
Efficient Batch Job Scheduling in Grids using Cellular Memetic Algorithms

Fatos Xhafa
Dept. de Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya
C/Jordi Girona 1-3, 08034 Barcelona, Spain

fatos@lsi.upc.edu

Enrique Alba and Bernabé Dorronsoro
Dpto. de Lenguajes y Ciencias de la Computación

E.T.S.I. Informática
Campus de Teatinos, Málaga - 29071, Spain

{eat,bernabe}@lcc.uma.es

Abstract

Computational Grids are an important emerging
paradigm for large-scale distributed computing. As Grid
systems become more wide-spread, techniques for effi-
ciently exploiting the large amount of Grid computing re-
sources become increasingly indispensable. A key aspect
in order to benefit from these resources is the scheduling of
jobs to Grid resources. Due to the complex nature of Grid
systems, the design of efficient Grid schedulers becomes
challenging since such schedulers have to be able to opti-
mize many conflicting criteria in very short periods of time.
In this work we exploit the capabilities of Cellular Memetic
Algorithms (cMAs) for obtaining efficient batch schedulers
for Grid systems. A careful design of the cMA methods and
operators for the problem yielded to an efficient and robust
implementation. Our experimental study, based on a known
static benchmark for the problem, shows that this heuris-
tic approach is able to deliver very high quality planning
of jobs to Grid nodes and thus it can be used to design
efficient dynamic schedulers for real Grid systems. Such
dynamic schedulers can be obtained by running the cMA-
based scheduler in batch mode for a very short time to
schedule jobs arriving to the system since the last activa-
tion of the cMA scheduler.

1. Introduction

One of the main motivations of the Grid computing
paradigm has been the computational need for solving many
complex problems from science, engineering, and business
such as hard combinatorial optimization problems, protein
folding, financial modelling, etc. [17]. Since the early def-
initions of Computational Grids by Foster and other re-
searchers [12, 13], a fast development has taken place lead-
ing to better understanding of the Grid issues as well as
the development of Grid infrastructures and middleware.

Nowadays, Grid computing is a common approach in the
development of large scale distributed applications from
academia and industry. Early successful applications of this
paradigm are NetSolve [9], and applications from Meta-
Neos Project such as stochastic programming and optimiza-
tion [18, 20], which used the enormous computing power of
computational grids.

One key issue in Computational Grids is the allocation
of jobs (applications) to Grid resources. The resource al-
location problem is known to be computationally hard as it
is a generalization of the standard scheduling problem. In
fact, due to the complex nature of Computational Grids, job
scheduling is much more difficult than its standard version
for sequential or LAN computation environments. Some of
the features of the Computational Grids that make the prob-
lem challenging are the high degree of heterogeneity of re-
sources, their connection with heterogenous networks, the
high degree of dynamics, the large scale of the problem re-
garding number of jobs and resources, and other features re-
lated to existing local schedulers, policies on resources, etc.

Many approaches for scheduling in Grid applications
use queuing systems or ad hoc schedulers that use spe-
cific knowledge of the underlying grid infrastructure to
achieve an efficient resource allocation (e.g. Condor-G,
Nimrod/G) [1, 14]. However, due to the dynamics and
large-scale of Grids, these approaches cannot deal with the
complexity of the problem. For instance, researchers from
MetaNeos Project reported that for solving the difficult in-
stance Nug30 of the Quadratic Assignment Problem, a
queue of thousands of pending jobs had to be managed for
a grid of roughly 1000 machines. Moreover, most of cur-
rent approaches try to optimize the throughput of the sys-
tem through the minimization of the makespan. In a global
computing environment, however, other objectives must be
accomplished such as flowtime, which is an indicator of the
QoS of the system. In fact, job scheduling in Computa-
tional Grids is multi-objective in its general formulation and
therefore optimization approaches that could tackle many
conflicting objectives are imperative.

