
ParalleX: A Study of A New Parallel Computation Model

Guang R. Gao1, Thomas Sterling2,3, Rick Stevens4, Mark Hereld4, and Weirong Zhu1

1Department of Electrical and Computer Engineering 2Center for Advanced Computing Research

University of Delaware California Institute of Technology

{ggao,weirong}@capsl.udel.edu tron@cacr.caltech.edu

3Department of Computer Science 4Mathematics and Computer Science Division

Louisiana State University Argonne National Laboratory

tron@cct.lsu.edu {stevens,hereld}@mcs.anl.gov

Abstract

This paper proposes the study of a new computation
model that attempts to address the underlying sources of
performance degradation (e.g. latency, overhead, and star-
vation) and the difficulties of programmer productivity (e.g.
explicit locality management and scheduling, performance
tuning, fragmented memory, and synchronous global barri-
ers) to dramatically enhance the broad effectiveness of par-
allel processing for high end computing. In this paper, we
present the progress of our research on a parallel program-
ming and execution model - mainly, ParalleX. We describe
the functional elements of ParalleX, one such model being
explored as part of this project. We also report our progress
on the development and study of a subset of ParalleX - the
LITL-X at University of Delaware. We then present a novel
architecture model - Gilgamesh II - as a ParalleX process-
ing architecture. A design point study of Gilgamesh II and
the architecture concept strategy are presented.

1 Introduction

Historically as technology has advanced, computer ar-
chitecture has changed to exploit the new opportunities
offered and to compensate for the exposed weaknesses.
Alternative strategies for organizing the computation as
well as the architectural structures and system software
have been devised to provide governing semantic principles
upon which such architecture and programming models are
based. For more than a decade, the dominant model of com-
putation has been the communication sequential process or

1-4244-0910-1/07/$20.00 c©2007 IEEE.

more commonly the “message passing model” represented
by various implementations of MPI (e.g. MPICH-2, Open-
MPI) adopted because of its applicability to microprocessor
based MPPs and commodity clusters. Other models used
are multiple threads (e.g. OpenMP), vector, and SIMD, but
message passing is dominant. However, as semiconductor
technology has continued to evolve, both new opportunities
and new challenges have emerged demanding correspond-
ing improvements to architecture. Most pronounced is the
move to multicore components and the re-emergence of het-
erogeneous computing elements such as GPUs and Clear-
speed SIMD [2] attached processors. The IBM Cell ar-
chitecture embodies both heterogeneous and multicore el-
ements [6]. These exemplify but do not fully reflect the
increasing need for new programming methods and archi-
tecture structures to continue to fully benefit from Moore’s
Law. An important objective of this research project has
been the exploration and development of a possible new ex-
ecution model that will more readily employ the potential
capabilities of near term semiconductor technologies while
easing the programmer burden. Such an execution model
could lead to new programming models and languages, new
parallel computer architecture, and new supporting system
software.

In this paper, we present the progress of our research
on a parallel programming and execution model - mainly,
ParalleX. We describes the functional elements of ParalleX,
one such model being explored as part of this project. Par-
alleX principal elements are discussed, including locality,
global name space, multithreading, parcels, local control
objects, percolation, echo, and parallel processes. We also
report our progress on the development and study of a sub-
set of ParalleX - the LITL-X at University of Delaware. We
then present a novel architecture model - Gilgamesh II - as

a ParalleX processing architecture. A design point study
of Gilgamesh II is presented and the architecture concept
strategy is presented.

2 Parallel Programming Execution Model:
ParalleX and LITL-X

This section discusses the specific requirements for a
new execution model and describes the functional elements
of ParalleX, one such model being explored by Sterling’s
group at LSU as part of this project. We also describe LITL-
X a subset of ParalleX that is being developed and studied
at Gao’s group at Delaware.

