
Multicore Surprises: Lessons Learned from Optimizing Sweep3D on the Cell

Broadband Engine

Fabrizio Petrini,1 Gordon Fossum,2 Juan Fernández,3

Ana Lucia Varbanescu,4 Mike Kistler2 and Michael Perrone5

1Pacific Northwest National Laboratory 2IBM Austin Research Lab
Richland, WA 99352 USA Austin, TX 78758, USA
fabrizio.petrini@pnl.gov {fossum,mkistler}@us.ibm.com

3University of Murcia 4Delft University of Technology
30071 Murcia, Spain 2628CD Delft, The Netherlands

juanf@um.es A.L.Varbanescu@tudelft.nl

5IBM TJ Watson Research Center
Yorktown Heights, NY 10598, USA

mpp@us.ibm.com

Abstract

The Cell Broadband Engine (BE) processor provides the

potential to achieve an impressive level of performance for

scientific applications. This level of performance can be

reached by exploiting several dimensions of parallelism,

such as thread-level parallelism using several Synergistic

Processing Elements, data streaming parallelism, vector

parallelism in the form of 128-bit SIMD operations, and

pipeline parallelism by issuing multiple instructions in the

same clock cycle. In our exploration to achieve the opti-

mum level of performance for Sweep3D, we have enjoyed

many pleasant surprises, such as a very high floating point

performance, reaching 64% of the theoretical peak in dou-

ble precision, and an overall performance speedup ranging

from 4.5 times when compared with “heavy iron” proces-

sors, up to over 20 times with conventional processors.

The research described in this paper was conducted under the Laboratory
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1 Introduction

Over the last decade high-performance computing has

ridden the wave of commodity computing, building cluster-

based parallel computers that were able to leverage the

tremendous growth in processor performance fueled by the

commercial world. As this pace slows down, processor

designers are facing complex problems when increasing

gate density, reducing power consumption and designing

efficient memory hierarchies. The scientific and industrial

communities are looking for alternative solutions that can

keep up with the insatiable demand of computing cycles and

yet have a sustainable market outside the scientific world.

A major trend in computer architecture is the imple-

mentation of highly integrated chips. This trend is driving

the development of processors that can perform functions

that are typically associated with entire systems. Rather

than building monolithic processors, prohibitively expen-

sive to develop, with high power consumption and limited

return on the technological investment, it is much more

effective to build modular processors with multiple cores.

These multi-core system-on-a-chip processors can integrate

several identical independent processing units on the same

die, together with network interfaces, acceleration units and

other specialized units.

Several design avenues have been explored both in

academia, such as the Raw multiprocessor and TRIPS, and



in the industrial world, with notable examples being the

AMD Opteron, IBM Power5, Sun Niagara, Intel Montecito

and many others [13, 11, 12]. Common themes across

these processors are power, parallelism and memory perfor-

mance. Experiencing severely diminished returns, micro-

processors designers are turning their attention to thread-

level parallelism. Explicitly parallel techniques, where a

user or a compiler express the available parallelism as a

set of cooperating threads, offer a more efficient means

of converting power into performance than do techniques

that must discover the implicit –and often limited– instruc-

tion level parallelism hidden in a single thread. Montecito

embodies thread-level parallelism with two cores execut-

ing two threads each. Niagara is more extreme with eight

cores of four threads each. This increase in explicit paral-

lelism is in large part driven by power concerns: as chips

push the limits of semiconductor and manufacturing tech-

nology, power-efficient designs are becoming essential to

deliver more performance.

These architectural trends have profound implications on

the system software and the compilation process, which is

somehow reminiscent of the RISC vs CISC debate of a few

decades ago. The burden is shifted from the architecture,

which is becoming simpler and more streamlined, to the

software, that is now required to extract several forms of

parallelism and directly coordinate a plethora of computa-

tional and communication activities across various levels of

memories and functional units.

The Cell Broadband Engine (Cell BE) processor, jointly

developed by IBM, Sony and Toshiba, is a new member

of the IBM Power/PowerPC processor family. The initial

target was the PlayStation 3 game console, but its capabil-

ities also make it well suited for various other applications

such as visualization and image and signal processing. The

Cell BE is a heterogeneous chip with nine cores (one control

processor coupled with eight lightweight independent pro-

cessing units) capable of massive floating point processing,

optimized for compute-intensive workloads and broadband,

rich media applications.

