
Popularity Adaptive Search in Hybrid P2P Systems

Xiaoqiu Shi†, Jinsong Han‡, Yunhao Liu‡, and Lionel M. Ni‡

†Wenzhou University
Dept. of Computer Science

Wenzhou, Zhejiang, 325035 China
sxq@wzu.edu.cn

‡Hong Kong University of Science and Technology
Dept. of Computer Science and Engineering

Clear Water Bay, Kowloon, Hong Kong
{jasonhan, liu, ni}@cse.ust.hk

Abstract

In a hybrid peer-to-peer (P2P) system, flooding and
DHT are both employed for content locating. The decision
to use flooding or DHT largely depends on the population
of desired data. Previous works either use local
information only, or do not consider dynamic factors of
P2P systems. In this paper, we propose a Popularity
Adaptive Search method for Hybrid (PASH) P2P systems.
By dynamically detecting the content popularity, PASH
properly selects search methods and efficiently saves
query traffic cost and response time. We comprehensively
evaluate PASH through synthetic and trace-driven
simulations. The results show that PASH outperforms
existing approaches and it also scales well.

1. Introduction

Since the emergence of Napster [4] in 1999, the Peer-
to-Peer (P2P) model has been increasingly popular along
with deployment in file sharing, distributed directory
service, web cache, storage and grid computing [8, 9, 14,
21-24, 26]. Many P2P systems report huge numbers of
simultaneously active participants, with millions, if not
billions, of participating machines. Those participants
include home PCs as well as enterprise computers. They
are called peers or servants, each acting as both a server
and/or a client.

 P2Ps used to be classified as centralized, decentralized
structured, and decentralized unstructured [12] models.
Centralized model, such as Napster, has a constantly-
updated directory hosted at central locations. The main
drawback of centralized models is the vulnerability to
single point failure. Decentralized unstructured P2P
systems, such as Gnutella [1] and KaZaA [3], eliminate
centralized directory and employ flooding-based search
techniques. Although flooding-based search is effective

for locating popular items, it often performs poorly in
search latency and result quality when queries are focused
on rare items. This is because that flooding-based search
sometimes fails to return matches of desired data due to
the partial coverage problem of flooding scope. As an
alternative, decentralized structured models, such as
Chord [19], CAN [15], Pastry [16], and Tapestry [7], are
proposed . In those systems, P2P topology is highly
organized and files are placed at specified locations based
on Distributed Hash Tables(DHT), which make the
queries for rare items easier to answer. Figure 1 makes a
comparison between the flooding-based and DHT-based
search.

To improve search quality and efficiency for both
popular and rare items, hybrid P2P approaches are
introduced [10, 11]. By combining the unstructured P2Ps
with a structured DHT-based global index, queries are
handled in a hybrid manner: popular items are found via
flooding, while rare items are found via DHT-based
algorithm. The major challenge in Hybrid P2Ps is how to
identify rare items in a decentralized and self-organized
environment.

Many efforts have been made for hybrid search, such as
the SimpleHybrid [10, 11] and GAB [25]. However, they
do not successfully deal with the dynamic nature of P2P
networks where peers frequently join and leave the
systems. Aiming at improving the hybrid search in
dynamic environments, we propose a Popularity Adaptive
Search for Hybrid P2P (PASH). PASH employs a
network dynamic sensing infrastructure and uses the
results to guide/adjust the search decision-making. We
evaluate PASH through synthetic and trace-driven
simulations and contrast it with a most recent work GAB
[25]. The results show that PASH outperforms existing
approaches in terms of both query traffic cost and search
response time.

1-4244-0910-1/07/$20.00 ©2007 IEEE.

Node Requesting item1 with Nodes QueriesFlooding Scope Floodingitem2with Nodes QueriesDHT

(a) Flooding based search (b) DHT based search

Figure 1. Comparison for Flooding with DHT-based search. Flooding is effective in searching popular
items (only 1 hop needed to find item1), but performs poorly for rare items (5 hops needed to find
item2). In contrast, DHT is efficient to find the rare items, while the maintenance of DHT is costly.

The rest of the paper is organized as follows: Section 2
presents the related work. Section 3 discusses the major
challenges in current hybrid P2Ps. Section 4 proposes our
PASH approach. We describe the simulation methodology
in Section 5 and present performance evaluation on PASH
in Section 6. We conclude this work in Section 7.

2. Related Work

A spectrum of approaches have been proposed to
improve search quality and efficiency in decentralized
P2P systems, such as DHT-based, flooding-based,
caching-based, topology optimization and hybrid search.

DHT-based search techniques [7, 15, 16, 19] have been
widely studied. An overview of DHT-based search
approaches can be found in [5]. In such a scheme, items
are inserted into a distributed hash table and found by
specifying their unique keys. To efficiently implement a
DHT, the DHT-based search algorithm must be able to
determine which node is responsible for storing the item
associated with the given key and then map the keys to
nodes in a load-balanced manner. Meanwhile, each node
needs to maintain a routing table based on the DHT
overlay to forward messages and lookup items.