2.1 Requirements for a New Model of
Computation

A new model of computation is required to meet the
challenges of emerging technologies. Such a model must
serve as a discipline to govern future scalable system archi-
tectures, programming methods, and runtime and operating
system software. Among its most important requirements
is to address the dominant factors impeding significant im-
provements to efficiency. Among these are latency, over-
head, starvation, resource contention, and programmability.
Latency is the time delay, measured in processor clock cy-
cles required to access remote data or services such as local
main memory or remote nodes. Overhead is the critical path
work required to manage parallel physical resources and
concurrent abstract tasks. Overhead can determine the scal-
ability of a system and the minimum granularity of program
tasks that can be effectively exploited. Starvation is the lack
of work and therefore the idle cycles experienced by an ex-
ecution site (e.g. processor core) caused either due to inad-
equate program parallelism or due to poor load balancing.
Contention for shared resources causes delays while one re-
questing execution site is blocked by another accessing the
same needed resource. These can include shared communi-
cation channels, common memory banks, or other mutually
accessible resource. Programmability relates to program-
mer productivity. Systems that require direct and explicit
resource management by the programmer to achieve opti-
mized performance can be much more difficult to use than
those machines with mechanisms more naturally suited to
effectively exploit the function elements thus reducing pro-
grammer intervention. All of these efficiency factors can
benefit from improved programming models and parallel
architecture requiring a model of computation that incorpo-
rates the means and facilitates the methods to make effective
use of the critical resources.

Other demands on the execution model include such
practical concerns as power consumption, reliability, and

the size of the large scale machines. While these would ap-
pear to be properties of the bulk hardware, the manner of
its use is dictated by the execution model and therefore for
a given sustained performance can be significantly affected
by it. A new computational model is also needed to move
towards a new balance of resources. To devise structures
and coordinate computing around the realistic precepts de-
mands a model of computing quite distinct from those con-
ventionally employed by the mainstream today. This will
enable the exploitation of the true performance opportu-
nities yielded by technology and support architecture ad-
vances.

The following are considered essential characteristics of
a future model of computation:

• System wide global name spaces both for data and ac-
tive tasks with efficient address translation and com-
munication routing in the presence of dynamic object
distribution,

• Rich parallelism semantics and granularity to exploit
a diversity of forms to make available the million to
billion way parallelism that will be required of near
nanoscale systems by the end of the next decade,

• Direct support for lightweight processing of irregular
time-varying sparse data structure parallelism such as
that for trees (N-body codes), directed graphs (adaptive
mesh refinement, semantic nets), and particle in cell
(magneto hydro dynamics),

• Intrinsic mechanisms for automatic latency hiding, to
mitigate this major source of performance degradation
due to blocking on completion of remote actions and
the ensuing idle times experienced,

• Incorporation of low overhead mechanisms for manag-
ing global system parallelism including synchroniza-
tion, scheduling, data movement, and load balancing,
and

• Affinity semantics to establish relationships that would
lead to locality opportunities through both compile
time and runtime techniques.

Addressing these challenges through new strategies and
structures of computation would remove the reliance on
manual, pains taking, and error prone direct user interven-
tion including direct control of hardware mechanisms, di-
rect management and allocation of hardware resources, and
direct choreographing of physical data and task locality. As
a consequence, efficiency and performance scaling could be
dramatically higher, systems smaller and lower power, and
programming dramatically easier. Towards this end, Par-
alleX is being devised to provide an alternative framework
from conventional methods and currently addresses many
(but not all) of these requirements.

