
Deadline-based QoS Algorithms for High-performance Networks∗

Alejandro Martı́nez1, Francisco J. Alfaro1, José L. Sánchez1, José Duato2

1DSI - Univ. of Castilla-La Mancha 2DISCA - Tech. Univ. of Valencia
02071 - Albacete, Spain 46071 - Valencia, Spain

{alejandro, falfaro, jsanchez}@dsi.uclm.es jduato@disca.upv.es

Abstract

Quality of service (QoS) is becoming an attractive fea-
ture for high-performance networks and parallel machines
because it could allow a more efficient use of resources.
Deadline-based algorithms can provide powerful QoS pro-
vision. However, the cost associated with keeping or-
dered lists of packets makes them impractical for high-
performance networks. In this paper, we explore how to
adapt efficiently the Earliest Deadline First family of algo-
rithms to the high-speed networks environments. The results
show excellent performance using just two virtual channels,
FIFO queues, and a cost feasible with today’s technology.

1 Introduction

Modern supercomputers and parallel machines put a lot
of pressure on the interconnection network. Nowadays,
low-latency and contention-free interconnection networks
are demanded for the execution of parallel applications.
Moreover, high bandwidth is also required to access stor-
age devices. In addition to these, there is also a need for
administration traffic used to configure and manage the ma-
chine. Finally, some low-priority traffic like backup copies
is needed. Therefore, there is a great variety of application
requirements in such environments.

The usual solution to cope with this variety of commu-
nication necessities is to overprovision the network. The
designers provide more resources than needed to ensure
meeting traffic requirements. Besides, to provide the dif-
ferent classes of traffic with their requirements, it is com-
mon to settle a network for each traffic class. For instance,
the recently-built supercomputer MareNostrum [12] imple-

∗This work was partly supported by the Spanish CICYT under
CSD2006-46 and TIN2006-15516-C04-02 grants, by Junta de Comu-
nidades de Castilla-La Mancha under grant PBC-05-005, and by the Span-
ish State Secretariat of Education and Universities under FPU grant.
1-4244-0910-1/07/$20.00 c©2007 IEEE.

ments a Myrinet network for parallel applications, a Gigabit
Ethernet for storage access, and a regular Ethernet for man-
agement purposes. Although Ethernet interfaces are quite
cheap nowadays, keeping three times the wires is complex,
costly, and power-consuming.

A subtler approach could be taken in the design of the
interconnection for such machines. A single network with
some quality of service (QoS) support could be used to pro-
vide each kind of traffic with its specific requirements. In
fact, some of the latest interconnection proposals incorpo-
rate some support for QoS. In the next section, we will intro-
duce the InfiniBand and PCI AS interconnection standards,
which include some QoS mechanisms.

The two main types of QoS support are per-traffic-class
and per-flow support. The first approach requires the clas-
sification of the traffic in traffic classes (TCs) and the as-
signment of one virtual channel (VC) per TC. The network
switches offer a traffic differentiation based on these TCs by
applying different scheduling algorithms at the VC level.
On the other hand, per-flow QoS support requires a flow
identifier to be put with each packet and per flow informa-
tion to be kept at each switch of the network. This second
approach is much more powerful, but it is also so complex
that it has never been implemented in a high-performance
environment, perhaps with the exception of ATM [6].

In this paper, we discuss how to obtain most of the ben-
efits of the per-flow QoS within the restrictions of high-
performance switches. More specifically, we will propose a
novel strategy to emulate the Earliest Deadline First (EDF)
family of algorithms by using a pair of FIFO queues.

The remainder of this paper is structured as follows. In
the following section the related work is presented. In Sec-
tion 3 we present our strategy to offer QoS support. Details
on the experimental platform are in Section 4 and the perfor-
mance evaluation is presented in Section 5. Finally, Section
6 summarizes the results of this study.

2 Related Work

In this section, we will review the state of the art in QoS
support in wired interconnects with a special attention to the
characteristics of per-flow QoS algorithms.

2.1 QoS support in packet networks

Over the last few years there has been extensive work on
how to schedule resources of a packet switch∗ to provide
guaranteed performance to traffic. The switch resources
that need to be scheduled are buffer space (usually at the
outgoing port) and link bandwidth. Both resources are man-
aged through a service discipline. Typically, packet switch
buffers are fairly large and support random access. When
buffers become full, packets are dropped. Thus, general
packet switches can introduce packet loss when their re-
sources are oversubscribed. Performance guarantees usu-
ally include bounds on packet loss, delay, jitter, and trans-
mission rate or throughput. A large number of service dis-
ciplines have been proposed (see [7] for an overview), each
one specifically targeted for providing certain types of guar-
antees.

