
Packet Reordering in Network Processors

S. Govind1, R. Govindarajan1,2 and Joy Kuri3
1Supercomputer Education and Research Centre

2Dept. of Computer Science and Automation
3Centre for Electronics Design and Technology

Indian Institute of Science
Bangalore 560012, India

{sgovind@hpc.serc, govind@serc, kuri@cedt}.iisc.ernet.in

Abstract

Network processors today consists of multiple parallel pro-
cessors (microengines) with support for multiple threads to
exploit packet level parallelism inherent in network work-
loads. With such concurrency, packet ordering at the output
of the network processor cannot be guaranteed. This pa-
per studies the effect of concurrency in network processors
on packet ordering. We use a validated Petri net model of a
commercial network processor, Intel IXP 2400, to determine
the extent of packet reordering for IPv4 forwarding applica-
tion. Our study indicates that in addition to the parallel pro-
cessing in the network processor, the allocation scheme for
the transmit buffer also adversely impacts packet ordering.
In particular, our results reveal that these packet reordering
results in a packet retransmission rate of up to 61%. We ex-
plore different transmit buffer allocation schemes namely,
contiguous, strided, local, and global which reduces the
packet retransmission to 24%. We propose an alternative
scheme, Packet Sort, which guarantees complete packet or-
dering while achieving a throughput of 2.5 Gbps. Further,
Packetsort outperforms the in-built packet ordering schemes
in the IXP processor by up to 35%.

1 Introduction
In recent years there has been an exponential growth in In-
ternet traffic leading to increasing network bandwidth re-
quirements which has resulted in stringent processing re-
quirements on network layer devices like routers. Present
backbone routers on OC 48 links (2.5Gbps) have to pro-
cess four million minimum-sized packets per second. In
addition, the processing requirements on the routers have
increased significantly, with a need to support encryp-
tion/decryption of data, intelligent routing, and quality of

1-4244-0910-1/07/$20.00 c©2007 IEEE.

service guarantees at line rates. As a consequence, appli-
cation specific processors in routers (network processors)
have become the core element in design of routers.

Commercial network processors employ multiple parallel
processors (microengines) to exploit packet level paral-
lelism inherent in network workloads. This enables routers
to support OC 48 line rates [6]. Further, each microengine
supports multithreading and hence processes multiple pack-
ets to achieve efficient utilization of resources. Since pack-
ets can get allocated to threads in different microengines,
packet order at the output of the network processor can-
not be guaranteed. Certain network processors have in-built
schemes to prevent reordering. For example the IXP series
of processors use Inter Thread Signaling (ITS) and Asyn-
chronous Insert Synchronous Remove (AISR) to prevent
reordering. However, earlier works on performance eval-
uation of NPs do not analyze the impact of these schemes
on the NP throughput. Similarly earlier work on packet re-
ordering in routers [3] [10] [12], do not consider the impact
of the network processor architecture on packet reorder-
ing/retransmission.

This paper analyzes the impact of NP architecture on packet
reordering. Our results indicate that ITS and AISR can
cause a significant degradation in the throughput (2.3 Gbps
for ITS and 1.1 Gbps for AISR). Hence, we explore differ-
ent ways to reduce reordering in IXP processors. We use
a validated Petri net model of the Intel IXP 2400 processor
running the IPv4 [1] forwarding application. The Petri net
model captures the packet flow from end-to-end , i.e., from
receive FIFO to transmit FIFO. This truly models the inter-
action between RFIFO/TFIFO and DRAM, unlike many of
the earlier studies which assume packets to be resident in
DRAM [17] [4]. A salient feature of the model is its ability
to model the processor, application and their interaction in
sufficient detail. The Petri net model is validated using the
Intel SDK 3.51 for IXP 2400 architecture [8].

The Petri net model is then extended for multiple hops. The
reordering and retransmission are measured as the number
of duplicate acknowledgments sent by the destination. We
report results for 1, 5, and 10 hops. We observe that the
reordering/retransmission increases non-linearly with the
number of hops. Our results indicate that the parallel ar-
chitecture of the network processor can severely impact re-
ordering and can cause up to 61% retransmission in a 10
hop scenario. We observe that in addition to reordering due
to parallel processing, transmit buffer allocation for each
thread in a microengine severely impacts packet reordering.
In order to reduce the packet reordering, we explore dif-
ferent buffer allocation schemes, namely, global, local, and
strided buffer allocation. These schemes involve different
amount of synchronization and hence incur a performance
penalty of varying degree. We evaluate the trade off be-
tween throughput and retransmission for various buffer al-
location schemes for different packet sizes using out Petri
net model.

Further, our results indicate that packet reordering reduces
for a network processor with fewer number of microengines
without sacrificing the performance (2.96 Gbps). This is
because the throughput of the network processor saturates
beyond a total of 16 threads [6]. Based on this observation
we propose a scheme, packet sort, in which a few micro-
engines/threads are dedicated to sort the packets in-order
at the transmit buffer side. Packet sort is able to support
a line rate of up to 2.5 Gbps without any packet reorder-
ing. Our results indicate that Packet sort achieves a signifi-
cant throughput improvement, of up to 35% over the in-built
schemes in the IXP, namely, ITS and AISR.