2

2.2 Principal Elements of ParalleX

An execution model is neither a programming model (al-
though it influences it) nor a virtual machine (although it is
often treated as such) but rather a set of guiding principles
that organize the computation and govern the relationships
between the vertical layers of the system stack (i.e. applica-
tion, language, compiler, runtime system, operating system,
system architecture, core architecture, and hardware mech-
anisms). An execution model specifies referents, their in-
terrelationships and actions that can be performed on them.
In so doing, it defines the semantics of state objects, func-
tions, parallel flow control, and distributed interactions. Cu-
riously, an execution model intentionally leaves some im-
plementation policies unspecified although defining their
boundary conditions. Technology, structure, and mecha-
nism are all left open to permit multiple realizations of the
model depending on engineering constraints. Even policies
of scheduling and dispatch are incomplete to enable opti-
mizations through disparate means. Such a model should
have efficient realizations on a range of system classes from
conventional MPPs to unique new designs of truly paral-
lel computer architectures. Such a model enables reasoning
about the decision chain through the vertical striation for
resource scheduling and action performing. It influences
design decisions for programming languages and computer
architecture as well as the intervening system software. Par-
alleX is an experimental execution model, synthesizing a
number of important concepts with prior art in a unique se-
mantic ensemble to address many of the critical challenges
expressed above.

ParalleX is an asynchronous parallel computing model
with a partitioned global address space. It exploits a
split-phase multithreaded transaction distributed computing
methodology that decouples the computation and communi-
cation for overlapping and moves the work to the data when
this is preferable to just moving the data to the work as is
conventionally done. The message driven paradigm com-
bined with multithreading and an advanced prestaging tech-
nique referred to as “percolation” provides intrinsic latency
hiding at multiple levels within the system. Lightweight
synchronization constructs, when implemented efficiently,
deliver a diversity of forms and scale of parallelism. The
global name space permits efficient direct manipulation of
data and task objects for dynamic control of abstract and
physical resources as well as ease of user programming.
The combination of message driven multi threaded execu-
tion with lightweight synchronization offers a powerful se-
mantic execution framework and an alternative to the con-
ventional communicating sequential processes method that
has dominated much of the last two decades. The basic se-
mantic mechanisms of ParalleX are briefly described below:

Locality: Like many models dealing with distributed com-

puting, ParalleX recognizes a local physical domain.
In the case of ParalleX, it is the locus of resources
that can be guaranteed to operate synchronously and
for which hardware can guarantee compound atomic
operations on local data elements. While a typical ex-
ample may be a conventional MPP node, it could just
as easily be a small part of a single chip as suggested
by the Gilgamesh-II architecture discussed in the next
section. Within a locality, all functionality is bounded
in space and time permitting scheduling strategies to
be applied and certain pathological cases like race con-
ditions to be precluded.

Global name space: Similar to the emerging class of
PGAS programming models (e.g. CAF [11], Tita-
nium [14], UPC [1]) and certain parallel architectures
(e.g. Cray T3E, SGI Origin), it allows any first class
object to be remotely identified efficiently through a
hierarchical naming structure. In ParalleX, actions as
well as data are first class entities to permit direct con-
trol of the computation by the computation. Also,
hardware resources have their own names (typed) and
therefore can be referenced to a limited degree by the
software, again to support direct manipulation of the
relationship between abstract and physical resources
both by the runtime system and the hardware archi-
tecture when supported.

Multithreaded: A thread is a partially ordered set of in-
terrelated basic operations. In ParalleX, a thread is
ephemeral and serves a single locality. More than one
thread may be active concurrently within the domain of
a given locality. Threads can be near fine grain and are
not limited to an SPMD model with the same thread
operating on different localities. Internal operations of
threads are represented as static dataflow ordering but
may be mapped in to a single sequential instruction
stream through the compiler back end. Threads can
suspend or terminate when a remote access is required.
If suspending, a local control object (see below) is cre-
ated from its state. If terminating, a parcel (see below)
is constructed and dispatched to the destination remote
data where a new thread is invoked thus moving the
work, in essence, to the data.

Parcels: ParalleX employs a message driven paradigm for
asynchronous distributed operation. A parcel includes
a destination virtual address of a remote target object
and an action specifier defining a task to be applied to
that object. Additional argument values can be carried
by the parcel to move prior state to the site of the in-
voked thread execution. Parcels differ from other such
constructs such as active messages in that it also carries
a “continuation specifier” that defines what happens

3

after the specified action is completed. This allows the
locus of control to migrate across the distributed sys-
tem. Message-driven computing through parcels al-
lows physical resources (execution locality) to operate
via a work queue model. It largely circumvents idle
cycles due to blocking on remote access delays.