The service disciplines operate at the flow level and
consequently can provide different QoS guarantees to in-
dividual flows. Examples of such flow oriented QoS ar-
chitectures are the QoS architecture of ATM [6] and the
Integrated-Services model [4] that was proposed for Inter-
net in the mid-90s. Since such per-flow scheduling can
prove a bottleneck as the number of flows grows, aggregate-
QoS architectures have been proposed where QoS is pro-
vided collectively to all flows belonging to a certain class
of service. In these environments, there are only a few such
classes of service, but flows now get only aggregate and not
individual QoS. An example of such a QoS architecture is
Differentiated Services [3], which is nowadays used to pro-
vide limited QoS in parts of the Internet.

2.2 QoS support in new high-speed inter-
connects

When compared with a generic packet switch, high-
speed interconnect switches exhibit some important differ-
ences, mostly because of their much simpler and compact
implementation. Firstly, flow control is commonly used to
throttle the incoming traffic and, thus, usually there are no
packet drops due to running out of buffer space. Buffers
themselves are smaller than what one would expect from a
generic packet switch. Furthermore, access to these buffers
is more restricted and random access is not possible due to

∗The terms packet switches and packet networks will be used to refer
to general networking technologies.

the strict time limitations. Similarly, the number of different
queues is limited.

InfiniBand was proposed in 1999 by the most impor-
tant IT companies to provide server systems with the re-
quired levels of reliability, availability, performance, scala-
bility, and QoS [8]. Specifically, the InfiniBand Architec-
ture (IBA) proposes three main mechanisms to provide the
applications with QoS. These are traffic segregation with
service levels, the use of up to 16 VCs and the arbitra-
tion at output ports according to an arbitration table. Al-
though IBA does not specify how these mechanisms should
be used, some proposals have been made to provide appli-
cations with QoS in InfiniBand networks [1].

On the other hand, the PCI Express Advanced Switching
(AS) architecture has been recently proposed as the natural
evolution of the traditional PCI bus [2]. It is a switch fab-
ric architecture that supports high availability, performance,
reliability, and QoS. AS ports incorporate up to 20 VCs
(16 unicast and 4 multicast) that are scheduled according
to some QoS criteria. Is is also possible to use a connection
admission control implemented in the fabric management
software.

These proposals, therefore, permit us to use several VCs
to provide QoS support. However, implementing a great
number of VCs would require a significant fraction of sili-
con area and would make packet processing slower. More-
over, there is a trend toward increasing the number of ports
instead of increasing the number of VCs per port [11]. In
general, the number of queues per port can have a signif-
icant effect on the overall complexity and cost of the in-
terconnect switch. It is important to attempt to provide ef-
fective QoS with a number of queues as small as possible.
Indeed, our proposal addresses this very effectively.

3 Efficient Architecture for Per-flow QoS
Support

We want to adapt efficiently the Earliest Deadline First
family of algorithms to a high-speed network. More specif-
ically, we will use a variation of the Virtual Clock [13] al-
gorithm. In our architecture, each packet will carry one tag,
the deadline, which is the cycle in which it is supposed to be
delivered to the final destination host. In order to compute
this, the sender host is responsible to keep some information
about the flows with origin in that host.

A flow would be a single connection, like a TCP connec-
tion or traffic from a single application. Each flow would
have the following parameters: source, destination, a fixed
route, and the information necessary to compute deadlines,
which usually would be average bandwidth, but may vary
depending on the type of flow, as we will see later.

In addition to deadline, packets have another tag while
they are at the sender host: the eligible cycle. This indicates

the earliest cycle in which a packet is allowed to get into the
network and it is not used in the switches. Therefore, it is
not transmitted in the header.

A cornerstone of our proposal is to avoid any book-
keeping of the flows at the switches. For scheduling, only
the information in the header of packets is used: the dead-
line and the routing information.

We use an admission control similar to what is proposed
for InfiniBand or PCI AS. Bandwidth reservation is per-
formed at a centralized point and no record is kept in the
switches. This makes the use of fixed routing mandatory, so
that packets use the route they have reserved.