In the following section we provide an overview of the IXP
architecture. Section 3 describes packet reordering in the
IXP architecture. In Section 4, we present different ways
to reduce packet reordering and evaluates them. Section
5 reviews the related work in this domain and Section 6
provides concluding remarks.

2 Background

The architecture of IXP 2400 processor consists of an Xs-
cale core, eight microengines, external memory (DRAM
and SRAM), and application specific hardware units like
hash and crypto unit [7]. The Xscale is a 32 bit RISC
processor, used to handle control and management plane
functions [16] (e.g., routing table update) and to load the
microengine instructions. IXP 2400 contains eight 32 bit
microengines each running at 600 MHz. Each microengine
contains eight hardware contexts, for a total of 64 threads.
There is no context switch overhead. There are 256 pro-
grammable general purpose registers in each microengine

equally shared between the eight threads. The IXP pro-
cessor provides supports for off-chip SRAM and DRAM.
The DRAM is used for packet buffering and SRAM stores
state table information like routing table. The IXP chip has
a pair of FIFOs, Receive FIFO and Transmit FIFO, used
to send/receive packets to/from the network ports, each of
size 8 KB. A dedicated data path exists between the micro-
engines and DRAMs to the FIFOs for fast data transfer.

Next we describe packet flow in IXP processors. Packets ar-
rive from the external link to the input ports and get buffered
at the input port buffers. Packets are then transferred to the
Receive FIFO (RFIFO) of the network processor through a
high speed media interface. When a thread in a microengine
is available, it takes control of the packet and transfers the
packet from the RFIFO to the DRAM. The packet/packet
header is read from the DRAM by the corresponding thread.
The thread processes the packet header, performs an address
lookup for the next hop, and writes back the new packet
header to the DRAM. Next the thread places the packet in
the Transmit FIFO of the network processor and writes the
packet to the corresponding output port buffer through the
media interface. The thread is then freed and the packet is
forwarded to the next hop through the external link.

3 Packet Reordering

When packets belonging to a single flow, having the same
source and destination IP address and port number, arrive at
the destination in an order different from the sequence or-
der, we say that the packets are reordered. Packet reorder-
ing is a well known phenomenon in the Internet [2] [3].
Studies on backbone traffic measurement [5] suggest that
TCP accounts for 80% of the Internet traffic. When packets
get reordered, the TCP receiver begins to generate dupli-
cate ACKs. On receiving multiple duplicate ACKs (typi-
cally 3), the TCP sender concludes that packet drops have
occurred due to congestion. The Congestion Avoidance al-
gorithm [14] now kicks in. According to the Congestion
Avoidance and Fast Retransmit algorithms [14], the sender
retransmits the packets for which it has not received ACK.
Further, it halves the transmit window size. Thus the effect
of reordering is not only the retransmission of packets that
are already transmitted but also an unnecessary reduction of
the sender’s congestion window leading to under-utilization
of the network resources.

3.1 Reordering in Network Processors

In this section we explain NP induced packet reordering.
Consider the following scenario shown in Figure 1. Pack-
ets P1, P2, P3, P4 of the same flow arrive at the receive
buffer (RBUF) of the network processor in order. Pack-
ets are allocated to threads in different microengines in the

ME2

T4

P14

T3

P10

T1

P2

T2

P6

ME3

P15

T3 T4

P11

T2

P7

T1

P3

ME4

P16

T3

P12

T2

P8

T1

P4

T4

P1P2P3P4..P5

ME1

T1 T3 T4

P13P9

T2

P5P 1

P3 P5...P1 P2 P4

TFIFO

PACKET ARRIVAL

RFIFO

Figure 1. Packet Reordering in Network Pro-
cessors.

following way : P1, P2, P3, P4 are allocated to ME1-T1
(Microengine1-Thread1), ME2-T1, ME3-T1 and ME4-T1
respectively. Now packet P1, being processed by ME1-T1,
can get delayed with respect to P2, P3, P4. This can happen
due to various reasons, e.g., processing of other threads, or
pending memory requests in DRAM FIFO. So the thread
ME1-T1 completes the processing of P1 only after ME2-
T1, ME3-T1, and ME4-T1 have processed their respective
packets. So packet P1 is delayed with respect to P2, P3,
P4 and is transmitted only after P2, P3, P4 have been for-
warded. This may result in a retransmission of P1. This
example explains how the concurrent processing of packets
can affect the ordering of packets. Note that multiple micro-
engines is a common feature of the network processor and a
network processor such as the IXP 2400 [7] has 64 threads
and hence can process up to a total of 64 packets.

3.2 Transmit Buffer Induced Reordering

In this section we explain how packet order can be affected
by the transmit buffer in the IXP architecture. Transmit
buffer is a shared resource in the IXP architecture. So all
the threads compete for a common transmit buffer space.
Hence, to ensure proper access of the transmit buffer, all
threads should execute mutual exclusion operation. This, as
reported in Section 3.6, results in a significant drop in the
throughput (62% drop in the transmit rate). Hence transmit
buffer locations are allocated a priori to different threads.
However, the transmit buffer dequeues packets in a strict
FIFO order. This aggravates packet reordering as illustrated
in the following example.