Flooding-based approaches are widely deployed in
practical decentralized and unstructured P2P systems such
as Gnutella. In those systems, peers are interconnected in
an ad-hoc pattern, and queries are flooded in P2P
overlays. To make Gnutella-like networks scalable, a
random walk based search algorithm [12] is introduced.
GIA [6] modifies the k-walker algorithms and includes
flow control, dynamic topology adaptation, and one-hop
replication to handle the problem of nodes’ heterogeneity.
In [27], authors proposed a popularity biased algorithm to
enhance the efficiency of random walk based search. In

each step of queries’ random walks, the next destination is
determined based on the content popularities of current
peer’s neighbors.

Since Gnutella-like P2P is effective for locating highly
replicated items but reluctant to find rare ones, a hybrid
search infrastructure, SimpleHybrid, is proposed.
SimpleHybrid combines Gnutella and the DHT-based
PIERSearch [10, 11]. To improve the search efficiency,
GAB [25] makes search decisions based on global
statistics of documents’ popularity (In this paper, we will
use the terms of “item” and “document” interchangeably).
GAB outperforms SimpleHybrid by using a gossip
algorithm to make popularity-biased search possible.
However, global statistics of documents’ popularity
obtained from gossip in GAB do not well reflect the
dynamic characteristic of peers’ frequently joining and
leaving. This leads to unnecessary flooding or
inappropriate document publishing in DHT.

3. Challenging Issues in Popularity Based
Search

In hybrid P2P systems, different heuristics have been
used to identify which items are rare or popular, such as
search frequency of keywords, keyword pair frequency,
searching result size history, sampling of neighboring
nodes, and historical statistics on item replicas [25]. For
example, in [10, 11], a query is flooded with a limited
depth first, and, if no result is returned, the query goes to
the DHT. Such a design is simple and effective but
inefficient in that it incurs extra overhead. It also
increases the response time when searching rare
documents and wastes the bandwidth due to the unfruitful
flooding.

item1 with Nodes
(a) Nodes leave with replicas lost

item2 with Nodes
(b) Nodes join with replicas added

Figure 2. Without considering the dynamic
feature, gossip-obtained popularity values are
not accurate in P2P environments.

The most recent work is GAB [25]. In the design of
GAB, when a node receives a document title it has not
indexed before, it tosses a coin up to k times and counts
the number of heads before the first tail appears. It stores
this value of this title and then exchanges it with other
nodes by gossip to compute a maximum value. As a result,
the maximum value of this title can be represented the
popularity of this document. Thus, a more widely
replicated document would have a larger popularity value.

Each node maintains a histogram of the popularity
values of the documents it holds and a flooding threshold.
When a peer would like to issue a query with a set of
keywords, it first seeks the popularity values for that set
of keywords and then compares them to the flooding
threshold to determine the search selection.

Our observations show that GAB is effective when
peers are stable and active in a long run, for example,
acting as the ultrapeers. In most P2P systems, however,
not all “normal” hosts have as long expected uptimes as
ultrapeers and they leave or join the P2P network
randomly. The study in [17] shows that in Gnutella about
half of the peers in the system are replaced by new comers
within one hour. Under a dynamic environment, as shown
in Fig. 2, popularity computed from GAB does not well
reflect the snapshot of resources’ replication in P2P
networks.

Our analysis below will show that the statistic of item
replicas in GAB is always a monotone increasing function
of the gossip rounds.

Let θ denote a round of gossip, vi(θ) is replicas statistics
of item i in gossip round θ and vij is the popularity value of
item i from node j. In GAB, for all vi(θ) and θ, we have
Eqs. (1) and (2).

<−
>−−

=∀−=
ijiij

ijii
iji vvifv

vvifv
vv

)1(
)1()1(

)1()(vi θ
θθ

θθ (1)

<−>
>−

=−−=∆
iji

iji
i vvif

vvif
vv

)1(0
)1(0

)1()(v ii θ
θ

θθ

(2)

Obviously, the statistics of replicas in GAB will remain
unchanged or increase even though there is a decrease in
item replicas because of node departure. Indeed, under the
dynamic environment, GAB statistics are far from
accurate.

Let η denote the ratio of the real popularity value of an
item to the popularity value obtained from gossip. If the
latter value is less than the former one, η > 1; otherwise, η
< 1.

If the flooding threshold is set at Tf, when η > 1, queries
for the items whose real popularity values are within the
interval [Tf , ηTf] would be incorrectly published to DHT,
because their gossip-obtained popularity values are among
[Tf /η, Tf]. On the other hand, when η < 1, queries for the
items whose real popularity values are within the interval
[ηTf , Tf] would be incorrectly flooded since their gossip-
obtained popularity values are within the interval [Tf, Tf /η].