Local Control Objects (LCO): A rich set of synchroniza-
tion primitives is provided to facilitate lightweight con-
trol and exploit a diversity of parallelism. LCOs elim-
inate most uses of global barriers greatly freeing the
dynamic adaptive flexibility of parallel processing and
relaxing the over constraining operation imposed by
barriers. Dataflow synchronization, futures, and meta-
threads are examples of the kind of LCOs that can
be employed. They can standalone or be incorpo-
rated in larger data structures to support coordinated
multi access to shared global data structures like di-
rected graphs for knowledge management. Dataflow
constructs allow true asynchronous value oriented flow
control determined at compile time. Futures permit
anonymous producer-consumer computing. “Depleted
threads” (our term) provide a kind of temporary state
storage for suspended threads.

Percolation: ParalleX provides a mechanism for moving
work (both state and task descriptions) to unused parts
of the system through a mechanism referred to (by us)
as “Percolation” which was devised as a latency hiding
mechanism as well. For a precious resource, overhead
and latency can greatly degrade system efficiency. Per-
colation (developed by Sterling and Gao as part of
the HTMT Project) is a workflow strategy that em-
ploys ancillary mechanisms to prestage data and tasks
in high speed memory near the high cost compute el-
ements when a task is to be performed. This is a vari-
ation of parcels but used with hardware as the target
rather than abstract data objects. Prefetching is also a
form of prestaging but performed by the compute el-
ement itself, thus imposing the overhead burden, and
possibly the impact of latency, on it as well.

Echo: ParalleX does not assume cache coherency outside
of the domain of the locality even though it has a global
name space. When a writable variable is to be used by
many separate execution points during the same tem-
poral interval, ParalleX may assert a copy semantics
called (again by us) “echo”. This construct identifies
the tree of equivalent locations all of which are to be
operated upon as if a single value. It is inspired by
location consistency (developed by Gao), although it
employs a different model. Echo is a split phase op-
eration. Using it requires that a thread defer com-
mitting side effects until it gets an acknowledgement

that the value it used is the current one. This permits
overlap between coherency verification and continued
computation with the latest known value, thus reduc-
ing the apparent latency and increasing the available
parallelism.

Parallel Processes: ParalleX differs from conventional
distributed computing languages in that the notion of
parallel processes is not just that there may be multiple
processes being performed concurrently, but rather that
each process may have many parts, either subprocesses
or threads, running concurrently (or in parallel) as well
and distributed across many execution sites. Parallel
Processes can be object oriented in that once instanti-
ated they can have additional messages incident upon
them invoking methods to create new instances in the
form of threads (single locality) or processes (multiple
localities).

2.3 LITL-X: A Subset of Parallel-X On A
Cellular Parallel Computer Architec-
ture

As a part of our effort in studying the principles out-
lined in ParalleX in the previous section, we have moved
on studying LITL-X - a subset of ParalleX - through a pro-
totype design and implementation effort at University of
Delaware. To be more concrete, We are working on a pro-
totype programming API, LITL-X (pronounced “little-X”)
(previously under the nick name Latency Intrinsic-Tolerant
Language), which provides the application programmers
with a powerful set of semantic constructs to organize par-
allel computations in a way that hides/manages latency and
limits the effects of overhead. This is quite different from
locality management, although the intent of both strategies
is to minimize the effect of latency on the efficiency of com-
putation. Locality management attempts to avoid latency
events by aggregating data for local computation and reduc-
ing large message communications. Latency management
attempts to hide latency by overlapping communications
with computation. A number of experimental languages ex-
hibiting these attributes, at least to some degree, have been
developed (e.g. Split-C [9], EARTH-C [7], SISAL [10], and
UPC [1]).