We consider a contiguous buffer allocation where different
threads in different microengines are allocated contiguous
space in the transmit buffer. More specifically, we will as-
sume that ME1-T1 is allocated the first 64 bytes, ME1-T2
is allocated the next 64 bytes and so on (refer to Figure 2).
Packets P1, P2, P3, P4 from flow F1 arrive strictly in that
order in the receive buffer. Assume that P1, P2, P3, P4 are

.

.

.

ME2 − T2

ME8 − T8

 ME1 − T 2

 ME1− T4

ME1 − T5
ME1 − T6
ME1 − T8

ME2 − T1

P1

 ME1 − T3

ME8 − T1
P2

TFIFO2
TFIFO3
TFIFO4
TFIFO5

TFIFO6
TFIFO7
TFIFO8
TFIFO9

TFIFO10

TFIFO1

TAIL

HEAD ME 1− T 1

TRANSMIT BUFFER

Figure 2. Transmit Buffer Reordering.

allocated to ME1-T1, ME2-T1, ME3-T1, and ME4-T1 re-
spectively. After processing by different microengines, the
packets P1, P2, P3, and P4 are stored in TBUF1, TBUF9,
TBUF17 and TBUF 25 respectively. However, as men-
tioned earlier, packets are dequeued in a strict order of the
transmit buffer location. Thus, before P2 is dequeued from
TBUF9 location, other packets from TBUF2-TBUF8 will
be dequeued. If packets from the same flow as P2 are allo-
cated to threads in microengine 1, they will get forwarded
before P2, causing the packet reordering problem. Hence,
the transmit buffer can independently induce reordering.
Note that in this example even if packets P1, P2, P3, and
P4 complete in the same order, the dequeuing of packets
from the transmit buffer causes reordering.

3.3 Packet Ordering Mechanisms in IXP

The IXP processor supports the following two mechanisms
to maintain packet order in the network processor.

Inter Thread Signaling (ITS): In this mechanism threads in
the IXP processor perform the start and finish the tasks of
IPv4 forwarding sequentially. The packet processing func-
tions are done in parallel and independently across all mi-
croengines. The sequential processing at the beginning and
at the end of IPv4 ensures that packets are allocated in
the transmit buffer and transmitted out in-order. So each
thread is allocated a packet in sequential order. Assume that
packets P1 and P2 arrive in the system in that order. Fur-
ther, ME1-T1 is assigned P1 and ME1-T2 is assigned P2.
This assignment occurs in a sequential order, across all the
threads in the processor using Inter Thread Signaling (ITS).
Each threads waits for a signal to start the sequential task,
performs the allocation of packet or transmission of packet,
and signals the neighboring thread. For example, ME1-T1
signals ME1-T2 and ME1-T8 signals ME2-T1.

Asynchronous Insert Synchronous Remove (AISR): In this
scheme, the packet forwarding is divided into four stages
namely, packet buffering stage, packet processing stage,
reordering stage, and transmit stage. In the initial stage,

namely the packet buffering stage, every packet is assigned
a sequence number and buffered in the memory (DRAM).
The sequence number is maintained for all the packets ar-
riving in the system. The sequence number of a newly ar-
riving packet in the system is one greater than the previ-
ous packet. After the packets are assigned sequence num-
bers, the packet processing stage processes packets inde-
pendently and passes the packet handler to the next stage,
the reordering stage. A counting sort of the packet han-
dler is carried out by the reordering block to restore packet
ordering. Here the packets are also assigned different trans-
mit buffer addresses. This is passed on to the last stage, the
transmit stage. The transmit block, moves the packet out of
the DRAM to the network interfaces.

3.4 Petri Net Model for IXP 2400

We develop a Petri net model for IXP 2400. Here we briefly
describe the Petri net model; a more detailed description of
the model and the validation is given in [6].

3.4.1 Base Model

In this section, first, we describe a Petri net model of the
IXP 2400 architecture running the IPv4 forwarding applica-
tion [1] for a single hop (refer to figure 3). For clarity, only
a part of the model that captures the flow of packets from
the external link to DRAM through the MAC is shown. The
firing time of a timed transition in our model takes either
a deterministic or exponentially distributed values (over a
mean).

The place INPUT-LINE represents the external link. Pack-
ets arrive at IMAC, the input MAC, from the external link
at line speed. If an input port (IPORT) in the MAC is free
and if there is sufficient MAC memory, i.e., at least a to-
ken in IMAC, the packet gets buffered in MAC. A token in
RMACMEM indicates that a packet has been buffered in the
MAC. If a thread is free, denoted by a token in THREAD,
it takes control of the packet and transfers the packet to the
receive buffer (RFIFO) in the IXP chip. The initial mark-
ing of place THREAD denotes the total number of threads
in a microengine. If the microengine is free, represented by
a token in UE, the thread executes for UE-PROCESSING
amount of clock cycles, and moves the packet from RFIFO
to DRAM. The thread swaps out, denoted by the arc from
SWAP-OUT to UE, after initiating a memory transaction
by placing the request for memory access in the micro-
engine command queue (UE-CMD-Q). The availability of
a free entry in the command queue is denoted by a token in
the place UE-CMD-Q. The memory request is then moved
from UE-CMD-Q to DRAM-Q through the command bus
arbiter (CMD-BUS). The memory request gets processed by
DRAM and a token is placed in DRAM-XFER indicating the

DRAM

UE

RFIFO

THREAD

RMACMEM

IMAC

LINE_RATE

IPORT

INPUT−LINE

MAC−FIFO

UE−RFIFO

UE−PROCESSING

SWAP−OUT

MEM−R1

UE−CMD−Q

DRAM−Q

WAITCMDBUS1

CMD−BUS

MV−DQ

MEM−R1

RFIFO−DRAM

DRAM−XFER

Figure 3. Petri Net Model for IPv4 on IXP2400

completion of the memory operation.