Both situations would result in a decline of the search
performance described by Eqs. (3) and (4). Figure 3 plots
the integrated metric, utility function U(pi), where pi is the
popularity value for item i, proposed by the authors of
GAB [25] and shows the performance decline when η > 1
and η < 1.

[] 1,0)()(1 ><−=∆ ∑
=

η
η f

fi

T

Tp
ifloodiDHT pUpUU (3)

[] 1,0)()(2 <<−=∆ ∑
=

η
η

f

fi

T

Tp
iDHTiflood pUpUU (4)

Motivated to achieve a flexible hybrid P2P search
mechanism that can work well in dynamic environment,
we propose PASH, a hybrid search method which
adaptively adopt the dynamic of items’ popularities, to
improve the search accuracy and efficiency.

Popularity

Utility

fTη fT

flooding

DHT

2U∆

(b) when
Popularity

Utility

fTηfT

flooding

DHT

(a) when 1<η1>η

1U∆

Figure 3. Utility decline.

4. PASH Design

In PASH, the popularity value of an item is computed
based on historical statistics on item replicas as well as
their dynamics information. While remaining the GAB’s
gossip algorithm to collect the global statistics of item
replicas, PASH designates “smart nodes” acting as sensors
to detect the network dynamic. PASH also uses the sensing
results to adjust the gossip-obtained popularity values to
reflect the items’ popularities more accurately. This is
shown in Fig. 4.

Now we define the systems parameters of PASH. Given
that there are R replications for all the items, and Ri
replications for item i in a P2P system, such that ∑Ri=R,
we define

(1) βi, the dynamic rate of the item i’s replicas per
time unit in Eq. (5),

dt
dR

R
i

i
i

1=β

(5)

(2) β, the dynamic rate of the replicas of all items per
time unit in Eq. (6).

dt
dR

R
1=β

(6)

In general, nodes randomly join and leave the P2P
systems. Accordingly, the dynamic of those nodes would
have even influences on replicas dynamics of different
items. Suppose in the time interval dt, there is a replicas
change dR of all items, and a replicas change dRi of item i,
we have Eqs. (7) and (8).

dR
R
R

dR i
i =

(7)

dt
dR

Rdt
dR

R
i

i

11 = (8)

Equation (8) means that in decentralized P2P, we can
use the value of β to represent βi. Let C denote the number
of shared files a node can provide. We also suppose that

• at time t, there are n nodes in the system and among
them there are λ1 node with C1, λ2 node with C2,…, λj

node with Cj, …, λu node with Cu, respectively, where
∑λj = n and ∑λjCj = R.

• in the time period ∆t, there are ∆λ1 nodes with C1, ∆λ2
nodes with C2,…, ∆λj nodes with Cj, …, ∆λu nodes
with Cu leaving the system, and ξ1 nodes with C1, ξ2
nodes with C2,…, ξi nodes with Ci, …, ξv nodes with
Cv joining the system. The distribution of the rate of
nodes’ joining or departure is statistically
homogeneous.

• at time t + ∆t, there are n’ nodes in the system,
where n’ = n - ∑∆λj + ∑ξi

Thus, we derive Eq. (9) from above assumptions.

replicas of rates
dynamiclocalCollecting

 replicas of rates
dynamicglobalGenerating

iPi , item of valuePopularity

GABfrom obtained
 itemof valuePopularity i

querytheFlooding DHTquery to theIssuing

fTiP ≥If fTi P <If

Figure 4. Flooding/DHT determination in PASH.

1 0),(1

)(

11

1

11

≤≤∆−
∆

=

∆

∆−
=

∆
∆=

∑∑

∑

∑∑

==

=

==

kCCk
tR

tC

CCk

tR
R

u

j
jj

v

i
ii

u

j
jj

u

j
jj

v

i
ii

λξ

λ

λξ
β

(9)

If the file set that the newly coming nodes bring has no
overlap with the current file set, k = 0. If the file set
brought in is a subset of the current file set, k = 1.
Normally, k would be a value between zero and one
according to the overlap ratio.

Suppose that the statistics value of item i’s replicas,
vi(θ), is obtained through a gossip message at time t + ∆t0.
At time t + ∆t (∆t0 < ∆t), we hope PASH is able to adjust
it with a parameter γ to better reflect the real item replicas
in the system. Then we have:

)(1,)(v)(v 0ii ttwhere ∆−∆+=⋅← βγγθθ
We also need to compute η, the ratio of the real

popularity value to the gossip-obtained popularity value.
Thus, η = γ × n / n’. It is difficult, if not impossible, to
measure the accurate η or γ in a real P2P environment.
Therefore, our later discussion will focus on how to
estimate them and use them to help the search selection.