On the other hand, we have to provide a connectionless
or unregulated service like UDP or ATM’s UBR for best-
effort traffic. In this case, we still propose to use fixed rout-
ing to avoid out-of-order delivery, which may happen with
adaptive routing. Although we use fixed routing, the ad-
mission control can ensure load balancing when assigning
paths, as opposed to deterministic routing, where there is
only a single path between a given pair of hosts.

For unregulated traffic, a generic flow record is kept in
the end-hosts, with the necessary parameters. In this case,
there is no bandwidth reservation and there is no guarantee
of delivery. However, if we want to support several classes
of best-effort traffic, we can configure several aggregated
flows, each one with a different bandwidth to compute dead-
lines.

3.1 Calculus of deadline

Taking into account the flow parameters, the packets are
stamped in the end-hosts with the deadline tag. In addition,
an eligible time tag is also used while the packet remains in
the interface. For most flows, deadline of packet Pi is

D(Pi) = maximum(D(Pi−1), Tnow) +
L(Pi)
BWavg

where L(Pi) is the length of the packet Pi, Tnow is the
host’s clock when packet comes from the application level,
and BWavg is the reserved average bandwidth. This com-
putation does not consider the number of hops that a packet
needs to reach its destination. However, this is fine in high-
performance networks, where base latency is very short.

Some specialized types of traffic require a different
method to compute bandwidth. Control traffic needs a la-
tency as short as possible but takes almost no bandwidth.
For this type of traffic, we would use no connection admis-
sion and BWavg would be the link bandwidth. In this way,
control traffic gets the maximum priority.

Multimedia traffic usually consists in bursts of packets
followed by silence periods. Let us assume that we want
to transmit a MPEG sequence. The average bandwidth is

400 Kbyte/s. Moreover, we know that the video sequence
consists in one video frame each 40 milliseconds and the
frame size can be between 1 and 120 Kbytes. An average
bandwidth assignation is not enough because during peak-
rate periods it would introduce intolerable delays. We could
use the maximum bandwidth (based on maximum frame
size) to generate deadlines, but two problems arise: first, if
the frame to be transmitted is short, we are introducing un-
necessary bursts of packets. Secondly, the latency of each
frame will vary a lot, since it will depend on the size of
frames.

We propose to use the following strategy: The user fixes
a desired latency per frame, for instance 10 milliseconds.
Upon reception of a new frame, we compute the number of
network level packets it will generate (for instance, if frame
size is 80 Kbytes and the MTU is 2 Kbytes, it will generate
40 packets). For each packet Pi, deadline is

D(Pi) = maximum(D(Pi−1), Tnow) +
10 msecs

Parts(Fi)

where Parts(Fi) is the number of packets generated by the
frame to which Pi belongs. In this way, every frame will
have a latency close to 10 milliseconds, independently of
frame size, and a smooth distribution of packets.

Another central element of our proposal is that the dead-
line of the packets is not recomputed at the switches. The
main reason is that the ideal implementation of a high-speed
switch is a single chip to minimize delays. That means that
silicon area is limited and there is no space for recording
information regarding all the flows traversing the switch.
Moreover, recomputing the deadline would introduce addi-
tional delay.

The use of eligible time is optional, since some traffic
classes do not tolerate being smoothed. When it is used,
typically for multimedia traffic, we propose to compute eli-
gible time of a packet as its deadline minus a fixed amount.
We have found that 20 microseconds works well in our tests.
In this way, we eliminate the bursts of packets that appear
when packets are injected as soon as they are available.

3.2 Packet scheduling

Ideally, each switch would schedule packets implement-
ing an EDF algorithm. However, searching for the packet
with the minimum deadline through all the buffers is not
practical. An alternative is to implement a heap buffer,
which always keeps the packet with the lowest deadline at
the top of the queue. A design for this is discussed in [9].
However, the associated cost is not practical for high-speed
switches with high radix (number of ports).

On the other hand, we have observed that, when traffic
is regulated (no over-subscription of the links), the switches

can just take into account the first packet at each input buffer
in arrival order. The idea is that traffic coming from the in-
terfaces has already been scheduled and this traffic is com-
ing in ascending order of deadline. This being so, it is
possible to just consider the first packet at each queue, in
the confidence that packets coming afterwards have higher
deadlines.

The behavior of the switch would be analogous to a sort-
ing algorithm: if the switch has as input ordered chains
of packets and has to produce at the output an ordered se-
quence, it only needs to look at the first packet of each input.