The places UE, DRAM, CMD-BUS represent conflicts, i.e.,
there can be two or more events competing for a common
resource. Conflicts are resolved by assigning probabili-
ties to the conflicting events. Our Petri net model assigns
equal probabilities for accessing shared resources. Further,
to model TCP flows, each token has been assigned a tuple
consisting of a flow-id and packet-id. This tuple uniquely
identifies each packet. This has been incorporated in CNET.

We use colored Petri nets for modeling multiple micro-
engines. The processing done by each microengine (de-
scribed in the earlier subsection) is represented by a color.
The number of microengines is represented by tokens, of
different colors, in the place UE .

3.4.2 Extensions to Multiple Hops

Earlier work [2] [10] on reordering in routers studied the
reordering in a single router. This however ignores the im-
pact of a multi hop scenario. Packet reordering induced

ROUTER 2

SOURCE 2 SOURCE 3

DEST 2 DEST 3

SOURCE 1 ROUTER 1 DEST 1
IXP 2400 IXP 2400

Figure 4. Simulated Network Topology.

by each router can cumulatively add up, leading to a sig-
nificant degradation in the TCP throughput. Packets in the

Internet traverse, on an average, 16 hops to reach the des-
tination [11]. We have simulated a network topology (de-
picted in Figure 4) with multiple routers. We assume that
each router in the above topology uses IXP2400 to forward
packets. The multi hop environment is incorporated by ex-
tending the IXP 2400 Petri net model, where the output of
one router (one Petri net model) is given as input to the next
router.

We measure packet reordering for one flow, between
SOURCE 1 and DEST 1. Packets from other flows are used
to simulate the network workload in the router. To reduce
the complexity of the simulator and the time taken to sim-
ulate, we use the traffic going out of one router itself as the
traffic from other sources/routers. This is reasonable since,
in the steady state, the amount and characteristics of traf-
fic leaving a router is similar to the traffic entering the next
router. Hence, in our simulation, we model only multiple
flows from a single source to destination through multiple
routers; but we measure reorder/retransmit rates for 1 out of
n flows (we use n = 10), leaving the other (n-1) flows to
model the network traffic entering /exiting the router in the
multiple hop. This models a real network scenario where
each router forwards packets to different destinations.

3.5 Performance Metric

In our performance evaluation, we report reordering and re-
transmission rates as measures of packet reordering. Re-
ordering is measured as the number of duplicate ACKs that
will be sent by the destination back to the source. Retrans-
mission corresponds to the number of retransmission pack-
ets where 3 or more duplicate ACKs cause a retransmission.
Both reordering and retransmission are reported as a per-
centage of the total number of packets being transmitted.
We use packet forwarding throughput (Gbps) as a measure
of the network processor performance.

3.6 Simulation Methodology

We have developed Petri net model for IPv4 running on IXP
2400. In order to take into account flow information used in
determining packet sequence, each token is given two dis-
tinct attributes, a flow number and a sequence number. The
Petri net model is simulated using CNET, a Petri net sim-
ulator [18]. We simulated up to 100,000 packets in each
simulation. In order to validate the Petri net results, we have
implemented IPv4 in MicroengineC [9], a high level pro-
gramming language for Intel network processors and exe-
cuted on SDK 3.51 [8]. The validation of the model is per-
formed for different processor parameters. In this work, we
validate the Petri net model of IXP 2400 for reordering and

We observe in our earlier work [6] that the throughput stabilizes for
100,000 packets.

retransmission rates for a single hop for different flow sizes.
We assume a contiguous buffer allocation in the validation.
Further, we assume a packet size of 64 B and each flow to
contain a fixed number of packets. Although we consider
flow sizes of 640B, 6.4KB and 64KB, we use 6.4 KB as
the default flow size which is also the the average flow size
reported in the Internet [11].

We observe in our earlier work [6] that the IXP 2400 can
support a maximum line-rate of 3 Gbps for IPv4 applica-
tion. Hence we evaluate the performance of the IXP 2400
for a 3 Gbps line-rate. Note that this rate is higher than the
maximum line rate currently supported (2.5 Gbps for OC-
48) in routers. Further, we do not model the network flow
of ACK packets (from destination to source). Nor do we
assume rate reduction at source on retransmission.

Table 1 shows the comparison of reordering and retransmis-
sion rates obtained from the Petri net (CNET) and SDK sim-
ulations for a single hop. Further, the validation has been
performed for different flow sizes. We observe that the re-
ordering and retransmission rates obtained from the Petri
net model closely match the SDK simulations for different
flow sizes. A detailed description of validation of the Petri
net model for different processor parameters can be found
in [6] and is not described here due to space constraint.