4.1. Node type and message type

In PASH, all nodes are divided into three groups: smart
nodes, backup smart nodes, and lazy nodes. Smart nodes
act as sensors to detect the dynamic of item popularity in

byte 1 … node type
bit

node type
bit

calculating
bit … byte 16

bit 1 bit 2 bit 3 bit 4-8

byte 15

(a) The modified "GUID" field

GUID … βg
timestamp for

βg
…

(b) Smart PING

GUID … sensor β l
size of monitoring

set …

(c) Smart PONG

(d) Backup PONG or Lazy PONG

GUID … sensor …

Figure 5. PING/PONG messages in PASH.

the system. Each of them maintains a host list,
SmartNodes List, and a list of the monitored nodes as well
as the global replica dynamic rate βg and the local replica
dynamic rate βl. Backup smart nodes are candidates for
smart nodes, maintaining a host list and βg as well. The
others are lazy nodes. Each node whether it is a smart,
backup smart or lazy one maintains the information of the
smart node it belongs to.

In the Gnutella 0.6 [2], byte 15 of the GUID field is
reserved. We utilize the first two bits of this byte to
identify the node’s type, where “00” means lazy, “01”
means backup smart, and “10” or “11” means smart.
Furthermore, “10” means a smart node is “idle” and “11”
means a smart node is “busy”. When a smart node is
capable of monitoring extra nodes, it marks itself as “idle”,
otherwise as “busy”. Each node marks its neighbors as
“smart”, “backup smart”, or “lazy”. For a smart node, the
third bit of byte 15 in GUID field is used as a “calculating
bit”. The default value of this bit is set to “0”.

To reduce the traffic cost, we further modified the
PING/PONG messages of Gnutella 0.6 protocol to
piggyback the dynamics information of the system. We
present the modified PING/PONG messages in Fig. 5. All
types of PONG message have a “sensor” field to indicate
to which smart node the responding node belongs.

One key issue here is how many smart nodes we need to
deploy in the P2P system. An obvious tradeoff is that too
many smart nodes incur unnecessary overhead and too few
might lead to inaccuracy. We need to consider the size of
the P2P system, computational capability of each node,
sensing coverage, expected sensing accuracy, and
acceptable traffic overhead, etc. In PASH, we select a
proper ratio of the number of smart nodes to the number of
all nodes through experiments, and we have more
discussions on this issue in Section 5.

Each smart node maintains a SmartNodes List. It
includes a number of other smart nodes. When initializing,

a smart node creates its SmartNodes List from its host list.
All smart nodes construct a mesh, as illustrated in Fig. 6.
A smart node would utilize the information of “sensor”
field in the received PONG messages. For example, a
smart node s receives a PONG message, in which the
“sensor” field has indicated a node u is a smart node but
not included in s’s local SmartNodes List. The node s will
try to contact node u. If node u is active, node s includes u
into its SmartNodes List. In this way, smart nodes can
expand their SmartNodes Lists. As an option, SmartNodes
List could be implemented as a subset of the host list in
order to reduce the storage cost.

4.2. Smart node selection

Suppose the P2P system has n nodes and x smart
nodes. PASH hereby sets the probability of a node
becoming a smart node to x/n. Each smart node would
monitor approximately n/x nodes and include them into its
monitoring list.

When a fresh node joins the system, it obtains a host list
from the bootstrapping node. It then calculates a
probability p = S × (x/n), where S is the number of its
neighboring host. If p < 1, it acts as a lazy node. If p > 1,
and the number of smart nodes in its host list has exceeded
p, the node would become a backup smart node. Otherwise,
if the number of smart nodes in its host list is less than p,
the node becomes a smart node.

When a smart node leaves the system normally, it
selects a backup smart node from its host list as its
successor. The smart node then transfers the list of the
monitored nodes to its successor. In addition, it informs its
leaving to all other backup smart nodes in its host list with
a “busy” Smart PING message. When a smart node is
overloaded, it balances its work by delivering a part of its
list of the monitored nodes to a backup smart node in its
host list. Each leaving or overloaded smart node sends a
“busy” Smart PING message to the monitored nodes to
inform the handover. Meanwhile, the chosen smart node
sends the “idle” Smart PING messages to those monitored
nodes to confirm this replacement.

When a node joins the system, whatever role it chooses,
say as a lazy, backup smart, or smart node, it selects one
and only one “idle” smart node as its sensor node. During
its lifetime, the node would not change its sensor node
except: 1) the smart node hands over the duty to another
smart node; or 2) the sensor is abnormally offline. In the
second case, the node would check its host list to choose
another “idle” smart node as its sensor.

4.3. Popularity dynamics sensing

PASH requires each smart node detect the changes of
its monitored nodes and share this information with other
smart nodes.