1-4244-0910-1/07/$20.00 ©2007 IEEE

Meta-heuristic approaches have shown their effective-
ness for a wide variety of hard combinatorial problems
and also for multi-objective optimization problems. These
approaches are in fact the best choice in practice and
hence such approaches have already started to be exam-
ined. Among these approaches, population based heuris-
tics, such as Genetic Algorithms (GAs), are reported for
the job scheduling problem [1, 8, 10, 19, 21]. In this
work we address the use of Cellular Memetic Algorithms
(cMAs) [2, 3, 4, 5, 15] for efficiently scheduling jobs to
Grid resources. cMAs are population-based algorithms that
maintain a structured population as opposed to GAs or MAs
of unstructured population. Research on cMAs has shown
that, due to the structured population, this family of algo-
rithms is able to better control the tradeoff between the ex-
ploitation and exploration of the solution space with respect
to other non-structured algorithms. It should be noted that
this feature is very important if high quality solutions are
to be found in a very short time. This is precisely the case
of the job scheduling in Computational Grids whose highly
dynamic nature makes indispensable the use of schedulers
that would be able to deliver high quality planning of jobs to
resources very fast in order to deal with the changes of the
Grid. On the other hand, population-based heuristics are
potentially good also for solving complex problems in the
long run providing, for many problems, near optimal solu-
tions. This is another interesting feature to explore regard-
ing the use of cMAs for the job scheduling problem. The
evidence reported in the literature that cMAs are capable to
maintain a high diversity of the population in many genera-
tions suggests that cMAs could be appropriate for schedul-
ing jobs that periodically arrive in the Grid system since in
this case the Grid scheduler would dispose longer intervals
of time to compute the planning of jobs to Grid resources.
Finally, cMAs are used here to solve the bi-objective case of
the job scheduling, namely makespan and flowtime are si-
multaneously optimized. The proposed algorithm has been
tested using a benchmark of instances proposed by Braun et
al. [7], and its performance is contrasted to the performance
of other population-based approaches for the problem such
as the GA implementation of Braun et al. [7], a GA imple-
mentation by Carretero and Xhafa [10] and a Struggle GA
by Xhafa [21]. Moreover, we studied the robustness of our
cMA implementation since robustness is a desired property
of Grid schedulers, which are very changing in nature. Be-
cause the cMA scheduler is able to deliver very high quality
planning of jobs to Grid nodes, it can be used to design ef-
ficient dynamic schedulers for real Grid systems. Such dy-
namic schedulers are obtained by running the cMA-based
scheduler in batch mode for a very short time to schedule
jobs arriving in the systems since the last activation of the
cMA scheduler.

The paper is organized as follows. We give in Section 2
a description of the job scheduling in computational grids.
The cMAs and their particularization for job scheduling in
Grids are given in Section 3. In Section 4 we give the values
of parameters obtained from the tuning process. Some com-
putational results as well as their evaluation are presented in
Section 5. We end in Section 6 with some conclusions.

2. Problem description

Job scheduling in Computational Grids is a family of
problems that capture most important needs of Grid applica-
tions for efficiently allocating jobs to resources in a global,
heterogenous, and dynamic environment. Therefore, sev-
eral versions of the problem can be formulated according
to the needs of such applications. In this work we consider
the version of the problem that arises quite frequently in pa-
rameter sweep applications, such as Monte-Carlo simula-
tions [11]. In these applications, many jobs with almost no
interdependencies are generated and submitted to the Grid
system. In fact, more generally, the scenario in which the
submission of independent jobs to a Grid system is quite
natural given that Grid users independently submit their
jobs or applications to the Grid system and expect an ef-
ficient allocation of their jobs/applications. We notice that
the efficiency means that we are interested to allocate jobs
as fast as possible and to optimize two conflicting criteria:
makespan and flowtime. These two optimization criteria are
among the most important of a grid system. Indeed, for a
Grid system, makespan measures the productivity (through-
put) of the system and the flowtime measures its QoS.

In our scenario, jobs are originated from different
users/applications, have to be completed in unique resource
unless it drops from the Grid due to its dynamic environ-
ment (non-preemptive mode), are independent of each other
and could have their hardware and/or software requirements
over resources. On the other hand, resources could dynam-
ically be added/dropped from the Grid, can process one job
at a time, and have their own computing characteristics re-
garding consistency of computing. More precisely, we use
the Expected Time to Compute (ETC) model by Braun et
al. [7] to formalize the instance definition of the problem as
follows:

• A number of independent (user/application) jobs to be
scheduled.

• A number of heterogeneous machines candidates to
participate in the planning.

• The workload of each job (in millions of instructions).

• The computing capacity of each machine (in mips).

• Ready time readym indicates when machine m will
have finished the previously assigned jobs.

• The Expected Time to Compute (ETC) matrix
(nb jobs × nb machines) in which ETC[i][j] is the
expected execution time of job i in machine j.