3.7 Results

Figure 5 shows reordering and retransmission rates for dif-
ferent packet sizes. We observe that the reordering and re-
transmission rates increases with the number of hops, irre-
spective of the packet size. Further, for a 64 B packet size,
the percentage of retransmitted packets is as high as 61% for
10 hops. However, for a packet size of 512 B, the average
packet size in Internet [11], the reordering and retransmis-
sion rates are much lower (46% and 14% respectively). This

(a) Reordering (b) Retransmission

Figure 5. Packet Reordering in NP.

occurs as only 8K/512=16 packets can be buffered at the re-
ceive buffer at any given time in case of a 512 B packet size;

Flow Size=640B Flow Size=6.4KB Flow Size=64KB
Reorder Rate Retrans. Rate Reorder Rate Retrans. Rate Reorder Rate Retrans. Rate

CNET 31.7% 5.8% 35.85% 8.35% 36.36% 9.05%
SDK 32.4% 4.7% 33.4% 7.1% 33% 8.2%

Table 1. Petri Net Model Validation

whereas with a packet size of 64 B as many as 128 packets
can be buffered. So only 25% of the total number of threads,
i.e., 16 out of 64 threads are busy in the IXP processor. This
reduces the extent of concurrent processing and correspond-
ingly the packet retransmission in the network processor.

Although the retransmission rate is much lower for 512 B
packets compared to that of 64 B, a 14% retransmission is
still very high [10]. Earlier studies [10] indicate a retrans-
mission greater than 10% can result in significant reduction
(up to 60%) reduction in packet throughput. For a 16 hop
network, the average number of hops for packets in Internet,
the retransmission rate can further aggravate.

4 Reducing Packet Reordering

4.1 In-built schemes in the IXP Processor

Table 2 also reports the performance of in-built schemes,
namely, ITS and AISR supported by IXP. We implement
AISR with 1 microengine performing the buffering oper-
ation, 4 microengines performing the packet processing
block, 1 microengine executing the reordering block, and
2 microengines running the transmit block. The ITS runs
totally parallel, with threads in all microengines performing
the complete IPv4 forwarding.

Scheme Throughput (Gbps)
SDK CNET

ITS 2.3 2.1
AISR 1.1 0.960

Table 2. Performance of ITS and AISR
Schemes

It is interesting to note that AISR performs poorly as com-
pared to the other schemes. While the ITS is able to support
a line rates of 2.3 Gbps which is close to OC 48 line rates
(2.5 Gbps), the AISR supports only a line rate of 1.1 Gbps.
This occurs as there are only 8 threads buffering the packets
to the DRAM, the first stage in AISR. This coupled with
the saturation of the DRAM result in a lower throughput.
With an increase in the number of threads to 16, we ob-
serve that the throughput drops to 0.9 Gbps since a global
synchronization needs to be done across all the 16 threads.
While our implementation of AISR may not be the most ef-
ficient, we observe that the maximum possible throughput

with only one of the three stages, viz., the receive block of
AISR is 2.1 Gbps. Hence the AISR throughput is limited to
a maximum of 2.1 Gbps.

Thus in-built schemes AISR and ITS cause a sufficient
degradation in throughput (63% and 23% respectively).
Hence, in order to reduce packet reordering and its impact,
we explore a few transmit buffer allocation schemes, as well
as the impact of other architectural parameters.

4.2 Buffer Allocation Schemes

The transmit buffer allocation, as observed in Section 3.2,
can independently induce packet reordering. Hence, we ex-
plore the following transmit buffer allocations to reduce re-
ordering.

Global Buffer Allocation: In this scheme (depicted in Fig-
ure 6(a)), the competing threads are allocated transmit
buffer space using global synchronization, a mutual ex-
clusion operation. The mutual exclusion operation is per-
formed across all threads in all microengines. The mutex
variable is stored in the scratch pad as it is common to all
the MEs. Since synchronization is performed across all the
microengines this can result in a drop in the throughput.

Local Buffer Allocation: In this scheme, shown in Figure
6(b), contiguous sets of locations are allocated to different
microengines. But threads within a microengine compete
for a common chunk allocated to that microengine through a
mutual exclusion operation. The transmit buffer is allocated
by performing a mutual exclusion operation locally within
a microengine. There is one mutex variable for each mi-
croengine. Since only threads within a microengine share a
single mutex variable, the overheads are relatively low com-
pared to the global buffer allocation scheme.

Strided Buffer Allocation: This scheme (refer to Figure
6(c)), allocates buffers to microengines and threads a priori.
However, unlike the contiguous case, the buffer is allocated
in a strided way. The stride is dependent on the number of
active microengines. The threads ME1-T1, ME2-T1, · · · ,
ME1-T2 place packets in TBUF1, TBUF2,..,TBUF9 re-
spectively.

A disadvantage of contiguous and strided allocation, as
compared to local or global buffer allocation, is that they
assume a fixed buffer size. In our study we assume a packet

TBUF 5

TBUF 4

TBUF 3

TBUF 2

TBUF 6

TBUF 7

TBUF 8
TBUF 9

TBUF 10

.

.

.