(b) Node 19,11,14,8 and 7 are requested to be as collector

(c) Node 19 forwards the request to node 14, and
 node 11,14, 8 forward the request to node 7.

Smart N ode SmartNodeList

7 14,8,11,20,27,
21,18,19,23,28

14 7,8 ,18,19,20,23,
38

11 7,21,27
19 14,23,38,27

23 19,20,27
38 19,27,21
27 18,19,11,38
20 14,19,23
21 38,11
18 14,8,27
8 7,14,18

Smart Node SmartNodeList
7 14,8,11

14 7,8,18,19,20

11 7,21,27
19 14,20,23,38,27
23 19,20,27
38 19,27,21
27 18,19,11,38
20 14,19,23
21 38,11
18 14,8,27
8 7,14,18

7

8
11

14

18

1923

38

20

27

21

Smar t N ode S martNodeList

7 14,8,11,20,27,
21,18,19

14 7,8,18,19,20,23,
38

11 7,21,27
19 14,23,38,27
23 19,20,27

38 19,27,21
27 18,19,11,38
20 14,19,23
21 38,11
18 14,8,27
8 7,14,18

7

8
11

14

18

19
23

38

20

27

21

7

8
11

14

18

19
23

38

20

27

21

(d) Node 7 is elected as a collector for all other nodes.

Smart Node S martNodeList
7 14,8,11

14 7,8,18,19,20
11 7,21,27

19 14,20,23,38,27
23 19,20,27
38 19,27,21
27 18,19,11,38
20 14,19,23
21 38,11

18 14,8,27
8 7,14,18

7

8
11

14

18

19
23

38

20

27

21

(a) Initial mesh topology among the Smart Nodes

Figure 6. Collectors’ selection.

4.3.1. Local sensing

Periodically, a smart node checks the replica changes
of the node in its monitoring list and computes local
dynamic rate of the replicas, βl. To make the local sensing
available, a smart node still holds the information of
leaving nodes in its host list until this sensing time period
ends in case it loses the trace of those leaving nodes.
Suppose the sensing time period is τ and there are ψ1 node
with C1, ψ2 node with C2,…, ψj node with Cj, …, ψs node
with Cs in last sensing time point t. During this time
period, there are ∆ψ1 nodes with C1, ∆ψ2 nodes with C2,…,
∆ψj nodes with Cj, …, ∆ψs nodes with Cs no longer active,
and ζ1 nodes with C1, ζ2 nodes with C2,…, ζi nodes with Ci,
…, ζg nodes with Cg joining the monitoring set. Then, βl is
given by Eq. (10).

∑

∑∑

=

==

∆−
=

∆
∆= s

j
jj

s

j
jj

g

i
ii

l

l
l

C

CCk

tR
R

1

11

ψτ

ψζ
β

(10)

The local sensing period τ for each smart node is equal
to the global exchange period, which is a pre-determined
system parameter. The τ is adjusted accordingly when a
new global exchanging period is adopted.

4.3.2. Global exchanging

Smart nodes obtain the perspective of the global
dynamics by periodically exchanging the detected
dynamic information of monitored nodes. During a
globally exchanging period, each smart node has an
option for its role: acting as a collector or a non-collector.
A collector is in charge of collecting, computing, and
releasing the global dynamic information, while a non-
collector only provides its local information and accepts
updated global dynamic information from the collector.

A smart node can be a collector candidate if and only if
there is no other node in its SmartNodes List has an IP
address smaller than itself. Otherwise, it will request the
node with the smallest IP address in its SmartNodes List
as the collector. The requested node would serve as a

collector if and only if there is no other Smart node with a
smaller IP address in the SmartNodes List of its own.
Otherwise, it would forward/redirect the request to the
node with the smallest IP address in its SmartNodes List.
Figure 6 plots an example of this election routine. For
saving traffic overhead, a requested non-collector node
forwards/redirects all requests with only one packet
instead of sending a bunch of packets for those requests.

To lessen the processing cost and traffic overhead, a
smart node that currently is a non-collector would call the
collector election routine only under the following three
situations: a) its current collector node is no longer active;
b) there exists a new coming smart node with a smaller IP
address than the current collector in its SmartNodes List;
c) as a newly joining node, when there is no any collector
node. On the other hand, a smart node serving as a
collector would call the collector election routine only if it
includes a new smart node with a smaller IP address into
its SmartNodes List.

The global exchange period is divided into two sub-
periods, shown in Fig. 7. In the first sub-period, a
collector issues Smart PING messages, in which the
“calculating bit” is set to “1”, to all the requesting non-
collectors and waits for replied PONG messages. Each
non-collector provides the dynamic rate of its local
replicas, βl, as well as the size of its monitoring set, nl, to
the collector with a Smart PONG message.