The main limitation of this algorithm is that packets may
not always come ordered from the interfaces. It may hap-
pen that when no more low-deadline packets are available,
a high-deadline packet is transmitted, especially if eligible
time is not being used. If the high-deadline packet has
to wait in a switch input queue, and other packets with
lower deadline are transmitted from the network interface,
they would be stored after the high-deadline packet in the
same queue. Thus, the arbiter would penalize the low-
deadline packets, because they would have to wait until
the high-deadline packet is transmitted. This will violate
our assumptions and degrade the service offered to the low-
deadline packets. We will analyze this problem and how to
attenuate it, later. Note that there is no chance for starva-
tion since traffic is regulated and there is enough bandwidth
guaranteed.

On the other hand, there is also unregulated (best-effort)
traffic that could interfere with the regulated traffic. This
is the reason why we propose to use two different virtual
channels: One for regulated traffic and the other for non-
policed traffic. The regulated traffic has absolute priority
over the best-effort traffic. Therefore, we can guarantee that
regulated traffic will not be delayed by congestion and still
accept best-effort traffic to make use of the remaining band-
width.

The organization of end-hosts also uses the structure of
two VCs. In the regulated traffic VC, there are two queues,
one feeding the other. In the first queue, packets are stored
in ascending eligible time. As soon as the first packet in the
queue is eligible, it goes to another queue where packets
are sorted according to ascending deadlines. Packets are
injected from this queue as soon as the link is available and
there are enough credits. On the other hand, packets in the
best-effort VC are also sorted by deadline. They are injected
only when the link is available, there are credits, and the
regulated traffic VC has no packets ready to inject (there
might be packets waiting for eligible time).

3.3 Clock synchronization

Precise clock synchronization between the end-hosts
would be needed for the viability of our proposal. However,

we can avoid synchronization with a simple strategy. The
deadlines we are computing consist in a base time value,
linked to local clock, plus some additional time to reach
the destination. By subtracting local clocks, we would have
the time to reach the final destination (TTD). This value has
the advantage of not needing any synchronization of clocks.
The host indicates that a packet has to reach its destination
before n milliseconds instead of the absolute time to do the
same.

The problem is that this value would change every clock
cycle, which is undesirable. However, we can reconstruct
a packet’s deadline by adding the local clock again. There-
fore, our strategy would be the following: Packets receive a
deadline in the hosts and are stored as usual. When a packet
is about to leave a host or switch, the TTD is computed:

TTDi = Di − Tlocal

where Tlocal is the local clock at the host or switch the
packet is leaving. When the packet arrives at the next
hop, the deadline is reconstructed adding to the TTD of
the packet the new local clock. This deadline is used for
scheduling locally and, when the packet is chosen to be
transmitted, a new TTD is computed and put in the header.

The only drawback of this proposal is that the CCR of
the header would be needed to be recomputed at each hop.
This is because a packet’s TTD will be changing with each
hop. However, other fields of the header also change with
each hop, for instance the pointer to the next hop in PCI
AS’s source routing, and so, recomputing of the CCR of the
header would be necessary anyway.

3.4 Reducing order errors

We have observed through simulation that the perfor-
mance achieved by the previous proposal is similar to hav-
ing full ordered queues. However, the latency of the most
demanding flows may be increased as much as 25% due to
order errors. To attenuate this effect, we propose an im-
provement to this proposal.

Figure 1. New buffer structure.

The key idea consists in splitting the regulated traffic VC
into two FIFO queues (Figure 1). One of these queues is the

Table 1. Traffic injected per host.
Name % BW Application frame Notes

Control 25 [128 bytes, 2 Kbytes] Small control messages
Multimedia 25 [1 Kbyte, 120 Kbytes] 3 Mbyte/s MPEG-4 traces
Best-effort 25 [128 bytes, 100 Kbytes] Self-similar internet-like traffic

Background 25 [128 bytes, 100 Kbytes] Self-similar internet-like traffic

ordered queue and the other is the take over queue. When
a packet arrives, its deadline is compared with the deadline
of the packet in the last position of the ordered queue. If
the new packet has a higher deadline, it is put in the ordered
queue. If the deadline is smaller, the packet goes to the
take-over queue.

The dequeuing algorithm is very simple: The packet
chosen to be transmitted is always the one with the small-
est deadline of both queue heads. In this way, we give low
deadline packets a chance to advance over packets with a
high deadline. With this algorithm the amount of order er-
rors is not completely eliminated, but greatly diminished:
the observed increase in average latency is now only 5%.