TRANSMIT BUFFER

TBUF 1
ME 1− T 1

 ME1 − T 2

 ME1 − T4

ME1 − T5

ME1 − T6

ME1 − T7

ME1 − T8

ME2 − T1

ME2 − T2

ME8 − T8

SYNCH

.

.

.

.

.

.

..

.

HEAD

TAIL

(a) Global

TBUF 5

TBUF 4

TBUF 3

TBUF 2

TBUF 6

TBUF 7

TBUF 8
TBUF 9

TBUF 10

.

.

.

TRANSMIT BUFFER

TBUF 1

 ME1 − T 2

ME 1− T 1

SYNCH

SYNCH

ME2 − T1

ME2 − T2

ME2 − T3

 ME1 − T3

ME1 − T4

ME2 − T4

TAIL

HEAD

.

.

.

.

.

.

.

(b) Local

TBUF 5

TBUF 4

TBUF 3

TBUF 2

TBUF 6

TBUF 7

TBUF 8
TBUF 9

TBUF 10

.

.

.

TRANSMIT BUFFER

TBUF 1ME 1− T 1

ME5 − T1

ME6 − T1

ME7 − T1

ME8 − T1

ME1 − T2

ME2 − T2

ME8 − T8

 ME4 − T1

 ME3 − T 1

 ME2 − T 1

(c) Strided

Figure 6. Different Transmit Buffer Allocation Schemes.

size of 64 B (as in DoS attack, worst case scenario) [6] [13],
or 512 B (average packet size) [11]. In a general situation,
as the buffer size may vary from minimum to maximum
packet size, a buffer size equal to the maximum packet size
(1.5 KB) needs to be allocated. This may result in under-
utilization of the transmit buffer when the packet sizes vary
widely. On the positive side, contiguous and strided buffer
allocation schemes enjoy the benefit of not requiring any
synchronization, which leads to better packet throughput.

4.2.1 Performance of Buffer Allocation Schemes

Table 3 reports the throughput achieved for different buffer
allocation schemes in a single hop network for 64 B and
512 B packet size. We observe that the local and global al-
location schemes suffer significant reduction in throughput.
On the other hand, the strided buffer allocation performs
as well as contiguous allocation. The impact of various
schemes on reordering and retransmission is shown in Fig-
ures 7 and 8 for 1, 5, and 10 hops. While strided and con-
tiguous allocation result in significant retransmission rates
(greater than 55%) for 10 hops, the local and global schemes
reduce the retransmission rates to 45% and 33% respec-
tively. However, the throughput achieved by global and lo-
cal schemes,1.1 Gbps and 2.1 Gbps, are unacceptably low.

Schemes Throughput (Gbps)
64 B 512 B

Contiguous 2.96 3.068
Strided 2.96 3.068
Local 2.1 2.3
Global 1.1 1.4

Table 3. Impact of Buffer Allocation schemes
on Throughput (in Gbps).

On a more realistic situation, when the packet size is 512 B,
the retransmission rates are 15%, 12%, 3%, and 2%, respec-

(a) Reordering (b) Retransmission

Figure 7. Impact of Various Buffer Allocation
(Packet Size 64 B) - CNET Result.

tively, for contiguous, strided, local and global buffer allo-
cation. While local and global allocation schemes achieve
very low retransmission rate, their throughput is also very
low. From this discussion we observe that there exists
a trade-off between the throughput and the retransmission
rate among different schemes. The retransmission rates of
of strided allocation scheme (12%) is still considered to be
high to cause significant degradation in TCP performance
[10].

The global scheme completely eliminates packet reorder-
ing due to transmit buffer allocation. The reorder-
ing/retransmission experienced in this scheme is entirely
due to the concurrent processing of packets by the MEs
and threads. Hence, we study the impact of the architecture
parameters, such as number of microengines and number
of threads on retransmission in the following subsection.
Further, since the strided buffer allocation while reducing
the retransmission rate as compared to the contiguous allo-
cation does not impact the throughput, we use the strided
buffer allocation in the following sections.

(a) Reordering (b) Retransmission

Figure 8. Impact of Various Buffer Allocation
(Packet Size 512 B) - CNET Result.

4.3 Tuning Architecture Parameters

4.3.1 Impact of the Number of Microengines

We observe that the throughput of the IXP 2400 saturates
at 2.96 Gbps for a total of 16 threads (8ME × 2 threads,
4ME × 4 threads, or 2ME × 8 threads). This occurs as
the memory (DRAM) saturates beyond 16 threads. Hence,
a network processor with fewer microengines, while giv-
ing the same throughput can reduce the reordering due to
concurrent processing. Figures 9 and 10 show the im-
pact of number of microengines(each microengine running
8 threads) on packet reordering/retransmission.

(a) Reordering (b) Retransmission

Figure 9. Impact of Number of Microengines
(Packet Size 64 B) - CNET Result.

We observe that the packet retransmission drastically re-
duces from close to 56% (64 B) and 12% (512 B), for 8
ME x 8 threads, to 19% (64 B) and 5%(512 B), for 2 ME x
8 threads. These reduction in retransmission are achieved
without any penalty on packet throughput. Thus, a net-
work processor using 2 or 3 microengines, while consuming
lesser area, can reduce retransmission by up to 27% for 64 B

(a) Reordering (b) Retransmission

Figure 10. Impact of Number of Microengines
(Packet Size 512 B) - CNET Result.

packet and 5% for 512 B packet, while providing a transmit
rate of a 8 microengine.