In the second sub-period, the collector collects all
received βl and computes βg. Suppose the collector has
received r PONG messages, each with information (βli,
nli), it computes βg as follows.

∑∑
==

=
r

i
li

r

i
lilig nn

11

)(ββ (11)

The collector then forwards the updated βg to all of the
requesting smart nodes with a Smart PING message, in
which the “calculating bit” is reset to “0”. When the
requesting smart nodes receive the message, they deliver
the information to all their monitoring nodes also by
sending Smart PING messages.

4.4. Search selection

PASH utilizes the global dynamic information to

adjust item popularity when publishing a query or
gossiping the item popularity to other nodes.

Whenever a node receives a query for item i, it will
compute the popularity value of item i before making a
search decision. For any node, suppose current time is t,
the popularity value for item i that the node has held is
pi(t0) with a timestamp t0 , where t0 < t, it adjusts pi(t0) into
pi(t) by using Eq. (12).

)](1)[()()(00i0ii tttptptp g −+=⋅← βγ (12)

global exchange period

sub-period 1 sub-period 2

local dynamics
 collection

global dynamics
statistics/release

Figure 7. Global exchange period and sub-

periods.

If pi(t) exceeds the threshold Tf, the query will be
flooded. Otherwise, the query will be issued via DHT.

During the Gossip process, if a node has known a vi,
the replica statistic of item i with a timestamp t1. When
receiving a gossip message from a node j at time t, within
which the replica statistic of item i is vij with a timestamp
t2, it updates vi by using Eq. (13)

[]

−+<−+−+
−+≥−+−+

=

−+∀−+=∀=

)](1[)](1[)](1[
)(1)](1[)],(1[

)](1[)](1[

212

211

2121

ttvttvifttv
ttvttvifttv

ttvttvvvv

gijgigij

gijgigi

gijgiijii

βββ
βββ

ββγγ
 (13)

5. Simulation Methodology and Metrics

We evaluate PASH through synthetic and trace-driven
simulations. The Ion P2P Snapshots [20] we used in this
work include topologies of a hybrid Gnutella system from
2004 to 2005. Based on the real P2P topologies from this
trace, we construct our testbed with a P2P network
including 103 ~ 104 peers. To perform the flooding and
DHT search simultaneously, we mainly include ultrapeers
into our testing topologies. Each peer holds resources
which follow the Zipf distribution. The physical internet
layer is generated by BRITE [13], in which the internet
topology holds about 30000 nodes. Peers are joining and
leaving the network based on existing observations on
P2P behaviors [18].

In our simulation, we construct the DHT by using the
SHA-1 algorithm. Therefore, any key stored in nodes has
a size of 20 bytes. The flooding search is performed by
employing the Breadth First Search (BFS) algorithm. To
investigate the search performance, we simulate 105
queries iteratively for each run and report the average of
30 runs.

We use the following metrics to evaluate PASH
performance.

Estimation error. It is used to evaluate the accuracy
of estimated popularity values of items when performing
PASH. Since the dynamic change of P2P systems is
considered by PASH, we expect PASH can report more
accurate popularity values of items when making the
selection between flooding and DHT.

0 5 10 15 20 25 30
0

20

40

60

80

100

Smartnode ratio (%)

C
om

pu
tin

g
ac

cu
ra

cy
 (

%
)

1000 peers
10000 peers

0 2000 4000 6000 8000 10000

0

0.05

0.1

0.15

0.2

Network size

S
m

a
rt

 n
od

e
ra

tio

99% Accuracy
90% Accuracy
80% Accuracy

Figure 8. Smart node ratio determination. Figure 9. Computing accuracy.

0 10 20 30 40 50 60
0

20

40

60

80

100

Dynamic rate (%)

E
st

im
at

io
n

 e
rr

or
 (

%
)

GAB
PASH

0 10 20 30 40 50 60

0

20

40

60

80

100

Dynamic rate (%)
E

st
im

at
io

n
 e

rr
or

 (
%

)

GAB
PASH

Figure 10. Estimation error vs. system dynamic

rate (Topology size is 103).
Figure 11. Estimation error vs. system dynamic

rate (Topology size is 104).

Traffic overhead. From the network administrators’
point of view, traffic cost is the most important metric to
reflect the impact caused by P2P applications. In the P2P
overlay, each edge is uniquely mapped into a path in the
underlying internet layer, whose length is l. In one query
cycle, we calculate the sum of the distances of the
enrolled edges that this message traversed. Thus, the
traffic overhead of a query cycle can be computed as H =
M × L = ∑ |mi | × li, 1 ≤ i ≤ e, where |mi | is the size of
messages that traverse, and e is number of enrolled edges.
We report the traffic overhead per link in performing
PASH to reflect the reduced traffics cost.

