

current or pending strand. The issue stage is a special case

because it generates strands, which do not exist in a buffer

until they are sent to the next stage; likewise, WB is special

in that strands die when they complete that stage.

While one can describe pipelines purely structurally

(connecting up the ports), CASL supports special, more

concise, notation, adapted from CASL timing annotations.

CASL has three operators for describing concurrency: se-

quential: a ; b (for “a runs before b”); parallel: a

|| b (for “a runs in parallel with b”); and pipelined:

b1:s1 -{c1-1}-> b2:s2, which indicates that con-

nector c1-1 joins stage s1 with pre-attached buffer b1 to

stage s2 with pre-attached buffer b2. Using these oper-

component DLX {

implementation:

Fetch IF;

Decode ID;

Execute EX;

Mem MEM;

WriteBack WB;

OneToOneConnector C1, C2, C3, C4;

Buffers B_ID, B_EX, B_MEM, B_WB;

action clock

<< IF -{C1}-> B_ID:ID -{C2}-> B_EX:EX

-{C3}-> B_MEM:MEM -> B_WB:WB >>

{ C1.pull(); }

}

Figure 4. Pipelines in CASL

ators, in conjunction with a variety of connectors, we can

describe arbitrary pipelines.

CASL code for the DLX pipeline appears in Figure 4.

One feature of CASL’s timing description facilities is that

one can attach timing annotations to actions. This exam-

ple declares the five stages, four buffers, and four connec-

tors for the pipeline, and connects them with pipeline no-

tation. Here the only code the components must execute is

the visit action, which models a clock tick by telling the

connector C1-1 between IF and ID to pull (i.e., generate) a

strand from IF and start the execution process. The rest of

execution is driven by the strands produced by IF. While we

have used generic buffers and connections for this example,

most examples require the use of custom buffer or connec-

tor behaviors to implement the semantics of the particular

pipeline.

CASL can accommodate multiple issue by using multi-

ple buffer visits, dynamic issue using connection routing,

pipelines with loops (one can use a component reference

an arbitrary number of times inside a pipeline), and arbi-

trary issue conditions such as alignment constraints, specific

issue slots for specific instruction types, and complicated

windowing schemes.

3.3 Dynamic Information Flow—Strands

An obvious issue for the pipeline of Figure 3 is how to rep-

resent the instructions that flow through the pipeline. Cor-

rect handling of instructions requires two elements: control

for the instructions (routing through the pipeline network)

and decoding, which places information such as register in-

dices and computed values under the control of the instruc-

tion. A strand is a structure that holds this information.

Re-examining Figure 2, there are multiple candidates for

strands. A clear choice is modeling each instruction as it



passes through the pipeline. Other candidates include mem-

ory operations, especially if the particular processor is be-

ing used in a shared-memory multiprocessor, and the for-

warding network. Each strand contains information partic-

ular to a dynamic element of the architecture, which we call

an info-set. For example, the info-set of the main pipeline

includes instruction information, such as opcode, registers

used, and intermediate results. Strands make it easier to

reason about and model a computer architecture by describ-

ing the characteristics of the information passing through it.

This balance between structural behavior and reactive (i.e.,

dynamically triggered) behavior was an important consid-

eration in the design of CASL.

A strand explicitly describes an info-set processed by an

architecture, such as an instruction, memory request, or in-

dependent and/or asynchronous action in the system. Un-

like the static structural elements of a CASL description,

strands can be created dynamically, destroyed, and trans-

ferred from component to component in CASL behavioral

code. Strands are similar to Java classes in that they contain

data and operations that can be accessed by other elements

(i.e., other CASL components), but they are more restricted

in their use. For example, a strand can be in only one “loca-

tion” (buffer, storage element, etc.) at a time—copying out

the strand means that the previous value is invalid. In ad-

dition, all strand data and operations are public by default,

since the primary aim is interaction with static components.

The main advantage of strands is that they address, us-

ing one construct, two major concerns of modeling dynamic

timing in an architecture: they encapsulate control infor-

mation, exploited by structural elements to route and pro-

cess the info-sets; and each strand models a particular re-

source request when determining structural hazards. This

gives CASL the best of both worlds: we specify static struc-

tural elements as black boxes in a component graph, and

separately describe the dynamic elements that traverse this

graph, assisting the structure in routing and processing the

elements.