Optimization criteria. We consider the job scheduling
as a bi-objective optimization problem, in which both
makespan and flowtime are simultaneously minimized.
These criteria are defined as follows:

• Makespan (the finishing time of latest job) defined as
minS max{Fj : j ∈ Jobs},

• Flowtime (the sum of finishing times of jobs), that is,
minS

∑
j∈Jobs Fj ,

where Fj is the finishing time of job j in schedule S.
For a given a schedule, it is quite useful to define the

completion time of a machine which indicates the time in
which the machine will finalize the processing of the previ-
ous assigned jobs as well as of those already planned for the
machine. Formally, for a machine m and a schedule S, the
completion time of m is defined as follows:

completion[m] = readym +
∑

j∈S−1(m)

ETC[j][m]. (1)

We can then use the values of completion times to com-
pute the makespan as follows:

makespan = max{completion[i] | i ∈ Machines′}. (2)

In order to deal with the simultaneous optimization of
the two objectives we have used a simple weighted sum
function of makespan and flowtime, which is possible since
both parameters are measured in the same unit (time units).
However, the makespan and flowtime values are in incom-
parable ranges, since flowtime has a higher magnitude order
over makespan, and its difference increases as more jobs
and machines are considered. For this reason, the value of
mean flowtime, flowtime/nb machines, is used instead
of flowtime. Additionally, both values are weighted in order
to balance their importance. Fitness value is thus calculated
as:

fitness = λ·makespan+(1−λ)·mean flowtime, (3)

where λ has been a priori fixed after a preliminary tuning
process (see Section 4).

3 A Cellular Memetic Algorithm for Re-
source Allocation in Grid Systems

3.1 Cellular Memetic Algorithms

In Memetic Algorithms (MAs) the population of indi-
viduals could be unstructured or structured. In the former,
there is no relation between the individuals of the popula-
tion while in the latter individuals can be related to only
some other specific individuals of the population. The struc-
tured MAs are usually classified into coarse-grained model
and fine-grained (Cellular MAs) model [2, 4, 5, 15]. In Cel-
lular MAs the individuals of the population are spatially dis-
tributed forming neighborhoods and the evolutionary opera-
tors are applied to neighbor individuals making thus cMAs
a new family of evolutionary algorithms. As in the case
of other evolutionary algorithms, cMAs are high level al-
gorithms whose description is independent of the problem
being solved. Thus, for the purposes of this work, we have
considered the cMA template given in Algorithm 1.

As it can be seen, this template is quite different from
the canonical cGA approximation [4, 5], in which individu-
als are updated in a given order by applying the recombina-
tion operator to the two parents and the mutation operator
to the obtained offspring. In the case of the algorithm pro-
posed in this work, mutation and recombination operators
are applied to individuals independently of each other, and
in different orders. This model was adopted after a previous
experimentation, in which it performed better than the cMA
following the canonical model for the studied problems. Af-
ter each recombination (or mutation), a local search step is
applied to the newly obtained solution, which is then eval-
uated. If this new solution is better than the current one,
it replaces the latter in the population. This process is re-
peated until a termination condition is met.

Algorithm 1 A Cellular MA template.
Initialize the mesh of n individuals P(t=0);
Initialize permutations rec order and mut order;
For each i ∈ P , LocalSearch(i);
Evaluate(P);
while not stopping condition do

for j = 1 . . .#recombinations do
SelectToRecombine S ⊆ NP [rec order.current];
i′ = Recombine(S);
LocalSearch(i′); Evaluate(i′);
Replace P [rec order.current] by i′;
rec order.next();

end for
for j = 1 . . .#mutations do

i = P [mut order.current()];
i′ = Mutate(i);
LocalSearch(i′); Evaluate(i′);
Replace P [rec order.current] by i′;
rec order.next();

end for
Update rec order and mut order;

end while

3.2 Application of the cMA to job scheduling

In order to solve the job scheduling problem through
cMAs, we have to particularize the template given in Al-
gorithm 1 with the specific knowledge of the problem at
hand. We notice that the template is generic and flexible in
a way that several implementations could be derived by fix-
ing the ingredients of the template according to the concrete
problem aiming at identifying the best implementation. We
give next the description of the cMA particularization for
job scheduling.