Response time. This is an important metric which end
users of P2P systems are mainly concerned. Shorter
response time leads to higher degree of satisfaction and
better service quality. In this work, we define the response
time as the period of time from starting a search to
receiving the first response, and show the response time
reduction achieved by PASH.

We also examine several system parameters of PASH,
such as the smart node ratio and algorithm convergence.
These important parameters guarantee the effectiveness
and efficiency of PASH.

6. Performance Evaluation

We first determine the best smart node ratio of PASH.
As mentioned in Section 4, we employ a probability based
smart node assignment scheme. We compute the expected
sensing accuracy of different traces. Figure 8 plots the
expected smart node ratio x/n in two representative P2P
topologies. For any given P2P topology, the sensing
accuracy increases when enlarging the x/n ratio. We
increase the smart node ratio x/n from 0, and stop when
the derivative of sensing accuracy tends towards zero. At
this point, we say the system obtains a sufficient smart
ratio. The results show that the proper value of x/n is
about 15% when there are about 1000 nodes, whereas this
value is less than 10% when the size of P2P topology
reaches 104.

We find the proper ratio would decrease when the size
of the system increases. Figure 9 depicts this trend with
different computing accuracy. Indeed, the larger the P2P
network size is, the less smart nodes are needed.
Following our smart node generation strategy, PASH
always selects those nodes with a probability p = S × x/n,
where S is the number of candidate peers. In this way,
those nodes with high connection degree would be
selected as smart nodes with a higher probability.

0 100 200 300 400
0

0.5

1

1.5

2
x 108

time (s)

T
ra

ff
ic

 o
ve

rh
e

ad
GAB
PASH

0 2000 4000 6000 8000 10000

10

20

30

40

50

60

70

80

Network size

T
ra

ff
ic

 o
ve

rh
e

ad
 p

er
 o

ve
rla

y
lin

k GAB
PASH

Figure 12. Traffic overhead. Figure 13. Traffic overhead per overlay link.

0 200 400 600 800
0

20

40

60

80

100

Response time (ms)

C
um

ul
at

iv
e

pr
ec

en
ta

ge
 o

f q
ue

rie
s

(%
)

GAB
PASH

0 200 400 600 800

0

20

40

60

80

100

Response time (ms)
C

um
ul

at
iv

e
pr

ec
en

ta
ge

 o
f q

ue
rie

s
(%

)

GAB
PASH

Figure 14. CDF curve of response time of 105
queries (Topology size is 103).

Figure 15. CDF curve of response time of 105
queries (Topology size is 104).

As shown in Fig. 9, PASH reduces the smart node ratio
when increasing the system size, while the computing
accuracy of popularity values can still be guaranteed.

After determining the proper smart node ratio, PASH
makes use of it to compute the popularity values for the
requested items. Here we compare PASH with GAB in
the estimating accuracy of item popularity. Both GAB and
PASH would incur some estimation errors in the
flooding/DHT decision. PASH reduces the errors by
involving the system dynamics into the estimation. We
define the estimation error ε by ε = (E - P) / P, where the
E is estimation value and P is the exact popularity value
of an item. Figures 10 and 11 show that PASH
outperforms GAB in estimating the accuracy of popularity
values of items in a dynamic P2P system.

Another key issue is the convergence of PASH, that is,
how fast the PASH is able to enter a stable state. To this
end, we keep inserting queries into the system at a fixed
speed, around 100 queries per second. The desired objects
follow the Zipf distribution [13]. We also assign each
node a lifetime that follows a log-quadratic curve [18],
which can be approximated by using two Zipf
distributions. We observe the change of network traffic in
the system. At the very beginning, PASH has minor
impact on the system as peers do not come and leave
frequently, and the traffic overhead of using GAB is
similar to PASH, as shown in Fig. 12. Later, when the

network tunes due to the peers’ joining and leaving, the
traffic overhead decreases as PASH avoids unnecessary
flooding. Specifically, PASH works steadily after about
200s.

In Fig. 13, we show the average traffic overhead of
PASH on P2P overlay. The curves indicate that PASH
reduces traffic overhead on overlay link by about 20-35%.
Note that we let both protocols search the same items.
PASH is particularly effective for those items whose
popularity values are close to the flooding/DHT threshold.
Another benefit in using PASH is the reduction of
response time. Figures 14 and 15 show that the average
response time of queries is reduced by 50%. It is because
that the more accurate selections between flooding and
DHT help PASH outperform GAB-like protocols in both
the traffic overhead and response time.

7. Conclusion

In a hybrid P2P system, flooding and DHT are both
employed for content locating. The decision to use either
a flooding search or a DHT search depends on the
population of desired data. Existing works do not consider
the dynamic factors of P2P systems when counting data
popularities.