The disruptive processing power of the Cell BE, that with

a frequency of 3.2 GHz peaks at 204.8 Gflops/second in sin-

gle precision floating point and 14.63 Gflops/second in dou-

ble precision, and its healthy connection to the commodity

market combined with a low power consumption have not

passed unobserved in the scientific community. This un-

precedented level of performance is achieved by combining

thread level parallelism, supported by the processing units,

with vector parallelism with variable granularity, ranging

from 16 parallel single-byte to 2 double precision opera-

tions.

Together with the initial excitement of some early eval-

uations [15], the scientific community is expressing sev-

eral concerns on some important aspects. More specifically

there is a general interest in understanding

• what is the actual fraction of the peak performance that

can be actually achieved by scientific applications,

• the complexity of developing new applications,

• the complexity of developing new parallelizing com-

pilers and

• whether there is a clear migration path for existing

legacy software, most notably the applications that

have already been written using popular communica-

tion libraries such as MPI [14].

In this paper we provide some insight and some prelim-

inary answers by studying in depth the parallelization pro-

cess of a scientific application, the radiation transport code

Sweep3D.

Sweep3D has many interesting properties that makes it

amenable for this exercise. On the one hand, Sweep3D is

a realistic application that is representative of a substantial

fraction computing cycles executed on some of the most

powerful supercomputers in the world. On the other hand,

it is a compact application, publicly available,1 which has

been extensively studied in previous publications, allowing

direct apple-to-apples comparisons [4].

The paper discusses a parallelization strategy that is

based on the existing MPI one, thus allowing a straightfor-

ward migration path, that uses five distinct levels of paral-

lelism to exploit the full potential of the Cell BE processor.

The initial, coarse-level MPI implementation is incremen-

tally enhanced with thread level parallelism across the syn-

ergistic processing units, data streaming parallelism to deal

with the space limitations of the local stores of these units,

vector parallelism to execute multiple floating point opera-

tions in parallel and pipeline parallelism to guarantee dual

issue of instructions when possible.

The complexity and the performance impact of each of

these parallelization steps and other optimizations are quan-

tified and discussed across the paper. Together with some

unexpected surprises, such as a very high floating point

performance achieved by the sequential parts of Sweep3D,

reaching 64% of peak, we also experienced unexpected hur-

dles in the data orchestration, processor synchronization

and memory access algorithms. Our initial implementation

provides a performance speedup ranging from 4.5 times,

when compared to “heavy iron” processors such as the IBM

Power5, specifically designed for the scientific workload, to

over 20 times when compared to conventional processors.

In the final part of the paper we also discuss how ar-

chitectural improvements, such a a fully pipelined double-

precision floating point unit and a higher memory and com-

munication bandwidth, can affect the overall application

performance.

1http://www.llnl.gov/asci benchmarks/asci/limited/sweep3d/
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We believe that our work provides a valuable contribu-

tion for application developers, by identifying a software

path that can be followed by other scientific applications.

We expect that many of these hand-crafted techniques will

eventually migrate into parallelizing tools and compilers.

Processor designers will also find insightful information to

develop the new generation of streaming processors, that

will likely target from the very beginning the computing

needs of scientific applications.

In order to make this paper self-contained, Section 2 de-

scribes the relevant architectural features of the Cell BE

processor that are essential to understand our parallelization

techniques, including the communication and synchroniza-

tion protocols, the vectorization capabilities and the struc-

ture of the internal pipeline of the Synergistic Processing

Elements. Section 3 briefly introduces Sweep3D and shows

the computation and communication patterns of its current

MPI implementation. Section 4 provides the “global view”

of our multi-dimensional approach to parallelization. In or-

der to get a higher level of performance, we have also used

an arsenal of optimizations, described in Section 5. Finally,

we compare our results with the ones obtained on other pro-

cessors in Section 6, and we provide some concluding re-

marks in Section 7.

2. The Cell BE Processor

The Cell BE is a heterogeneous, multi-core chip ca-

pable of massive floating point processing, optimized for

compute-intensive workloads and broadband, rich me-

dia applications. The Cell BE is composed of one 64-

bit Power Processor Element (PPE), 8 specialized co-

processors called Synergistic Processing Elements (SPEs),

a high-speed memory controller and a high-bandwidth bus

interface, all integrated on a single chip. The PPE and SPEs

communicate through an internal high-speed Element Inter-

connect Bus (EIB). The latest Cell processor, running at 3.2

GHz, has a theoretical peak performance of 204.8 Gflops

(single precision) and 14.63 Gflops (double precision). The

EIB supports a peak bandwidth of 204.8 Gigabytes/second

for intra-chip data transfers among the PPE, the SPEs, and

the memory and the I/O interface controllers. The mem-

ory interface controller (MIC) provides a peak bandwidth of

25.6 Gigabytes/second to main memory. The I/O controller

provides peak bandwidths of 25 Gigabytes/second inbound

and 35 Gigabytes/second outbound.