A version of LITL-X will be developed by extending
the TNT - a courase-grain thread layer as described else-
where [3]. Under LITL-X, we are adding the following
classes of parallel constructs to TNT for latency tolerance
and data movement overhead management:

• Extend the thread model with the ability to launch and
manage asynchronous calls, a feature that has been
studied in the past at Delaware (under the EARTH
model [13]) or elsewhere such as Cilk [4].

4

• Percolation [8] of program instruction blocks and data
at the site of the intended computation, to eliminate
waiting for remote accesses, which are determined at
run time prior to actual block execution.

• Synchronization constructs for data-flow style opera-
tions, leveraging our past studies on EARTH [13].

• Atomic sections [12], a parallel programming construct
that can simplify the use of fine-grained synchroniza-
tion, while delivering scalable parallelism by using
a weak memory consistency model, such as location
consistency [5].

LITL-X is not intended as a final programming language
for end users, but rather a logical testbed to prototype a set
of promising concepts and to test their impact on system
performance and efficiency.

3 Gilgamesh II: Towards a New ParalleX
Processing Architecture

While ParalleX may be able to support computing on
conventional platforms with superior operation for some
classes of problems, one of its strengths is that it suggests
innovative parallel computer architectures that may make
exceptionally good use of future semiconductor technology
through the implementation of execution elements designed
explicitly for low power and parallel cooperative execution.
As part of this and other ongoing projects, a point design,
Gilgamesh II, is being devised and evaluated, in part, to val-
idate the ParalleX execution model. Here the basic concept
of the Gilgamesh parallel architecture point design is de-
scribed.

3.1 Design Point Technology

It is unlikely that any truly innovative ideas will find their
way in to supercomputers of the next few years for the sim-
ple reason that the design cycle of systems can be as long as
7 years and routinely a major vendor will have two design
generations underway and overlapped at the same time. For
this reason, a longer timeline is assumed and a technology
target date of 2020 is selected.

3.2 Architecture Concept Strategy

The concepts of Gilgamesh II architecture reflect the re-
quirements described above and the ParalleX model of com-
putation. It strives to align supercomputer architecture with
the cost imperatives implicit in the technology evolution.
ALUs should become ubiquitous and operated at high avail-
ability rather than utilization to support other more precious

resources. Memory access latency should be minimized and
then hidden to achieve the highest memory throughput pos-
sible for a given application. System performance is likely
to be limited by memory capacity and system wide commu-
nications bandwidth and latency. Architecture should ad-
dress these key challenges.

ParalleX is the execution model around which the Gil-
gamesh architecture design point is derived. The architec-
ture incorporates hardware structures to support most of the
mechanisms described before to minimize overhead, max-
imize parallelism, and provide scalability while bounding
power consumption. It uses the message-driven split-phase
multithreaded transaction processing paradigm for latency
hiding and exploiting of near fine grain parallelism through
the use of in-memory synchronization objects. As shown
in Figure 1, the architecture is heterogeneous with two
computing structures designed to operate best at the two
modalities of operation determined by degree of temporal
locality. At high temporal locality (where cache hit rates
would be highest on conventional processors) a streaming
architecture based on dataflow control concentrates many
ALUs interconnected via local registers and 4-way mul-
tiplexers to provide high operation count for modest data
rates. At low (or no) temporal locality (where cache hit rates
would be very poor) an advanced Processor in Memory ar-
chitecture called “MIND” has been developed to provide
short latencies and very high memory bandwidth with in-
memory threads. Like ParalleX, the architecture provides
hardware support including address translation for a global
name space without cache coherence and in support of the
Echo copy semantics. A single building block element is
used to build up this highly parallel system. A peak per-
formance in excess of 1 Exaflops is achievable with 100K
chips. Each Gilgamesh chip is a heterogeneous multicore
subsystem with a dataflow accelerator and 16 PIM mod-
ules, each with 32 MIND nodes. Each chip is capable of
approximately 10 Teraflops although the theoretical peak is
substantially higher. While the main memory of the system
is provided by the MIND modules, a DRAM backing store
referred to (by us) as the “Penultimate Store” is included
on an additional 100K chips for a total memory storage of 4
Petabytes. The system is assumed to be connected by the in-
novative Data Vortex network (invented by Coke Reed, In-
teractics Holding). This design point is under investigation
as one possible future architecture exploiting the advanced
methods provided by the ParalleX execution model.