In this paper, we propose PASH, which provides an
efficient and accurate search decision mechanism by

dynamically detecting the P2P overlay change and hereby
refining the estimation of the content popularity. By
enrolling the P2P dynamic factor, not only the traffic
overhead can be reduced in P2P systems, end users can
also obtain the desired resource with shorter search
latency. The simulation results validate the effectiveness
of our overall design – making proper search selection
decision and saving the traffic cost as well as the response
time.

Acknowledgements

This work was supported in part by the NSFC grant
No. 60573140, the Hong Kong RGC grants
HKUST6264/04E and HKUST6152/06E.

References

[1] Gnutella. http://gnutella.wego.com/.

[2] Gnutella protocol specification.
http://rfc-gnutella.sourceforge.net.

[3] KaZaA. http://www.kazaa.com.

[4] Napster. http://www.napster.com.

[5] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris,
and I. Stoica. Looking Up Data in P2P Systems. Comm.
ACM, 2003.

[6] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S.
Shenker. Making Gnutellalike P2P Systems Scalable. In
Proceedings of ACM SIGCOMM, 2003.

[7] K. Hildrum, J. D. Kubatowicz, S. Rao, and B. Y. Zhao.
Distributed Object Location in a Dynamic Network. In
Proceedings of ACM Symp. on Parallel Algorithms and
Architectures, 2002.

[8] H. Jiang and S. Jin. Exploiting Dynamic Querying like
Flooding Techniques for Unstructured Peer-to-peer
Networks. In Proceedings of IEEE ICNP, 2005.

[9] B. Liu, W. C. Lee, and D. L. Lee. Supporting Complex
Multi-dimensional Queries in P2P Systems. In Proceedings
of IEEE ICDCS, 2005.

[10] B. T. Loo, J. M. Hellerstein, R. Huebsch, S. Shenker, and I.
Stoica. Enhancing P2P File-Sharing with an Internet-Scale
Query Processor. In Proceedings of VLDB, 2004.

[11] B. T. Loo, R. Huebsch, I. Stoica, and J. M. Hellerstein. The
Case for a Hybrid P2P Search Infrastructure. In
Proceedings of IPTPS, 2004.

[12] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
Replication in Unstructured Peer-to-Peer Networks. In
Proceedings of ACM ICS, 2002.

[13] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An
Approach to Universal Topology Generation. In
Proceedings of the International Workshop on Modeling,

Analysis and Simulation of Computer and
Telecommunications Systems (MASCOTS), 2001.

[14] D. Qiu and R. Srikant. Modeling and Performance Analysis
of BitTorrent-like Peer-to-Peer Networks. In Proceedings
of ACM SIGCOMM, 2004.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker. A Scalable Content-addressable Network. In
Proceedings of ACM SIGCOMM, 2001.

[16] A. Rowstron and P. Druschel. Pastry: Scalable,
Decentralized Object Location, and Routing for Large-
scale Peer-to-Peer Systems. In Proceedings of ICDS, 2001.

[17] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
Measurement Study of Peer-to-Peer File Sharing Systems.
In Proceedings of the Multimedia Computing and
Networking(MMCN), 2002.

[18] M. T. Schlosser and S. D. Kamvar. Availability and
locality measurements of peer-to-peer file systems. In
Proceedings of ITCom: Scalability and Traffic Control in
IP Networks, 2002.

[19] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In Proceedings of ACM
SIGCOMM, 2001.

[20] D. Stutzbach and R. Rejaie. Characterizing the Two-Tier
Gnutella Topology. In Proceedings of ACM SIGMETRICS,
2005.

[21] G. Swamynathan, B. Y. Zhao, and K. C. Almeroth.
Exploring the Feasibility of Proactive Reputations. In
Proceedings of IPTPS, 2006.

[22] C. Wu and B. Li. rStream: Resilient Peer-to-Peer
Streaming with Rateless Codes. In Proceedings of ACM
Multimedia, 2005.

[23] D. Xuan, S. Chellappan, X. Wang, and S. Wang. Analyzing
the Secure Overlay Services Architecture under Intelligent
DDoS Attacks. In Proceedings of IEEE ICDCS, 2004.

[24] L. Yin and G. Cao. DUP: Dynamic-tree Based Update
Propagation in Peer-to-Peer Networks. In Proceedings of
IEEE ICDE, 2005.

[25] M. Zaharia and S. Keshav. Gossip-based Search Selection
in Hybrid Peer-to-Peer Networks. In Proceedings of IPTPS,
2006.

[26] Z. Zhang, S. Chen, Y. Ling, and R. Chow. Resilient
Capacity-Aware Multicast Based on Overlay Networks. In
Proceedings of IEEE ICDCS, 2005.

[27] M. Zhong and K. Shen. Popularity-Biased Random Walks
for Peer-to-Peer Search under the Square-Root Principle. In
Proceedings of the International Workshop on Peer-To-
Peer Systems(IPTPS), 2006.