4.3.2 Impact of the Number of Threads

Figures 11 and 12 compare the impact of number of ac-
tive threads on reordering and retransmission. In the above
figure, a 4x8 configuration refers to 4 microengines with
each microengine running 8 threads. It is interesting to note
that configurations running the same total number of threads
give different retransmission rates. For example, a 4x8 con-
figuration reduces the retransmission for 1, 5, and 10 hops
by up to 21% as compared to an 8x4 configuration. Both
configuration give a throughput of 2.96 Gbps This indicates

(a) Reordering (b) Retransmission

Figure 11. Impact of Number of Threads
(Packet Size 64 B) - CNET Result.

that the impact of multiple microengines on packet ordering
is more severe than that due to multiple threads. A similar
trend is observed for 512 B packet size although the reduc-
tion in retransmission/reorder rates are lower. This is due to
the limited buffering possible with the 512 B packet size, as
explained earlier.

(a) Reordering (b) Retransmission

Figure 12. Impact of Number of Threads
(Packet Size 512 B) - CNET Result.

4.4 Pipelined Packet Flow

Our study on buffer allocation schemes indicates that the
penalty, in terms of throughput, in reducing packet reorder-
ing is very high. Our results on architecture parameter tun-
ing indicate that the concurrent processing can cause up to
33% and 2% retransmission for 64B and 512B packets. So
we explore a packet forwarding scheme, Packet sort, where
the packet processing is pipelined as three stages (refer to
Figure 13).

TIME (t)

PACKET PROCESSING STAGE

ORDERING STAGE

TRANSMIT STAGE

ME6− T1

ME6− T2

ME6− T3

.

.

.

ME2 − T4

ME4− T8

ME2 − T4

ME2− T3

ME2− T2

ME2− T1
INSERTION SORT

ME5 − T1

ME8− T8

Figure 13. Packet Sort Implementation in IXP

In the first stage, m microengines concurrently move the
packets from RFIFO to DRAM and subsequently process
them (based on the packet forwarding application). Pack-
ets are placed in DRAM, by the threads from the first stage,
based on the flow information. In the second stage, the n

microengines sort the packets based on the flow informa-
tion and store it in the scratch pad. The overhead involved
in the sorting (insertion sorting is performed) is minimal
as the microengine utilization is low in the second stage.
The sorted packet addresses and the corresponding transmit
buffer addresses are stored in the scratch pad and commu-
nicated to the remaining k microengines, which are respon-
sible for DRAM-TFIFO transfer and TFIFO-MAC transfer.

Scheme Concurrent Flows Throughput (Gbps)
SDK CNET

Packet
Sort

32 2.56 2.3
10 2.5 2.3
1 1.7 1.6

ITS NA 2.3 2.1
AISR NA 1.1 0.960

Table 4. Comparison of Various Schemes to
Overcome Reordering.

After extensive experimentation, we observe that m=4,
n=1, k=3 gives a maximum throughput of 2.5 Gbps. Packet
sort completely eliminates packet reordering/retransmission
while supporting current line rates (2.5 Gbps). Table 4 re-
ports the performance of packet sort for different number of
flows. The throughput of packet sort is critically dependent
on the number of concurrent flows and varies from 1.7 to
2.5 Gbps. This variation occurs due to the following reason.
When packets from different flows arrive simultaneously in
the NP, the number of packets processed concurrently in the
NP being a constant, there will be fewer number of packets
per flow. Hence lesser time will be spent in the sorting block
resulting in an increased throughput.

Table 4 also reports the performance of in-built schemes,
namely, ITS and AISR supported by IXP. We observe that
packet sort gives a throughput improvement of at least 16%
with respect to the upper bound of AISR. Packet sort also
outperforms ITS for 10 or more concurrent flows It is also
able to support OC 48 line rates for 10 or more flows. How-
ever, the throughput drastically reduces (to 1.7 Gbps) for 1
flow. It is important to note that typically routers encounter
multiple flows (from multiple hosts/edge routers) and hence
the single concurrent flow is not truly reflective of the type
of traffic handled by a NP.

5 Related Work

Wolf et al. [17] use an analytical performance model for
network processors to quantify different design alternatives
and optimize the design for power consumed per unit area
for different applications. Thiele et al. [15] develop a frame-
work for design space exploration of network processors.
These approaches have used an analytical models for their
evaluation. Other approaches [4] [16] have used simulation
for their evaluation. Crowley et al. [4] study the impact of
different processor architectures on network applications.
Spalink et al. [13] study the IXP 1200 processor for IPv4
forwarding and report forwarding rates for different num-
ber of threads. The above studies while analyzing the per-
formance of network processors have ignored the impact of
the IXP architecture on packet reordering.