Population’s topology and neighborhood structure.
The topology of the population is a two-dimensional
toroidal grid of pop height×pop width size. Regard-
ing the neighborhood patterns, several well-known patterns
are used for this work: L5 (5 individuals), L9 (9 indi-
viduals), C9 (9 individuals) and C13 (13 individuals) (see
Fig. 1). In our experimental study we identified the pattern
that leads to the best performance for the job scheduling
problem. It should be noticed that both the topology of the
population and the neighborhood pattern are very impor-
tant in deciding the selective pressure of the algorithm and
therefore have a direct influence on the tradeoff between ex-
ploration and exploitation of the algorithm [3, 6].

Panmixia L5 (5 ind.) L9 (9 ind.) C9 (9 ind.) C13 (13 ind.)

Figure 1. Neighborhood patterns.

Cell updating. Unlike many unstructured MAs, in cMAs
the population is kept constant by applying cell updating
mechanisms by which an individual of the population is up-
dated with a new offspring obtained by either recombina-
tion or mutation process (see later for the definition of these
two operators). Two well-known methods of cell updating
are the synchronous and asynchronous updating. For the
purpose of this work, we have considered the asynchronous
updating since it is less computationally expensive and usu-
ally shows a good performance in a very short time [15],
which is interesting for the scheduling problem given the
dynamic nature of Grid systems. In the asynchronous mode,
cell updating is done sequentially (an individual is aware
of other neighbor individual updates during the same it-
eration). The following asynchronous mechanisms have
been implemented and experimentally studied for our job
scheduling problem:

• Fixed Line Sweep (FLS): The individuals of the grid
are updated in a sequential order row by row.

• Fixed Random Sweep (FRS): The sequence of cell
updates is at random. This sequence is defined at the
beginning of the algorithm and it is the same during
the cMA iterations.

• New Random Sweep (NRS): At each itertion, a new
cell update sequence (at random) is applied.

It should be noted that recombination and mutation
are independent processes in cMAs (cf. rec order and
mut order in the cMAs template) and therefore different
update orders are used.

cMA methods and operators

The performance of any cMA heavily depends on the
design and implementation of the methods and operators,
which, on the other hand, depend on the chosen chromo-
some representation.

Solution representation. A feasible solution, schedule, is
represented as a vector of size nb jobs in which its jth posi-
tion (an integer value) indicates the machine where job j is
assigned: schedule[j] = m,m ∈ {1, . . . , nb machines}.

Fitness. The individual fitness is computed by simultane-
ously minimizing makespan and flowtime of the schedule:
min λ ·makespan + (1− λ) ·mean flowtime, in which
λ = 0.75 was experimentally fixed.

Population initialization. One individual is generated us-
ing the Longest Job to Fastest Resource - Shortest Job to
Fastest Resource (LJFR-SJFR) heuristic [1]. The rest are
randomly obtained from the first individual by large pertur-
bations. The LJFR-SJFR method has been chosen because
it tries to simultaneously minimize both makespan and flow-
time. LJFR minimizes the makespan and is alternated with
the SJFR which minimizes the flowtime. The method starts
by increasingly sorting jobs w.r.t. their workload. At the
beginning, the first nb machines longest jobs are assigned
to the nb machines idle machines (the longest job to the
fastest machine and so on). For the remaining jobs, at each
step the fastest machine (that has finished its jobs) is cho-
sen to which is assigned alternatively either the shortest job
(SJFR) or the longest job (LJFR).

Selection operator for recombination. We have used the
N-Tournament operator in which N individuals compete in
the selection process.

Recombination operator. The One-Point recombination
of two individuals has been chosen. This operator consists
of splitting the two chromosomes into two parts (in a ran-
domly selected point), and joining each part of one parent
chromosome with the other part of the chromosome of the
second parent.

Mutation operator. The mutation is done by rebalanc-
ing of machine loads of the given schedule. The load
factor of a machine m is defined as load factor(m) =
completion[m]/makespan (load factor(m) ∈ (0, 1]). The
idea behind this choice is that in a schedule, some machines
could be overloaded (when its completion time is equal to
the current makespan –load factor(m) = 1–) and some
others less overloaded (regarding the overloaded machines,
we sort the machines in increasing order of their comple-
tion times and 25% first machines are considered less over-
loaded), in terms of their completion times. It is useful
then to mutate the schedule by a load balancing mechanism,
which transfers a job assigned to an overloaded machine to
another less loaded machine.

Replacement strategy. An individual is replaced by the
newly generated one (its offspring) only if the latter is better
than the former in terms of their fitness value.