The PPE is the main processor of the Cell BE, and is re-

sponsible for running the operating system and coordinating

the SPEs. It is a traditional 64-bit PowerPC (PPC) proces-

sor core with a VMX unit, 32 KB Level 1 instruction cache,

32 KB Level 1 data cache, and 512 KB Level 2 cache. The

PPE is a dual issue, in-order execution design, 2-way SMT

processor.

Each SPE consists of a Synergistic Processing Unit

(SPU) and a Memory Flow Controller (MFC) which in-

cludes a DMA controller, a Memory Management Unit

(MMU), a bus interface and an atomic unit for synchroniza-

tion with other SPUs and the PPE. The SPU is a RISC-

style processor with an instruction set and a microarchi-

tecture that is designed for high-performance on streaming

and data-intensive computation. The SPU includes a 256

KB local scratchpad memory to store both the instructions

and data of an SPU program. The SPU cannot access main

memory directly, but it has to issue DMA commands to the

MFC to bring data into the LS or write results back to main

memory. The SPU can continue program execution while

the MFC independently performs these DMA transactions.

No hardware data load prediction structures exist for LS

management, and each LS must be managed by software.

Each SPU has 128 128-bit SIMD registers. The large

number of registers facilitates very efficient instruction

scheduling and enables important optimization techniques

such as loop unrolling. All SPU instructions are inherently

SIMD operations that can run at four different granularities:

16-way 8-bit integers, 8-way 16-bit integers, 4-way 32-bit

integers or single-precision floating-point numbers, or 2 64-

bit double-precision floating point numbers.

The SPU is an in-order processor with 2 instruction

pipelines. The floating point and fixed point units are on the

even pipeline while the rest of the functional units are on the

odd pipeline. Each SPU can issue and complete up to two

instructions per cycle - one per pipeline. For a wide variety

of applications, the SPU can approach this theoretical limit.

All single-precision operations (8-bit, 16-bit, or 32-bit inte-

gers/floats) are fully pipelined and can be issued at the full

SPU clock rate (e.g., four 32-bit floating point operations

per SPU clock). The 2-way double precision floating point

is partially pipelined, so its instructions issue at a lower rate

(i.e., two double-precision flops every seven SPU clocks).

When using single-precision floating-point fused multiply-

add instructions (which count as two operations), the eight

SPEs perform a total of 64 operations per cycle.

Communication mechanisms. To take advantage of all

the computational power available on the Cell BE processor,

work and data must be distributed and coordinated across

the PPE and the SPEs. Each SPE has a DMA controller that

performs high bandwidth transfers between the local store

and main memory and between local stores. An SPE can

also use either signals or mailboxes for short, low-latency

(but also low-bandwidth) communication with other SPEs

or with the PPE. More complex synchronization mecha-

nisms are supported by a set of atomic operations avail-

able to the SPU that operate in a very similar manner to the

lwarx/stwcx atomic instructions of the PowerPC architec-

ture. In fact, the SPEs’ atomic operations can seamlessly in-
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teroperate with PPE’s atomic instructions. Finally, the Cell

BE allows memory-mapped access to nearly all resources

on the SPEs, including the entire local store. This provides

a convenient and consistent mechanism for special commu-

nications needs that are not met by the other techniques.

DMA Transfers. The MFC performs DMA operations to

transfer data between the LS and system memory. DMA

transfers are specified by an SPU program using fully com-

pliant PPC virtual addresses. DMA operations can transfer

data between the local store and any resources connected

via the on-chip interconnect (i.e. main memory, the LS

of another SPE, or an I/O device). SPE to SPE transfers

can be sustained at a rate of 16 bytes (read) plus 16 bytes

(write) every 16 SPU clock cycles, but at a much lower rate

to main memory (i.e. aggregate main memory bandwidth is

25.6 GByte/sec for the entire Cell BE processor). The MFC

accepts and processes DMA commands which are issued

using the SPU channel interface or MMIO registers. DMA

commands are queued in the MFC, and the SPU or PPE

(whichever issued the command) can continue execution in

parallel with the data transfer, using either polling or block-

ing interfaces to determine when the transfer is complete.