Benett et al. [3] are one of the earliest to report the prob-
lem of reordering and its potential impact on the network
throughput. Laor et al. [10] artificially introduce reorder-
ing and study the impact of reordering and retransmission
on throughput. Their study indicate that a retransmission
of 10% of packets can reduce the network bandwidth by up
to 10%. Savage et al. [2] develop a metric to quantify re-
ordering and use it to measure on different links. Jaiswal et
al. [12] measure and classify the reordered/retransmitted
packets as those arising from routing loops or network du-
plication or due to the loss of the packet. However, these
studies have ignored the impact of the network processor
and the concurrency support by it The penalty to maintain
packet order in network processor is, as indicated in our re-
sults, very high and cannot be neglected.

6 Conclusions
This paper studies the impact of parallel processing in net-
work processor on packet reordering and retransmission us-
ing a Petri net model. Our results show that the network
processor architecture can cause up to 60% retransmission
which can significantly degrade the TCP throughput. We
explore different buffer allocation schemes that reduce the
retransmission rates from 61% to 33% for 64 B packets
and 14% to 2% for 512 B packets. However, these bene-
fits come at the cost of a significant reduction in through-
put. Our results reveal that a network processor with fewer
microengines significantly reduces the number of retrans-
missions while giving the same throughput. Last our Packet
Sort scheme, which is a pipelined approach that dedicates
certain number of threads to sort the packets, eliminates re-
transmission while achieving a throughput close to the cur-
rent line rate. As future work, we plan to investigate the
impact on the retransmission and throughput when the TCP
congestion control mechanism at the sender limits the trans-
mit rate.

Acknowledgments
This work was partly supported by a research grant from the
Consortium for Embedded and Internetworking Technolo-
gies (CEINT) and Arizona State University, Tempe, USA.

References
[1] F. Baker. RFC 1812 - Requirements for IP Version 4 Routers,

June 1995.
[2] J. Bellardo, S. Savage. Measuring packet reordering. Pro-

ceedings of the ACM SIGCOMM IMW, Marseille, France,
Nov. 2002.

[3] J. Bennett, C. Partridge, and N. Shectman. Packet Reordering
is not a Pathological Network Behavior. IEEE/ACM Trans-
actions on Networking, 7(6):789798, 1999

[4] P. Crowley, M. Fiuczynski, J.L. Baer, B. Bershad. Character-
izing processor architectures for programmable network in-
terfaces. In Proceedings of International Conference on Su-
percomputing, Feb 2000.

[5] C. Fraleigh, S. Moon, C. Diot, B. Lyles, and F. Tobagi.
Packet-level traffic measurements from a tier-1 IP backbone.
Technical Report TR01-ATL110101, Sprint ATL Technical
Report, Nov. 2001.

[6] S. Govind and R. Govindarajan. Performance Modeling and
Architecture Exploration of Network Processors. Techni-
cal Report TR-HPC-11/2005, High Performance Comput-
ing Lab., Supercomputer Education and Research Centre,
Indian Institute of Science, Bangalore 560 012, June 2005.
http://hpc.serc.iisc.ernet.in/Publications/govind2005.ps.

[7] Intel Corporation, Intel IXP 2400 Network Processor Hard-
ware Reference Manual. Revision 7, Nov. 2003.

[8] Intel IXP2400/IXP2800 Development Tools Users Guide.
Revision 11, Mar. 2004.

[9] Intel IXP2400/IXP2800 Network Processors Microengine
C Language Support Reference Manual. Revision 9, Nov.
2003.

[10] M. Laor, L. Gendel. The Effect of Packet Reordering in a
Backbone Link on Application Throughput. IEEE Network
Sept/Oct. 2002.

[11] National Laboratory for Applied Network Research
(NLANR). Insights into Current Internet Traffic Work-
loads.(http://www.nlanr.net/NA/tutorial.html)

[12] Sharad Jaiswal, G. Iannaccone, C. Diot, J. Kuorose, and
D. Towsley. Measuring and classification of out-of-sequence
packets in a Tier-1 IP Backbone, International Measurement
Workshop(IMW), 2003.

[13] T. Spalink, Scott Karlin, Larry Peterson. Evaluating Net-
work Processors for IP Forwarding. Technical Report TR-
626-00, Department of Computer Science, Princeton Uni-
versity, Nov. 2000.

[14] R. Stevens. TCP/IP Illustrated, Volume 1: The Protocols,
Addison-Wesley, 1994.

[15] L. Thiele, Samarjit Chakraborty, Matthias Gries, Simon
Kunzli. Design space exploration of network processor ar-
chitectures. 1st Workshop Workshop on Network Processors,
Cambridge, MA, Feb. 2002.

[16] T. Wolf. and M. Franklin. Commbench : A Telecommuni-
cation benchmark for Network Processors. In Proceedings
of the International Symposium on Performance Analysis of
Systems and Software, Apr. 2000, pp. 154-162.

[17] M. Franklin, T. Wolf. A Network Processor Performance and
Design Model with Benchmark Parameterization. 1st Work-
shop on Network Processors, Cambridge, MA, Feb. 2002.

[18] W. M. Zuberek. Modeling using Timed Petri Nets - event-
driven simulation, Technical Report No. 9602, Dept. of
Computer Science, Memorial Univ. of Newfoundland, St.
John’s, Canada, 1996 (ftp://ftp.ca.mun.ca/pub/techreports/tr-
9602.ps.Z).