Local search methods. Local search is a proper feature
of Memetic Algorithms. As it can be seen from the tem-
plate of Algorithm 1, each individual is improved by a lo-
cal search. Improvement of the descendants is thus done
not only by means of genetic information but also by local
improvements. The presence of this local search method
in the algorithm does not increase selection pressure too
much due to the exploration capabilities intrinsic to the cel-
lular model. Three local search methods have been imple-
mented and experimentally studied. These are the Local
Move (LM), Steepest Local Move (SLM) and Local Mini-
mum Completion Time Swap (LMCTS). The first method
is similar to the mutation operator (a randomly chosen job
is transferred to a new randomly chosen machine). In SLM
method, the job transfer is done to the machine that yields
the best improvement in terms of the reduction of the com-
pletion time and in LMCTS method, two jobs assigned to
different machines are swapped; the pair of jobs that yields
the best reduction in the completion time is applied.

4 Tuning of parameters

After implementing the cMA template and the spe-
cific methods and operators, tuning the parameters is
a crucial step in order to achieve a good perfor-
mance. As it can be seen from the previous section, many

parameters are involved in the cMA, whose values influ-
ence in a straightforward way on the search process. The
tuning process was done by using randomly generated in-
stances of the problem according to the ETC matrix model.
In this way we would expect a robust performance of our
cMA implementation since no specific instance knowledge
is used in fixing the values of the parameters. An exten-
sive experimental study was done in order to identify the
best configuration for the cMA. Thus, we experimentally
studied the choice of the local search method, the topol-
ogy/neighborhood pattern, selection operator and the cell
update orders. We give in Figs. 2, 3, 4 and 5, the graph-
ical representation for the makespan reduction of the con-
sidered local search methods, neighborhood patterns, selec-
tion mechanisms, and the cell update orders, respectively.
The results are obtained after making 20 independent runs
in AMD K6 450MHz computers.

6000000

11000000

16000000

21000000

26000000

0 10 20 30 40 50 60 70 80 90

Execution time (sec.)

M
ak

es
pa

n

SLM
LM
LMCTS

Figure 2. Makespan reduction obtained with
three local search methods.

7700000

7800000

7900000

8000000

8100000

8200000

8300000

8400000

8500000

0 10 20 30 40 50 60 70 80 90

Execution time (sec.)

M
ak

es
pa

n

Panmictic
L5
L9
C9
C13

Figure 3. Makespan reduction obtained with
different neighborhood patterns.

Additive evaluation. From the graphical representations
we can easily observe that:

• LMCTS method performs best among the three con-
sidered local search methods. In fact, a clear difference
in the behavior of the considered local search methods
is observed, though all of them provide an accentuated
reduction in the makespan value (see Fig. 2).

3100000

3150000

3200000

3250000

3300000

3350000

3400000

3450000

3500000

0 10 20 30 40 50 60 70 80 90

Execution time (sec.)

M
ak

es
pa

n

Ntour (3)
Ntour (5)
Ntour (7)

Figure 4. Makespan reduction obtained with
different values of N -Tournament selection.

3150000

3200000

3250000

3300000

3350000

3400000

3450000

3500000

20 30 40 50 60 70 80 90

Execution time (sec.)

M
ak

es
pa

n

FLS
FRS
NRS

Figure 5. Makespan reduction obtained with
different recombination orders.
• For the neighborhood patterns, a similar behavior is

observed, except for the panmixia pattern, which as
expected performed worse. L5 and C9 show the best
behavior. L5 yields a very fast reduction however C9
performs better in the “long run” (see Fig. 3).

• A similar behavior was observed for values of N =
3, 5 and 7 of the N -Tournament selection. The best
performance is obtained for the value of N = 3 (see
Fig. 4).

• As regards to the cell updating for the recombina-
tion operator, the three considered mechanisms per-
formed similarly, the FLS being the best performer
(see Fig. 5).

The resulting configuration, which is used then to obtain
the computational results, is given in Table 1.

5. Computational results

In this section we present some computational results ob-
tained for the benchmark of instances by Braun et al. [7] for
distributed heterogenous systems.

Benchmark description. The instances of this bench-
mark are classified into 12 different types of ETC matrices,
each of them consisting of 100 instances, according to three
parameters: job heterogeneity, machine heterogeneity and
consistency. Instances are labelled as u x yyzz.k where:

• u stands for uniform distribution (used in generating
the matrix).

Table 1. Values of the parameters.
max exec time (max 90s)

population height 5
population width 5

nb solutions to recombine 3
nb recombinations 25

nb mutations 12
start choice LJFR-SJFR

Longest / Shortest Job to Fastest Resource

neighborhood pattern C9
recombination order FLS (Fixed Line Sweep)

mutation order NRS (New Random Sweep)

recombine choice One-Point recombination
recombine selection 3-Tournament

mutate choice Rebalance
local search choice LMCTS

(Local Minimum Completion Time Swap)

nb local search iterations 5
add only if better true

λ 0.75

• x stands for the type of consistency (c–consistent, i–
inconsistent, and s means semi-consistent). An ETC
matrix is considered consistent when, if a machine
mi executes job j faster than machine mj , then mi

executes all the jobs faster than mj . Inconsistency
means that a machine is faster for some jobs and slower
for some others. An ETC matrix is considered semi-
consistent if it contains a consistent sub-matrix.

• yy indicates the heterogeneity of the jobs (hi means
high, and lo means low).

• zz indicates the heterogeneity of the resources (hi
means high, and lo means low).

Note that all instances consist of 512 jobs and 16 ma-
chines. We report computational results for 12 instances,
which are made up of three groups of four instances each.
These three groups represent different Grid scenarios re-
garding the computing capacity. The first group corre-
sponds to consistent ETC matrices (for each of them com-
binations between low and high are considered), the second
represent instances of inconsistent computing capacity and
the third one to semi-consistent computing capacity.

Results are obtained by running the cMA implementa-
tion for 90 seconds (a single run) and 10 runs per instance.

Results for makespan parameter. We give in Table 2 the
computational results1 for the makespan objective, where
the first column indicates the name of the instance, the sec-
ond one the best makespan obtained by Braun et al.’s GA,
the third one the best makespan (out of 10 runs) by our cMA
implementation, and the last column gives the difference (in
%) between the best makespan reported by the Braun et al.
GA and cMA for each instance.

1Values are in arbitrary time units.

Table 2. Comparison of makespan values:
Braun et al.’s GA and cMA.

Instance Braun et al. GA cMA ∆ (%)
u c hihi.0 8050844.5 7700929.751 4.35
u c hilo.0 156249.2 155334.805 0.59
u c lohi.0 258756.77 251360.202 2.86
u c lolo.0 5272.25 5218.18 1.03
u i hihi.0 3104762.5 3186664.713 2.57
u i hilo.0 75816.13 75856.623 0.88
u i lohi.0 107500.72 110620.786 2.82
u i lolo.0 2614.39 2624.211 0.37
u s hihi.0 4566206 4424540.894 3.10
u s hilo.0 98519.4 98283.742 0.24
u s lohi.0 130616.53 130014.529 0.46
u s lolo.0 3583.44 3522.099 1.71

Table 3. Comparison of makespan values:
GAs in [10, 21] and cMA.

Instance GA Struggle GA cMA
(Carretero&Xhafa) (Xhafa)

u c hihi.0 7752349.37 7752689.08 7700929.751
u c hilo.0 155571.80 156680.58 155334.805
u c lohi.0 250550.86 253926.06 251360.202
u c lolo.0 5240.14 5251.15 5218.18
u i hihi.0 3080025.77 3161104.92 3186664.713
u i hilo.0 76307.90 75598.48 75856.623
u i lohi.0 107294.23 111792.17 110620.786
u i lolo.0 2610.23 2620.72 2624.211
u s hihi.0 4371324.45 4433792.28 4424540.894
u s hilo.0 983334.64 98560.04 98283.742
u s lohi.0 127762.53 130425.85 130014.529
u s lolo.0 3539.43 3534.31 3522.099

The comparison of the cMA with two other versions of
GAs [10, 21] is given in Table 3.

Results for flowtime parameter. Computational results
for flowtime parameter are given in Table 4 where we also
give the flowtime value obtained by the ad hoc heuris-
tic LJFR-SJFR aiming at identifying the improvement ob-
tained by the cMA over the initial flowtime. Next, in Table 5
we compare the flowtime values against the ones obtained
by the Xhafa’s Struggle GA [21].