This autonomous execution of MFC DMA commands al-

lows DMA transfers to be conveniently scheduled to hide

memory latency. The MFC supports naturally aligned trans-

fers of 1, 2, 4, or 8 bytes, or a multiple of 16-bytes up to a

maximum of 16 KB. DMA list commands can request a list

of up to 2,048 DMA transfers using a single MFC DMA

command. However, only the MFC’s associated SPU can

issue DMA list commands. A DMA-list is stored in the

LS as an array of DMA source/destination addresses and

lengths. When issued, the MFC is passed the address and

length of the DMA-list in LS [6]. Peak performance can be

achieved for transfers when both the EA and LSA are 128-

byte aligned and the size of the transfer is an even multiple

of 128 bytes.

3. Sweep3D

Sweep3D [10] solves a three-dimensional neutron trans-

port problem from a scattering source. In general, “parti-

cle transport” (or “radiation transport”) analyzes the flux of

photons and/or other particles through a space. Its main us-

age is to facilitate the analysis of fires, explosions and even

nuclear reactions without having to run experiments. For

the discrete analysis, the space is divided into a finite mesh

of cells and the particles are flowing only along a finite num-

ber of beams that cross at fixed angles. The particles flowing

along these beams occupy fixed energy levels. The analysis

computes the evolution of the flux of particles over time, by

computing the current state of a cell in a time-step as a func-

tion of its state and the states of its neighbors in the previous

time-step. For this implementation, the three-dimensional

geometry is represented by a logically rectangular grid of

cells (with dimensions I, J and K) divided into eight octants

by the scattering source. The movement is modeled in terms

of six angles (three angles in the forward direction and three

angles in the backward direction) for each octant. The equa-

tions for each angle can be seen as a wavefront sweeping

from one corner of the space (i.e., the octant) to the oppo-

site corner. A complete sweep from a corner to its opposite

corner is an iteration. There are several iterations for each

time step, until the solution converges. Hence, the solu-

tion involves two steps: the streaming operator (i.e., result

propagation), solved by sweeps, and the scattering operator,

solved iteratively [1].

An S n sweep for a single octant and a given angle works

as follows. Each grid cell has 4 equations with 7 unknowns

(6 faces plus 1 central). Boundary conditions complete the

system of equations. The solution is reached by a direct or-

dered solver, i.e., a sweep. Three known inflows allow the

cell center and three outflows to be solved. Each cell’s solu-

tion then provides inflows to 3 adjoining cells (1 each in the

I, J, and K dimensions). This represents a wavefront evalua-

tion with a recursion dependence in all three grid directions.

Each octant has a different sweep direction through the grid

of cells, but all angles in a given octant are independent and

sweep in the same way.

Sweep3D exploits parallelism via a wavefront algo-

rithm [3, 5]. Each grid cell can be only computed when all

the previous cells in the sweep direction have been already

processed. Grid cells are evenly distributed across a two-

dimensional array of processes. In this way, each process

owns a three-dimensional tile of cells. The data mapping

and the wave propagation during a north-to-south, west-to-

east sweep is described in Figure 1. For the sake of sim-

plicity, the K dimension is hidden for all processes other

than upper-left corner process. The wave is originated by

the process in the upper-left corner, that is, P0,0. This pro-

cess solves the unknowns of the local cells and then propa-

gates the results to its east and south neighbors, that is, P1,0

and P0,1, respectively. At this point the two adjacent pro-

cesses can start computing the first wave, while the upper-

left corner process starts the second wave. In an ideal sys-

tem, where computation and communication are perfectly

balanced, each diagonal of processes would be computing

the same wave at any given time.

The pseudo-code of the sweep() subroutine, the com-

putational core of Sweep3D, is listed in Figure 2. Before

each inner iteration (lines 7 to 17), the process issues waits

for the I-inflows and J-inflows coming from the west and

north neighbors, respectively (lines 5 and 6). Then, it com-

putes the incoming wave through its own tile of cells using

a stride-1 line-recursion in the I-direction as the innermost

work unit (lines 8 to 15). It is worth noting that this ac-
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Figure 1. Data mapping and communication

pattern of Sweep3D’s wavefront algorithm.

cess to the arrays in a sequential fashion, can be exploited

to extract further pipeline and data parallelism. Finally, the

process sends the I-outflows and J-outflows to the east and

south neighbors, respectively (lines 18 and 19).

1 SUBROUTINE sweep()
2 DO iq=1,8 ! Octant loop
3 DO m=1,6/mmi ! Angle pipelining loop
4 DO k=1,kt/mk ! K−plane pipelining loop
5 RECV W/E ! Receive west/east I−inflows
6 RECV N/S ! Receive north/south J−inflows
7 DO jkm=1,jt+mk−1+mmi−1 ! JK−diagonals with MMI pipelining
8 DO il=1,ndiag ! I−lines on this diagonal
9 IF . NOT. do fixups

10 DO i=1,it ! Solve Sn equation
11 ENDDO
12 ELSE
13 DO i=1,it ! Solve Sn equation with fixups
14 ENDDO
15 ENDIF
16 ENDDO ! I−lines on this diagonal
17 ENDDO ! JK−diagonals with MMI pipelining
18 SEND W/E ! Send west/east I−outflows
19 SEND N/S ! Send north/south J−outflows
20 ENDDO ! K−plane pipelining loop
21 ENDDO ! Angle pipelining loop
22 ENDDO ! Octant loop

Figure 2. The sweep() subroutine.

With this form of the wavefront algorithm, parallelism is

limited by the number of simultaneous waves. In the con-

figuration depicted in Figure 1, there would always be idle

processes if
√
P is greater than the number of simultaneous

waves, an artificial limitation if Sweep3D is executed on a

large configuration. To alleviate this problem, sweep() is

coded to pipeline blocks of MK K-planes (MK must factor

Figure 3. Sweep3D parallelization through K-

plane and angle pipelining.

KT) and MMI angles (1 or 3) through this two-dimensional

process array for each octant. As an example, the first in-

ner iteration for P0,0 is shown in Figure 3. This iteration

processes a block of four K-planes (MK is 4) and eight J-

planes (JT is 8) for three different angles (MMI is 3). The

depicted jkm value is 6 which includes the sixth JK diago-

nal for angle 1, the fifth diagonal for angle 2 and the fourth

diagonal for angle 3, that is, il is 12. One important feature

of this scheme is that all the I-lines for each jkm value can

be processed in parallel, without any data dependency. This

property plays a central role in our proposed parallelization

strategy discussed in the next section.

4. Parallelization Strategies

The shift of paradigm in architectural design imposed

by the new multi-core processors is expected to determine

a comparable, if not bigger, advancement in parallelizing

compilers and run-time systems. However, even if early re-

sults [2] show that parallelizing compilers can achieve very

good results on many significant application kernels, the ef-

ficient and automatic parallelization of full scientific appli-

cations is not yet feasible with state-of-the-art technology

[7].

One straightforward approach to parallelize Sweep3D on

a multi-core processor is by extending the wavefront algo-

rithm to the SPEs [8]. The logical grid of processors can

be simply refined by the presence of a larger number of

computational units. Such a strategy may be difficult to

integrate into a parallelizing compiler, because it requires

detailed information about the process-level parallelization.

More important, this strategy is not able to capture the mul-

tiple levels of parallelism of the Cell BE processor, which

are essential to achieve high performance. Moreover, this

solution does not address the data orchestration required to

tackle the limited local storage available on the SPEs.

Our approach, graphically outlined in Figure 4 exploits

five levels of parallelism and data streaming in the following

way:
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SPE COMPUTATION

MEMORY TRANSFERS

GET DATA

FOR STAGE i FROM STAGE i

PUT DATA

STAGE i STAGE i+1

STAGE i−2 STAGE i+2

TIME

STAGE i−1

4 8 120 

WORD2 WORD3WORD0 WORD1

4 8 120 

WORD2 WORD3WORD0 WORD1

4 8 120 

WORD2 WORD3WORD0 WORD1

BYTE INDEX

PPE

SPE0

SPE1

SPE2

SPE3

SPE4

SPE5

SPE6

SPE7

ODD PIPE

BRANCH

MEMORY

PERMUTE

DUAL ISSUE

INSTRUCTION

LOGIC

THREAD PARALLELISMMPI PARALLELISM

DATA STREAMING

source vector

=

VECTOR PARALLELISM PIPELINE PARALLELISM

REGISTER FILE

128 X 16B

source vector 

destination vector

spu_madd EVEN PIPE

FLOATING

FIXED POINT

Figure 4. Parallelization process.

1. Process-level parallelism. At the highest level, we

maintain the wavefront parallelism already imple-

mented in MPI and other messaging layers; this guar-

antees portability of existing parallel software, that can

be directly compiled and executed on the PPE without

major changes (no use of the SPEs, yet).

2. Thread-level parallelism. We extract thread-level

parallelism from the subroutine sweep() (lines 7 to

17), taking advantage of the lack of data dependen-

cies for each iteration of the jkm loop. In our initial

implementation, the I-lines for each jkm iteration are

assigned to each SPE in a cyclic manner.

3. Data-streaming parallelism. Each thread loads the

“working set” of the iteration using a double buffer-

ing strategy: before executing loop i, the SPE issues

a collection of DMA gets to load the working set of

loop i + 1 and DMA puts to store the data structures

modified by loop i − 1.

4. Vector parallelism. Chunks of loops are vectorized in
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groups of 2 words (double precision) or 4 words (sin-

gle precision).

5. Pipeline parallelism. Given the dual-pipeline archi-

tecture of the SPEs, the application can use multi-

ple logical threads of vectorization, increasing pipeline

utilization and masking eventual stalls. Our double

precision implementation uses four different logical

threads of vectorization.

It is worth noting that our loop parallelization strategy

does not require any knowledge of the global, process-level

parallelization. And, given that it operates at a very fine

computational granularity, it can efficiently support various

degrees of communication pipelining.

5. Performance Optimization

On top of the layered parallelization, we have also used

several optimization techniques to fine tune the perfor-

mance of Sweep3D. In this section, we briefly explain these

techniques, and we evaluate them in terms of their impact

on the overall Sweep3D performance.

As a starting point for the experiments, we have ported

Sweep3D to a platform containing a single Cell BE chip,

running at 3.2 GHz. Sweep3D ran on the PPU alone with a

50×50×50 input set (50-cubed), without any code changes,

in 22.3 seconds.

To prepare for efficient execution on SPUs, several addi-

tional steps were required:

1. all the arrays were converted to be zero-based,
2. multi-dimensional arrays were flattened (by comput-

ing the indices explicitly),
3. cache-line (128 bytes) alignment was enforced for the

start addresses of each chunk of memory to be loaded

into the SPU at run-time, to improve DMA perfor-

mance [9]
4. the SPU code candidates (i.e., the code segments

which took up most computation time) were identified,
5. a memset call was issued to zero out each big array.

To benefit from more aggressive optimizations, we have

replaced Gnu’s GCC compiler with the IBM XLC compiler,

a mature, production quality compiler with excellent opti-

mization support. After these changes, the execution time

of the code (still running only on the PPE) was 19.9 sec-

onds.

Next, we identified the segment of code to be executed

on the SPEs. The loop structure was remodeled to split

the computation across eight independent loop iterations.

Now running on eight SPEs, the application execution time

dropped to 3.55 seconds. This significant improvement is

due to a combination of two factors: the speedup of the

SPE versus the PPE, together with the parallelization across

Figure 5. Performance impact of various op-

timizations.

8 cores. Similar drops in execution times are to be expected

for any application that is able to fully utilize the eight SPE

cores of the Cell BE.

After modifying the inner loop to eliminate goto state-

ments and the array allocation to ensure that the rows of the

“multi-dimensional” arrays are 128-byte aligned, the run

time decreased to 3.03 seconds. Double buffering reduced

the execution time to 2.88 seconds.

By using explicit SPE intrinsics (manual SIMDization,

a technique common to many vector machines), we have

achieved a new significant improvement, bringing the run

time down to 1.68 seconds. A code snippet illustrating the

SIMDization process is provided in Figures 6 (before) and

7 (after).

Finally, converting the individual DMA commands to

DMA lists, and adding offsets to the array allocation to more

fairly spread the memory accesses across the 16 main mem-

ory banks, further reduced the execution time to 1.48 sec-

onds. Eliminating the use of mailboxes, and using a combi-

nation of DMAs and direct local store memory poking from

the PPE to implement a PPE-SPE synchronization protocol,

the execution time dropped to 1.33 seconds. Figure 5 sum-

marizes the performance impact of all the optimizations.

5.1. Loop Vectorization

A closer look to the performance numbers presented in

the previous paragraphs reveals the key role that vectoriza-

tion, together with the SPE thread parallelism and the data

orchestration, are playing in reducing the execution time of

Sweep3D. Among the three, vectorization has the biggest

impact in terms of relative gain. Thus, we have included a

short example showing a snippet of code ’before’ and ’after’

the vectorization - see Figures 6 and 7, respectively.
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1 for( n = 1; n < nm; n++ )
2 for( i = 0; i < it ; i++ )
3 Flux[n][k][j][ i ] = Flux[n][k][j][i ] + pn[iq][n][m]∗w[m]∗Phi[i];

Figure 6. Scalar loops

1 for( n = 1; n < nm; n++)
2 {
3 vector double pnvalA, pnvalB, pnvalC, pnvalD;
4 pnvalA = spu splats(LS pn[0][comp][n]);
5 pnvalB = spu splats(LS pn[1][comp][n]);
6 pnvalC = spu splats(LS pn[2][comp][n]);
7 pnvalD = spu splats(LS pn[3][comp][n]);
8

9 pnvalA = spu mul(pnvalA, wVA);
10 pnvalB = spu mul(pnvalB, wVB);
11 pnvalC = spu mul(pnvalC, wVC);
12 pnvalD = spu mul(pnvalD, wVD);
13

14 FluxVA = (vector double ∗) LS Flux[0][comp][n];
15 FluxVB = (vector double ∗) LS Flux[1][comp][n];
16 FluxVC = (vector double ∗) LS Flux[2][comp][n];
17 FluxVD = (vector double ∗) LS Flux[3][comp][n];
18

19 for( i = 0; i < (it +1)>>1; i++ )
20 {
21 FluxVA[i] = spu madd(pnvalA, PhiVA[i], FluxVA[i]);
22 FluxVB[i] = spu madd(pnvalB, PhiVB[i], FluxVB[i]);
23 FluxVC[i] = spu madd(pnvalC, PhiVC[i], FluxVC[i]);
24 FluxVD[i] = spu madd(pnvalD, PhiVD[i], FluxVD[i]);
25 }
26 }

Figure 7. Vectorized loops.

The following are a few hints to understand the transfor-

mation of the scalar loops into vectorized loops, and, con-

sequently, the way the vectorization has been performed in

the case of Sweep3D:

1. The SIMDized version performs operations on four

separate threads of data simultaneously (A, B, C and

D).

2. wmVA, wmVB, wmVC, wmVD represent a vectorized portion

of w[m]. In this case, the values stored in the four vec-

tors are interleaved because of the four logic threads.

3. The number of elements in any of the wmV* vectors

is (16/sizeo f (w[m])), which is 2 in this case because

w[m] is a double precision floating point value.

4. spu madd does a double-precision 2-way SIMD

multiply add.

5. spu splats replicates a value across a vector vari-

able.

6. the inner loop runs half as many times because each

operation is 2-way SIMD.

While the natural choice for vectorizing code is inner-

most loop unrolling, it requires this loop iterations to be

data-independent. The innermost loop of Sweep3D pro-

cesses one sweep, and iterations are data dependent, while

the outer loop deals with time-step iterations, which are

data-independent. Thus, we have chosen to vectorize along

the time-wise loop, using four simultaneous logical threads,

a solution that allows avoiding the data dependency stalls.

Peak and actual floating point performance. The Cell

Broadband Engine can fully pipeline single-precision in-

structions (assuming dependency stalls are avoided), mean-

ing that it is possible to compute a single-precision vector

result (eight Flops, if it is an spu madd instruction) every

cycle. However, the current implementation of the Cell BE

does not permit full pipelining of double-precision results.

The hardware can handle only one double-precision vector

math operation (two-way SIMD, each executing two opera-

tions such as a multiply add) every seven cycles. On a 3.2

GHz system, this is equivalent to 14.63 Gflops/second.

The vectorized version of loop listed in Figure 8 (for

the sake of simplicity and readability shown in scalar

form) takes 590 cycles (“do fixup” off) and 1690 cycles

(“do fixup” on) to execute 216 Flops. There are 24 and

85 instances of dual issue, respectively. This means that

roughly 5% of the cycles are successfully issuing two com-

mands per cycle. Thus, the theoretical peak performance is

4 Flops every 7 cycles, which is equivalent to 64% of the

theoretical peak performance in the “do fixup off” case.

1 for( i = i0; (i0 == 1 && i <= i1) || (i0 == it && i >= i1) ; i=i+i2 )
2 {
3 ci = mu[m]∗hi[i];
4 dl = ( Sigt[k][j ][ i ] + ci + cj + ck );
5 dl = 1.0 / dl;
6 ql = ( Phi[i] + ci∗Phiir + cj∗Phijb[mi][lk][i] + ck∗Phikb[mi][j][i]);
7 Phi[i] = ql ∗ dl;
8 Phiir = 2.0∗Phi[i] − Phiir;
9 Phii[i ] = Phiir;

10 Phijb[mi][lk][i ] = 2.0∗Phi[i] − Phijb[mi][lk][i];
11 Phikb[mi][j][i] = 2.0∗Phi[i] − Phikb[mi][j][i];
12 }

Figure 8. Computational kernel.

In single precision, the number of Flops jumps to 432,

and the number of cycles drops to approximately 200, but

the theoretical maximum is now 8 Flops/cycle, so our effi-

ciency reaches a still-respectable 25%.

6. Performance Comparison and Future Opti-

mizations

In the previous section we have discussed in detail the

optimization process by focusing on a specific input set with

a logical IJK grid of 50x50x50 cells. Figure 9 shows the

grind time, the normalized processing time per cell, as a

function of the input size. We assume the input domain is

8



Figure 9. Grind time as a function of the cube
size.

a three-dimensional cube of the specified size. For a cube

size larger than 25 cells, the grind time is almost constant,

indicating that our parallelization and performance analysis

are robust with respect to the input size. Our load balanc-

ing algorithm farms chunks of four iterations to each SPE,

so optimal load balancing can be achieved when the total

number of iterations is an integer multiple of 4 × 8, as wit-

nessed by the minor dents in Figure 9.

With a 50-cubed input size, the SPEs transfer 17.6

Gbytes of data. Considering that the peak memory band-

width is 25.6 Gbytes/second, this sets a lower bound of 0.7

seconds to the execution time of Sweep3D. By profiling the

amount of computation performed by the SPUs we obtain a

similar lower bound, 0.68 seconds.

The gap between this bound and the actual run-time of

1.3 seconds, is mostly caused by the communication and

synchronization protocols. We have identified the following

directions to further reduce the execution time. The perfor-

mance impact of these planned optimizations is outlined in

Figure 10.

• By increasing the communication granularity of the

DMA operations, which are currently implemented

with lists of 512-byte DMAs (both for puts and

gets), we can further reduce the run time to 1.2 sec-

onds (as predicted by a test implementation, not yet

fully integrated in Sweep3D).

• We noticed that the PPE cannot distribute efficiently

the chunks of iterations across the SPEs, becoming a

bottleneck. By replacing the centralized task distribu-

tion algorithm with a distributed algorithm across the

SPEs, we expect to reduce the run time to 0.9 seconds.

• Contrary to our expectations, a fully pipelined dou-

ble precision floating point unit would provide only a

marginal improvement, to 0.85 seconds.

Figure 10. Expected performance impact

of optimizations, architectural improvements
and single precision floating point.

Figure 11. Performance comparison with

other processors.

• By using single precision floating point, we expect a

factor of 2 improvement, with a run time of approx-

imately 0.45 seconds, again determined by the main

memory bandwidth.

Figure 11 compares the absolute run time with other pro-

cessors. The Cell BE is approximately 4.5 and 5.5 times

faster than the Power5 and AMD Opteron, respectively. We

expect to improve these values to 6.5 and 8.5 times with the

optimizations of the data transfer and synchronization pro-

tocols. When compared to the other processors in the same

figure, Cell BE is about 20 times faster.
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7. Conclusions

Together with an unprecedented level of performance,

multi-core processors are also bringing an unprecedented

level of complexity in software development. We see a

clear shift of paradigm from classical parallel computing,

where parallelism is typically expressed in a single dimen-

sion (i.e, local vs remote communication, or scalar vs vec-

tor code), to the complex, multi-dimensional paralleliza-

tion space of multi-core processors, where multiple levels

of parallelism must be exploited in order to gain the ex-

pected performance. Furthermore, the multi-core design

space complexity provides various opportunities to achieve,

in a single chip, performance typical of entire clusters.

Probably the most important contribution of this paper,

and also a fundamental lesson to be learned from it, is the

exposure of this unavoidable multi-core complexity in a

clear, unified manner, focusing on the multi-layered paral-

lelization opportunities and challenges, and showing a pos-

sible, altough non-trivial path to follow for extracting the

expected high level of overall performance.

A second important contribution is the proof that porting

and optimizing a real life application, like Sweep3D, on a

platform like Cell is worth the effort. Our initial Sweep3D

parallelization is very fast, ranging from 4.5 times (with

potential optimizations up to 6.5 in the near future) faster

when compared with the IBM Power5, arguably the fastest

“heavy iron” processor specifically designed for the scien-

tific workload, to a factor of 20 on other processors.

Also, this paper has proven that the Cell BE processor,

although initially designed mainly for computer games and

animation, is a very promising architecture for scientific

workloads as well. Even though the simple architectural

design of its SPUs forces the user to consider a number

of low-level details, it offers good opportunities to achieve

high floating point rates: in our case we were able to reach

an impressive 64% of peak performance in double preci-

sion (9.3 Gflops/second) and almost 25% in single preci-

sion (equivalent to 50 Gflops/second). We have also shown

that the memory performance and the data communication

patterns play a central role in Sweep3D, being currently the

major bottleneck for this application. Most likely, other sci-

entific applications will behave similarly.
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