This improvement to the buffer ports does not introduce
out-of-order delivery, the demonstration can be found in an
appendix at the end of the paper. Note that out-of-order
delivery means that packets from a particular flow do not
arrive in the same order in which they were injected. As
opposed, when we talk about order errors, it means that
packets from different flows are put in a queue out-of-order
of deadline tags. Therefore, out-of-order delivery has to be
avoided because it would require re-order buffers at the end-
nodes, which are expensive. On the other hand, order error
simply means that sometimes the scheduler will not choose
the packet with the earliest deadline. In the latter case, some
packets would be delayed, but no special hardware would be
needed.

4 Simulation conditions

In this section, we will explain the simulated network
architecture. We will also give details on the parameters of
the network and the load used for the evaluation.

4.1 Simulated architecture

The network used to test the proposals is a butterfly
multi-stage interconnection network (MIN) with 128 end-
points. The actual topology is a folded (bidirectional)
perfect-shuffle. We have chosen a MIN because it is a com-
mon topology for clusters. The switches use a combined
input and output buffer architecture, with a crossbar to con-
nect the buffers. We use virtual output queuing (VOQ) at
the switch level, which is the usual solution to avoid head-
of-line blocking.

We will evaluate four different architectures:

• A traditional switch architecture with some QoS sup-
port. This is based on the PCI AS specification and
provides two VCs to distinguish between two broad
traffic categories. More VCs are possible with this
specification, but they are very unlikely in a final im-
plementation. This architecture will be denoted in the
figures as Traditional 2 VCs.

• An ideal switch architecture based on our EDF algo-
rithm. This implements two VCs (regulated and un-
regulated traffic), but each one is a heap queue which
always keeps at the top the packet with the highest
deadline. In the figures, it is called Ideal. Order er-
rors would not happen in this case but the implementa-
tion of this architecture would be unfeasible due to the
buffers.

• A simple switch architecture based on our first pro-
posal. This emulates the previous, but, since order er-
rors are possible, performance will be degraded. This
will be called Simple 2 VCs.

• The improved version of the previous architecture.
This implements the take-over queue proposed in Sec-
tion 3.4. In the figures it will appear as Advanced 2
VCs.

In all the cases, the switches implement 16 ports and 8
Kbytes of buffer per VC. In our tests, the link bandwidth is
8 Gb/s. The remaining parameter values are picked from the
AS specification. In general, all the parameters used in the
simulation are quite typical for high-speed interconnects.

4.2 Traffic model

Table 1 presents the characteristics of the traffic injected
in the network. We have considered a mix of QoS-requiring
traffic flows and best-effort flows. In this way, the workload
is composed of 2 different TCs: two QoS TCs and two best-
effort TCs.

We follow the recommendations of The Network Pro-
cessing Forum Switch Fabric Benchmark Specifications [5].
Control traffic models traffic from applications that demand
a latency as short as possible. Multimedia traffic consists

in actual MPEG video sequences, transmitted through the
network. The self-similar traffic is composed of bursts of
packets heading to the same destination. The packet size is
governed by a Pareto distribution, as recommended in [10].

5 Simulation results

In this section, the performance of our proposals is
shown. We have considered three traditional QoS indices
for this performance evaluation: Throughput, latency, and
jitter. Note that packet loss is not considered because no
packets are dropped due to the use of credit-based flow
control. We also show the cumulative distribution func-
tion (CDF) of latency, which represents the probability of
a packet achieving a latency equal to or lower than a certain
value.

 0

 10

 20

 30

 40

 50

 0 0.2 0.4 0.6 0.8 1

Traditional 2VC
Ideal

Simple 2VC
Advanced 2VC

A
ve

ra
ge

la
te

nc
y

(µ
s)

Normalized offered load

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000 10000

Traditional 2VC
Ideal

Simple 2VC
Advanced 2VC

Latency (µs)

C
D

F

Figure 2. Results for Control traffic.

In Figure 2, we can see the performance of the delay-
sensitive traffic class we are considering, Control traffic.
The most important result is that the EDF-based architec-
tures offer much better results in terms of latency. The CDF
results are obtained at an input load of 100%.