5.1 Evaluation and discussion

As it can be seen from Tables 2 and 3, cMA performs
better than Braun et al.’s GA for all but inconsistent com-
puting instances. This observation is interesting if the Grid
characteristics were known in advance, since cMA seems
to be more appropriate for consistent and semi-consistent
Grid scenarios. Additionally, when compared against two
other versions of GAs, namely Carretero&Xhafa’s GA [10]
and Xhafa’s Struggle GA [21] (both of them use the same
simultaneous approach), cMA obtains better schedules than
the two compared GAs for half of the considered instances,

Table 4. Comparison of flowtime values ob-
tained with LJFR-SJFR and cMA.

Instance LJFR-SJFR cMA ∆ (%)
u c hihi.0 2025822398.665 1037049914.209 48.8
u c hilo.0 35565379.565 27487998.874 22.7
u c lohi.0 66300486.264 34454029.416 48.0
u c lolo.0 1175661.381 913976.235 22.2
u i hihi.0 3665062510.364 361613627.327 90.0
u i hilo.0 41345273.211 12572126.577 69.0
u i lohi.0 118925452.958 12707611.511 89.0
u i lolo.0 1385846.186 439073.652 89.0
u s hihi.0 2631459406.501 513769399.117 80.0
u s hilo.0 35745658.309 16300484.885 54.0
u s lohi.0 86390552.327 15179363.456 82.0
u s lolo.0 1389828.755 594665.973 57.0

Table 5. Comparison of flowtime values ob-
tained by Struggle GA and cMA.

Instance Struggle GA cMA ∆ (%)
(Xhafa)

u c hihi.0 1039048563 1037049914.209 0.19
u c hilo.0 27620519.9 27487998.874 0.48
u c lohi.0 34566883.8 34454029.416 0.32
u c lolo.0 917647.31 913976.235 0.40
u i hihi.0 379768078 361613627.327 4.78
u i hilo.0 12674329.1 12572126.577 0.81
u i lohi.0 13417596.7 12707611.511 5.29
u i lolo.0 440728.98 439073.652 0.38
u s hihi.0 524874694 513769399.117 2.12
u s hilo.0 16372763.2 16300484.885 0.44
u s lohi.0 15639622.5 15179363.456 2.94
u s lolo.0 598332.69 594665.973 0.61

and for the rest of the instances, the solutions found by cMA
have a similar quality than the best of the other two GAs.
Also, we have observed that the standard deviation of the
best makespan from the averaged makespan is very small
(roughly 1%), which is an indicator of the robustness of the
cMA implementation.

Regarding the flowtime values, we observed that a sig-
nificant improvement was obtained by the cMA over the
initial flowtime value of the LJFR-SJFR method. The good
performance of the cMA regarding flowtime value was next
confirmed by comparing with the Struggle GA [21] where,
as it can be seen from Table 3, cMA outperforms Struggle
GA for all considered instances.

6. Conclusions and future work

In this work we have presented an implementation
of Cellular Memetic Algorithms (cMAs) for the prob-
lem of job scheduling in Computational Grids when both
makespan and flowtime are simultaneously minimized.
cMAs are a family of population-based metaheuristics that
have turned out to be an interesting scheduler due to their
structured population, which allows to better control the

tradeoff between the exploitation and exploration of the
search space. We have implemented and experimentally
studied several methods and operators of cMA for the job
scheduling in Grid systems, which is a challenging problem
in today’s large-scale distributed applications.

Our experimental study showed that cMAs are a good
choice for scheduling jobs in Computational Grids given
that they are able to deliver high quality plannings in a very
short time. This last feature makes cMAs useful to design
efficient dynamic schedulers for real Grid systems, which
can be obtained by running the cMA-based scheduler in
batch mode for a very short time to schedule jobs arriving in
the systems since the last activation of the cMA scheduler.

In our future work we would like to better understand
some issues raised by the experimental study such as the
good performance of the cMA for consistent and semi-
consistent Grid Computing environments and the not so
good performance for inconsistent computing instances.
Also, we plan to extend the experimental study by con-
sidering other operators and methods as well as using grid
simulator packages to study the performance of cMA-based
scheduler(s) in longer periods of time. Another interest-
ing line for future research are to tackle the problem with
a multi-objective algorithm in order to find a set of non-
dominated solutions to the problem. Finally, evaluating our
cMA with larger size grid instances is being done using in-
stances generated according to the ETC model.

Acknowledgments

Research partially supported by ASCE Project TIN2005-
09198-C02-02, Project FP6-2004-IST-FETPI (AEOLUS)
and MEC TIN2005-25859-E. E. Alba and B. Dorronsoro
acknowledge that this work has been partially funded by the
Spanish MEC and FEDER under contract TIN2005-08818-
C04-01 (the OPLINK project). We are grateful to Bernat
Duran for his technical assistance.

References

[1] A. Abraham, R. Buyya and B. Nath. Nature’s Heuristics for
Scheduling Jobs on Computational Grids, The 8th IEEE Inter-
national Conference on Advanced Computing and Communi-
cations (ADCOM 2000) India, 2000.

[2] E. Alba and M. Tomassini. Parallelism and evolutionary al-
gorithms, IEEE Transactions on Evolutionary Computation,
6(5), 443-462, 2002.

[3] E. Alba, J.M. Troya. Cellular Evolutionary Algorithms: Eval-
uating the Influence of Ratio. Proc. of the 6th International
Conference on Parallel Problem Solving from Nature, LNCS,
vol. 1917, 29-38, 2000.

[4] E. Alba, B. Dorronsoro, and H. Alfonso. Cellular Memetic
Algorithms Evaluated on SAT, XI Congreso Argentino de
Ciencias de la Computación (CACIC), 2005.

[5] E. Alba, B. Dorronsoro, and H. Alfonso. Cellular Memetic
Algorithms, Journal of Computer Science and Technology,
5(4), 257-263, 2006.

[6] E. Alba and B. Dorronsoro. The exploration/exploitation
tradeoff in dynamic cellular evolutionary algorithms. IEEE
Trans. on Evolutionary Computation, 9(2):126–142, 2005.

[7] H. Braun, T. D.and Siegel, N. Beck, L. Bölöni, M. Mah-
eswaran, A. Reuther, J. Robertson, M. Theys, and B. Yao.
A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed comput-
ing systems. Journal of Parallel and Distributed Computing,
61(6):810–837, 2001.

[8] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An archi-
tecture for a resource management and scheduling system in
a global computational grid. In The 4th Int. Conf. on High
Performance Computing, Asia-Pacific Region, China, 2000.

[9] H. Casanova and J. Dongarra. Netsolve: Network enabled
solvers. IEEE Computational Science and Engineering,
5(3):57–67, 1998.

[10] J. Carretero and F. Xhafa. Using genetic algorithms for
scheduling jobs in large scale grid applications, J. of Techno-
logical and Economic Development –A Research Journal of
Vilnius Gediminas Technical University, 12(1):11–17, 2006.

[11] H. Casanova, A. Legrand, D. Zagorodnov and F. Berman.
Heuristics for Scheduling Parameter Sweep Applications in
Grid Environments, Heterogeneous Computing Workshop,
349-363, 2000.

[12] I. Foster and C. Kesselman. The Grid - Blueprint for a
New Computing Infrastructure. Morgan Kaufmann Publish-
ers, 1998.

[13] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
grid. Int. J. of Supercomputer Applications, 15(3), 2001.

[14] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor-G: A computation management agent for multi-
institutional grids. In Proceedings of the 10th IEEE Sympo-
sium on High Performance Distributed Computing, 2001.

[15] M. Giacobini, M. Tomassini, A.G.B. Tettamanzi and E.
Alba. Selection Intensity in Cellular Evolutionary Algorithms
for Regular Lattices. IEEE Transactions on Evolutionary
Computation. 9(5):489–505, October 2005.

[16] P. Moscato. On evolution, search, optimization, genetic algo-
rithms and martial arts: Towards memetic algorithms. Tech.
report 826, California Institute of Technology, USA, 1989.

[17] F. Luna, A.J. Nebro, E. Alba. Observations in Using Grid-
enabled Technologies for Solving Multi-objective Optimiza-
tion Problems. Parallel Computing. 32:377-393. June 2006.

[18] L. Linderoth and S. Wright. Decomposition algorithms
for stochastic programming on a computational grid. Com-
putational Optimization and Applications (Special issue on
Stochastic Programming.), 24:207–250, 2003.

[19] V. D. Martino and M. Mililotti. Sub optimal scheduling in a
grid using genetic algorithms. Parallel Computing, 30:553–
565, 2004.

[20] S. Wright. Solving optimization problems on computational
grids. Optima, 65, 2001.

[21] F. Xhafa. An experimental study on GA replacement opera-
tors for scheduling on grids, In The 2nd International Confer-
ence on Bioinspired Optimization Methods and their Applica-
tions (BIOMA 2006), pp. 121-130, Ljubljana, Slovenia, 9-10
October 2006.