3.3.1 Properties and Examples

Figure 5(a) shows an example strand definition for a DLX

instruction. This strand holds two read register indices and

one write index, along with raw representation of the in-

struction word. The decoder (Figure 5(b)) creates a strand

with new and populates the register indices for use down

the pipeline. We omit decoding logic, since decoders are

not typically written using CASL—they are generated from

CISL (our ISA language) descriptions. We idealize the is-

sue logic for brevity. Figure 5 (c) shows termination of a

strand using delete.

Each strand must implement the path action, which

specifies the strand’s routing and actions as it traverses the

strand DLXInst {

reg_index_t read_reg1;

reg_index_t read_reg2;

reg_index_t write_reg;

word_t inst_word;

...

action path() { ... }

}

(a)

action fetch { action writeback {

... ...

word_t raw_inst = ICache.fetch(PC); DLXInst inst

DLXInst inst = MEM_WB_Buffer.next();

= new DLXInst(raw_inst); delete(inst);

// fills in regs ...

decoder.decode(inst); }

...

}

(b) (c)

Figure 5. CASL Strand Operations

strand DLXInst

{ ...

action path

{ Fetch.visit();

Decode.visit();

Execute.visit();

Memory.visit();

Writeback.visit(); }

abstract action execute;

}

Figure 6. CASL Strand Paths

structural components. For example, an instruction strand

traversing a pipeline has a path action designating what

actions it requires in each stage. An integer instruction re-

quires execution on an integer unit, in addition to stages

such as memory and writeback. Describing a strand’s re-

quirements in this manner has the following advantages: it

allows the strand to choose the actions it needs from a com-

ponent as it passes through, facilitating the simulation of

heterogeneous strands that traverse the same path; and it

provides a natural way of choosing among multiple func-

tional units with the same operation set (e.g., two integer

pipes), since the path action denotes only the type of com-

ponents the strand interacts with, not the specific instances.

We provide an example of a path function for a basic

DLX instruction in Figure 6. This fills out the path action

in the previous figure. Here, DLXInst.path contains the

pertinent actions for the each stage that the strand traverses.

In this instance we assume that every stage has a visit ac-

tion implementing the functionality required by DLXInst.

Paths can also contain triggers for (“calls on”) other ac-

tions in the current strand or any superclass of the strand (all

CASL components and strands can use method overriding).

This allows a strand to choose its path at run time. CASL

supports this by using a limited form of dynamic subclass-

ing similar to roles [1].

Dynamic paths work as follows: the description writer

creates a superclass with the general path and the actions

that will be dynamically sub-classed. These actions can ei-



ther have no implementation, or some default functionality.

The actions must be included in the path description to be

available for subclassing. Once the strand is designed to be

subclassed, it can be transformed into a given subclass us-

ing casting syntax (e.g., inst = (DLXIntegerInst)

inst;). The dynamically subclassed strand subsequently

uses the subclass’s actions, and possesses the subclass’s

data fields.

Dynamic subclassing typically occurs in response to ad-

ditional information inferred about the strand. For example,

an instruction that has been decoded is an excellent candi-

date for dynamic subclassing, since now more information

is available within the strand that can be used for special-

ized processing or routing. This is how one would deal

with a pipeline with multiple execute paths, e.g., fixed- and

floating-point.

One final point to note about strands is how they inter-

act with the pipeline components of CASL. Buffers store

the strands and determine factors such as ordering and ca-

pacity. The combination of buffers and strands is CASL’s

preferred method of modeling structural hazards. Connec-

tors are responsible for movement through the system by

querying buffers and allowing eligible strands to proceed to

the correct destination buffer. The strands then traverse the

stage using the action mentioned in their path.

The actions within a path are all calls to stage actions.

When a strand is inside the code for a particular stage, it

is as if the strand called the stage with an implicit con-

text called this. In this way the strand data (and actions)

can be referred to within the stage code without forcing the

stage to identify a specific strand. However, all strands that

deal with a specific stage must conform to the same type (or

supertype).

3.4 Contention in the DLX

Any element in a storage unit is a candidate for side-effects

during a clock cycle. Most architectures ensure that these

side-effects possess some form of sequential consistency.