Obviously, the best results correspond to the Ideal ar-
chitecture. Our simplest proposal, Simple 2 VCs, has an
average increase of around 25% in average latency. On the
other hand, when using our Advanced 2 VCs proposal, the
difference is only 5%. It is also remarkable that maximum

latency values (the closing vertical line in the CDF figure)
are almost the same for Ideal and Advanced 2 VCs cases.

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 0.2 0.4 0.6 0.8 1

Traditional 2VC
Ideal

Simple 2VC
Advanced 2VC

A
ve

ra
ge

la
te

nc
y

(µ
s)

Normalized offered load

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000 10000

Traditional 2VC
Ideal

Simple 2VC
Advanced 2VC

Latency (µs)

C
D

F

Figure 3. Results for Video traffic.

Figure 3 shows the performance of Multimedia traffic.
Using the method we proposed to compute deadlines, the
average latency of video frames is almost exactly 10 mil-
liseconds (the value configured as desirable latency). Note
that latency results refer to full transfers and not to indi-
vidual packets (i.e. latency is for each frame of the video
sequence). Looking at the CDF of latency, we notice that
there is little variation in latency for EDF-based architec-
tures (the probability of a latency of 10 milliseconds is more
than 99%). On the other hand, latency can vary consider-
ably when using Traditional 2 VCs, which would introduce
a lot of jitter (not shown due to lack of space).

Finally, we show in Figure 4 the performance in terms
of throughput of the two best-effort classes we have consid-
ered. For the Traditional 2 VCs case both classes look the
same (traffic for VC 1) and, thus, receive the same perfor-
mance. On the other hand, the EDF-based architectures can
label each packet with deadlines according to the reserved
bandwidth of each flow. In this way, not only can we dif-
ferentiate multiple classes within a single VC, but we can
guarantee minimum bandwidth if we are careful assigning
weights to the different best-effort flows.

We can conclude that EDF-based architectures are
clearly superior to a traditional two classes QoS. Note that

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Traditional 2VC
Ideal

Simple 2VC
Advanced 2VC

T
hr

ou
gh

pu
t(

%
)

Offered load

(a) Best-effort

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Traditional 2VC
Ideal

Simple 2VC
Advanced 2VC

T
hr

ou
gh

pu
t(

%
)

Offered load

(b) Background

Figure 4. Results for best-effort traffic
classes.

the cost of these architectures is similar, except the Ideal
architecture. Using our proposals, the only difference is an
increase of 5% average latency for Control traffic.

6 Conclusions

In this paper, we explore how to adapt efficiently the Ear-
liest Deadline First family of algorithms to the high-speed
networks environments. As far as we know, no similar at-
tempt has been made since some adaptations of ATM, due
to the cost of using ordered buffers. On the other hand, our
proposal is an architecture which, using FIFO buffers, of-
fers almost the same performance, even for the most delay-
sensitive traffic.

We also compare our proposals with typical VC-based
QoS, as can be found in recent standards such as InfiniBand
or PCI AS. We see that, for similar cost in terms of the sil-
icon area, our proposals offer a much better performance.
In order to achieve something similar, it would be neces-
sary to implement many more VCs, but because this is not
affordable almost no final implementation includes them.

References

[1] F. J. Alfaro, J. L. Sánchez, and J. Duato. QoS in InfiniBand
subnetworks. IEEE Transactions on Parallel Distributed
Systems, 15(9):810–823, Sept. 2004.

[2] ASI SIG. Advanced switching core architecture specifica-
tion, 2005.

[3] S. Blake, D. Back, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An Architecture for Differentiated Services. In-
ternet Request for Comment RFC 2475, Internet Engineer-
ing Task Force, Dec. 1998.

[4] R. Braden, D. Clark, and S. Shenker. Integrated Services in
the Internet Architecture: an Overview. Internet Request for
Comment RFC 1633, Internet Engineering Task Force, June
1994.

[5] I. Elhanany, D. Chiou, V. Tabatabaee, R. Noro, and
A. Poursepanj. The network processing forum switch fab-
ric benchmark specifications: An overview. IEEE Network,
pages 5–9, Mar. 2005.

[6] A. Forum. ATM Forum traffic management specification.
Version 4.0, May 1995.

[7] R. Guerin and V. Peris. Quality-of-service in packet net-
works: basic mechanisms and directions. Comput. Net-
works, 31(3):169–189, 1999.

[8] InfiniBand Trade Association. InfiniBand architecture spec-
ification volume 1. Release 1.0, Oct. 2000.