4 Acknowledgments

We acknowledge the support from the National Science
Foundation (CNS-0509332) and the U.S. Dept. of En-
ergy under Contract DE- AC02-06CH11357, IBM, ETI, and
other government sponsors. We would also like to acknowl-

5

Figure 1. Gilgamesh II: A New ParalleX Processing Architecture

edge other members at the CAPSL group, who provide a
stimulus environment for scientific discussions and collab-
orations.

References

[1] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick,
E. Brooks, and K. Warren. Introduction to upc and language
specification. CCS-TR-99-157, May 13 1999.

[2] ClearSpeed. ClearSpeed CSX600. http://www.
clearspeed.com/.

[3] J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. TiNy Threads:
A thread virtual machine for the Cyclops64 cellular architec-
ture. In Fifth Workshop on Massively Parallel Processing,
Denver, Colorado, USA, April 2005.

[4] M. Frigo, C. E. Leiserson, and K. H. Randall. The imple-
mentation of the Cilk-5 multithreaded language. In Proceed-
ings of the ACM SIGPLAN 1998 Conference on Program-
ming Language Design and Implementation, 1998.

[5] G. R. Gao and V. Sarkar. Location consistency, a new mem-
ory model and cache consistency protocol. IEEE Transac-
tions on Computers, 49(8):798–813, August 2000.

[6] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins,
Y. Watanabe, and T. Yamazaki. Synergistic processing in
Cell’s multicore architecture. IEEE Micro, 26(2):10–24,
2006.

[7] L. J. Hendren, X. Tang, Y. Zhu, G. R. Gao, X. Xue, H. Cai,
and P. Ouellet. Compiling C for the EARTH multithreaded
architecture. In Proceedings of the 1996 Conference on Par-
allel Architectures and Compilation Techniques (PACT ’96),
pages 12–23, Boston, Massachusetts, October 1996.

[8] A. Jacquet, V. Janot, R. Govindarajan, C. Leung, G. Gao,
and T. Sterling. Executable performance model and eval-
uation of high performance architectures with percolation.
Technical Report 43, Newark, DE, Nov. 2002.

[9] A. Krishnamoorthy, D. Culler, A. Dusseau, S. Goldstein,
S. Lumetta, T. von Eicken, and K. Yelick. Parallel Program-
ming in Split-C. In Supercomputing ’93 Proceedings, pages
262–273. IEEE Computer Society Press, November 1993.

[10] J. McGraw, S. Skedzielewski, S. Allan, O. Oldehoeft,
J. Glauert, C. Kirkham, B. Noyce, and R. Thomas. SISAL:
Streams and iteration in a single assignment language, lan-
guage reference manual version 1.2. Lawrence-Livermore-
National-Laboratory, Mar. 1985.

[11] J. Reid. Co-array Fortran for full and sparse matrices. Lec-
ture Notes in Computer Science, 2367, 2002.

[12] V. Sarkar and G. R. Gao. Analyzable atomic sections: Inte-
grating fine-grained synchronization and weak consistency
models for scalable parallelism. CAPSL Technical Memo
52, Feb 9th 2004.

[13] K. B. Theobald. EARTH: An Efficient Architecture for Run-
ning Threads. PhD thesis, May 1999.

[14] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Li-
blit, A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay,
P. Colella, et al. Titanium: A high-performance Java dialect.
Concurrency Practice and Experience, 10(11-13):825–836,
1998.

6