In a simulator, non-deterministic behavior is usually un-

desirable because it makes results more difficult to repro-

duce. While there are circumstances where conflicts and

contention are desirable, we do not want it to occur when it

is unwanted. CASL addresses these concerns by providing

language support for eliminating undesired contention. The

architect may define an order for the actions of a particular

component. When multiple actions are triggered during a

particular clock cycle, this order arbitrates between the ac-

tions in a straightforward and predictable manner.

Using contention in combination with strands, we can

model the other forms of communication in Figure 2 be-

yond pipelining. Forwarding (b) can modeled in two ways:

either standard inter-component messages (actions) are sent

between pipeline stages, or strands are spawned from the

memory and writeback stages whose plan encompasses an

execute stage action. Either way, the contention primitives

in CASL serve to arbitrate between the actions to ensure

that the semantics of forwarding are correct.

For example, given three actions visit,

forward mem, and forward wb implemented by

the execute stage component, one can set up arbitration

between them that dictates that forwarding actions take

place before visit if all three actions occur during the

same time interval (e.g., clock tick). The syntax for this

arbitration is (forward mem || forward wb);

visit, where || and ; have parallel and sequential

semantics as they do for pipelines. The two forwarding

actions do not depend on each other, so they can occur in

parallel.

This approach has the benefit of enforcing correct se-

mantics without requiring an explicit execution model such

as executing each pipeline stage in reverse order during each

clock tick. Since CASL does not assume a default execu-

tion model, this approach also frees the specification author

to use purely declarative descriptions of concurrency proto-

cols.

We can also model register communication (c) and uni-

fied L2 cache contention (d). In DLX, the register file can

be accessed by two strands (instructions) each cycle: read

in the decode stage and write in the writeback stage.

To model this activity correctly without resorting to phase-

level timing (that is an alternative), one only needs to im-

pose a write-before-read ordering for the read and write

actions of the register file component. These actions will

then be referenced as part of the respective stage code, and

the correct ordering results. Imposing the order L1 I-cache

access before L1 D-cache access functions similarly for L2

cache accesses.

We have shown how CASL provides a number of fea-

tures that facilitate a simple, declarative style of represent-

ing pipelines and contention that removes much of the con-

ceptual difficulty in describing such structures.

4 Related Work

While there are many structural and behavioral ADLs, it

is only recently that there has been substantial research

in mixed ADLs. Current mixed ADLs include EXPRES-

SION [2], LISA [11], Facile [15], MADL [13], ADL [9],

Pipe [5], and Liberty [18]. CASL is most closely related to

Liberty and Facile.

Comparing with Liberty, CASL’s structure and parame-

terization design is similar. However, CASL differs in the

following respects: it does not treat components as strict

black-boxes for inter-component analysis—its behavioral

language is much more integral; it provides explicit sup-



port for pipelines and timing annotations; it handles control

using strands instead of explicit control ports; and its de-

scriptions support generating compiler-related components.

Facile provides what could be considered a precursor

to strands in both its inference of dynamic simulation

code from a description and its pipeline memoization tech-

niques [14]. However, CASL’s techniques apply to any

dynamic element that appears in the architecture, not just

pipelined instructions.

Further advantages of CASL include: better and more

comprehensive tool support; expressing details of mod-

ern architectures, such as complex pipelines and timing;

and separate ISA specifications (syntax and semantics) in

CISL [8], keeping CASL specifications smaller and cleaner,

and simplifying generation of functional simulators and

compiler code generators.

5 Conclusions

We examined how our ADL CASL facilitates describ-

ing pipelines and contention. We also examined strands,

a CASL control abstraction that leverages features from

object-oriented languages such as dynamic subclassing.

These features provide compact means for describing in-

formation flow through pipelines, at the same time enabling

specialization of instructions to improve simulation perfor-

mance. Strands also serve as a convenient representation

of control information, and can be used in groups to model

structural hazards.

Future work on CASL includes completing a static anal-

ysis engine attached to the compiler front-end that takes

advantage of CASL’s extensive behavioral and timing fea-

tures. We also intend to generate compiler and simulator

components from CASL in conjunction with the other lan-

guages that comprise the CoGenT project.
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