[9] A. Ioannou and M. Katevenis. Pipelined heap (priority
queue) management for advanced scheduling in high speed
networks. In Proceedings of the IEEE International Confer-
ence on Communications (ICC’2001), 2001.

[10] R. Jain. The art of computer system performance analysis:
techniques for experimental design, measurement, simula-
tion and modeling. John Wiley and Sons, Inc., 1991.

[11] C. Minkenberg, F. Abel, M. Gusat, R. P. Luijten, and
W. Denzel. Current issues in packet switch design. In ACM
SIGCOMM Computer Communication Review, volume 33,
pages 119–124, Jan. 2003.

[12] G. Rodgers and P. Morjan. Blade cluster architecture. Tech-
nical report, IBM Systems Group - Barcelona Supercomput-
ing Center, Sept. 2005.

[13] L. Zhang. Virtual clock: A new traffic control algorithm for
packet switching networks. In In Proceedings ACM SIG-
COMM ’90, pages 19–29, Sept. 1990. Published as Special
Issue of Computer Communication Review, vol. 20, n. 4.

Appendix

In section 3.4 we have introduced a two-queue system
which models the high priority VC of an input or output
buffer. Now, we are going to prove that this system for the
QoS VC does not introduce out-of-order delivery. Note that
this is an important issue: in many high-speed standards
out-of-order delivery is explicitly forbidden (for instance, in
PCI AS). For that purpose, firstly we indicate the notation
in Table 2, introduce several initial hypotheses, and present
the enqueuing and dequeuing algorithms. Finally, we prove
some theorems.

Table 2. Notation
U Upper queue (Take over queue)
L Lower queue (Ordered queue)
Ui Packet at position i in the U queue. (i = 1, packet at the front of the queue)
Li Packet at position i in the L queue. (i = 1, packet at the front of the queue)
mU Number of packets in the U queue at a given moment
mL Number of packets in the L queue at a given moment
D(p) Deadline function. D(Li) is the deadline of the ith packet of the L queue
nF Number of packet flows
F 1, ..., FnF Packet flows
npj Number of packets of the jth flow

F j
npj

, ..., F j
1

Individual packets of the flow F j in the generation order and, thus, in arrival order. F j
1 is the packet at the

first position
Dep(p) Time at which packet p leaves the system
I(p) Arrival time of the packet p

Initial hypotheses Two conditions are accomplished by
every flow:

D(F j
k) < D(F j

k+1) 1 ≤ j ≤ nF , 1 ≤ k < npj (1)

I(F j
k) < I(F j

k+1) 1 ≤ j ≤ nF , 1 ≤ k < npj (2)

Intuitively, the previous expressions say that packets
from a flow arrive ordered at the system and they have in-
creasing deadlines.

Now, we will formally define the enqueuing and dequeu-
ing algorithms:

Definition 1 (Enqueuing algorithm) Enqueuing of an in-
coming packet p works as follows:

• If both queues are empty, store p in the L queue.

• If there are mL packets in the L queue

– If D(p) ≥ D(LmL
) store p in the L queue.

– Else, store p in the U queue.

Note that incoming packets always have space in the sys-
tem due to the credits flow control. Also note that the two
queues can dynamically take all the memory allowed for the
VC and, therefore, it is not possible for a queue to become
full while there is space in the other queue.

With respect to the flow control mechanism, the pos-
sibility could arise that if two packets are available and
D(U1) < D(L1) but L1 is smaller (in bytes) than D(U1)

and there are only credits for L1, the latter would be for-
warded out of order. This would corrupt the dequeuing dis-
cipline, but we prevent this by imposing the condition that
only the packet with the smallest deadline of the potential
two available is checked for credits and, thus, for transmis-
sion.

Definition 2 (Dequeuing algorithm) The algorithm for re-
moving packets works as follows:

• If both queues are empty, there is no packet to choose.

• If there are packets only in the L queue, L1 is chosen.

• If there are packets in both queues, the packet with the
smallest deadline between D(L1) and D(U1) is cho-
sen.

• A situation where there are only packets in the U queue
is not possible (Lemma 1).

Lemma 1 A situation where there are only packets in the U
queue is not possible

Proof: The empty L queue and the U queue with packets
cannot be obtained from the two empty queues since the en-
queuing algorithm indicates that if the two queues are empty
and a packet arrives the latter is stored in the L queue.

Hence, an empty L and U with packets could only arise
from a situation in which both queues have packets and de-
queuing takes place in both. However, from Theorem 2,
the packet with the highest deadline is in the L queue and
thus all the packets in the two queues will leave before the
former and U will become empty before L. �

Definition 3 (Out-of-order delivery) As we mentioned ear-
lier, there would be out-of-order delivery if packets from an
individual flow were to leave the system in a different order
from arrival order. Therefore, there is out-of-order delivery
iff

∃ j, k / Dep(F j
k) > Dep(F j

k+1) 1 ≤ j ≤ nF , 1 ≤ k < npj

In the following, we are going to prove several theorems,
some of them more or less intuitive, which will permit us
to prove that, given the previous enqueuing and dequeuing
algorithms, out-of-order delivery is not possible in our pro-
posed queue system.

Theorem 1 Packets in the L queue are in deadline order.

D(Li) ≤ D(Li+1) 1 ≤ i < mL

Proof: By reductio ad absurdum: if packets in the L queue
are not in deadline order

∃ i / D(Li+1) < D(Li) 1 ≤ i < mL

but that would contradict the enqueuing algorithm, which
only stores a packet in the L queue when its deadline is
higher than or equal to that of the last packet in the queue.
Since packets can only leave the queue in a FIFO discipline,
this order is preserved by the dequeuing algorithm. �

Theorem 2 The packet with the highest deadline in the two
queues is always the last packet in the L queue.

D(Li) ≤ D(LmL
) 1 ≤ i < mL

D(Uj) < D(LmL
) 1 ≤ j < mU

where mL is the number of elements in the L queue.

Proof: The first part of the theorem follows from Theorem
1.

On the other hand, packets in the U queue always have
a smaller deadline than the last element of the L queue.
Following the enqueuing algorithm, in the event of a new
packet arriving with a larger deadline than the maximum,
it would be stored in the last position of the L queue and
would become the new maximum deadline.

Finally, LmL
is always the last element to leave the sys-

tem. No packet Li, i �= mL, in the L queue can leave earlier
due to the FIFO discipline. On the other hand, since all the
packets in the U queue have a smaller deadline than LmL

(as we have proved in the previous paragraph), they can-
not leave earlier than it with the dequeuing algorithm given,
which always chooses the packet with the minimum dead-
line.

�

Theorem 3 There is no out-of-order delivery. Formally,

Dep(F j
k) < Dep(F j

k+1) 1 ≤ j ≤ nF , 1 ≤ k < npj

Proof: Since arrival of packets is ordered, conflicts can
only arise if F j

k+1 manages to overcome F j
k while it is still

waiting at the system. That means that we have to study
the cases where both packets are stored in the queues. Let’s
analyze the different possible cases:

• When they arrive, both F j
k and F j

k+1 go to the same
queue, either L or U . In this case, they leave in arrival
order because both U and L queues are FIFO queues.
Since they arrived ordered (Equation 2), they leave or-
dered.

• Upon arrival, F j
k goes to the L queue and later F j

k+1

goes to the U queue. This may happen if D(F j
k) is

the maximum deadline at the arrival time, but before
of the arrival of F j

k+1 at least one packet p arrives with

D(p) > D(F j
k+1).

From Theorem 1 we know that the L queue is ordered
and when F j

k+1 is ready to leave, it means that its dead-
line is smaller than that of any packet in the L queue.
Since D(F j

k) < D(F j
k+1) (Equation 1), it is sure that

packet F j
k already left and the order is preserved.

• When they arrive, F j
k goes to the U queue and later

F j
k+1 goes to the L queue. It may happen if D(F j

k) is

smaller than the maximum but D(F j
k+1) is larger.

Let LmL
be the last packet in the L queue when F j

k is
stored in the U queue. From Theorem 2, LmL

has a
higher deadline than any packet in the U queue at that
moment, including F j

k . Therefore, it will leave later
than all those packets: to leave earlier it would need
to be compared with a packet from the U queue with
a higher deadline, but this is not possible. In conse-
quence, it is true that:

Dep(F j
k) < Dep(LmL

)

Since F j
k+1 is positioned in the L queue behind LmL

(maybe with other packets between), it cannot leave
earlier (FIFO queuing) and, therefore, it has to leave
after F j

k :

Dep(LmL
) < Dep(F j

k+1)

Dep(F j
k) < Dep(LmL

) < Dep(F j
k+1)

⇒ Dep(F j
k) < Dep(F j

k+1)

�

