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Abstract 
 

In a hybrid peer-to-peer (P2P) system, flooding and 
DHT are both employed for content locating. The decision 
to use flooding or DHT largely depends on the population 
of desired data. Previous works either use local 
information only, or do not consider dynamic factors of 
P2P systems. In this paper, we propose a Popularity 
Adaptive Search method for Hybrid (PASH) P2P systems. 
By dynamically detecting the content popularity, PASH 
properly selects search methods and efficiently saves 
query traffic cost and response time. We comprehensively 
evaluate PASH through synthetic and trace-driven 
simulations. The results show that PASH outperforms 
existing approaches and it also scales well. 
 
 
1. Introduction 
 

Since the emergence of Napster [4] in 1999, the Peer-
to-Peer (P2P) model has been increasingly popular along 
with deployment in file sharing, distributed directory 
service, web cache, storage and grid computing [8, 9, 14, 
21-24, 26]. Many P2P systems report huge numbers of 
simultaneously active participants, with millions, if not 
billions, of participating machines. Those participants 
include home PCs as well as enterprise computers. They 
are called peers or servants, each acting as both a server 
and/or a client. 

 P2Ps used to be classified as centralized, decentralized 
structured, and decentralized unstructured [12] models. 
Centralized model, such as Napster, has a constantly-
updated directory hosted at central locations. The main 
drawback of centralized models is the vulnerability to 
single point failure. Decentralized unstructured P2P 
systems, such as Gnutella [1] and KaZaA [3], eliminate 
centralized directory and employ flooding-based search 
techniques. Although flooding-based search is effective 

for locating popular items, it often performs poorly in 
search latency and result quality when queries are focused 
on rare items. This is because that flooding-based search 
sometimes fails to return matches of desired data due to 
the partial coverage problem of flooding scope. As an 
alternative, decentralized structured models, such as 
Chord [19], CAN [15], Pastry [16], and Tapestry [7], are 
proposed . In those systems, P2P topology is highly 
organized and files are placed at specified locations based 
on Distributed Hash Tables(DHT), which make the 
queries for rare items easier to answer. Figure 1 makes a 
comparison between the flooding-based and DHT-based 
search. 

To improve search quality and efficiency for both 
popular and rare items, hybrid P2P approaches are 
introduced [10, 11]. By combining the unstructured P2Ps 
with a structured DHT-based global index, queries are 
handled in a hybrid manner: popular items are found via 
flooding, while rare items are found via DHT-based 
algorithm.  The major challenge in Hybrid P2Ps is how to 
identify rare items in a decentralized and self-organized 
environment. 

Many efforts have been made for hybrid search, such as 
the SimpleHybrid [10, 11] and GAB [25]. However, they 
do not successfully deal with the dynamic nature of P2P 
networks where peers frequently join and leave the 
systems. Aiming at improving the hybrid search in 
dynamic environments, we propose a Popularity Adaptive 
Search for Hybrid P2P (PASH). PASH employs a 
network dynamic sensing infrastructure and uses the 
results to guide/adjust the search decision-making. We 
evaluate PASH through synthetic and trace-driven 
simulations and contrast it with a most recent work GAB 
[25]. The results show that PASH outperforms existing 
approaches in terms of both query traffic cost and search 
response time.  
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Node Requesting item1 with Nodes QueriesFlooding Scope Floodingitem2with Nodes QueriesDHT

 
(a) Flooding based search (b) DHT based search 

Figure 1. Comparison for Flooding with DHT-based search. Flooding is effective in searching popular 
items (only 1 hop needed to find item1), but performs poorly for rare items (5 hops needed to find 
item2). In contrast, DHT is efficient to find the rare items, while the maintenance of DHT is costly.   

The rest of the paper is organized as follows: Section 2 
presents the related work. Section 3 discusses the major 
challenges in current hybrid P2Ps. Section 4 proposes our 
PASH approach. We describe the simulation methodology 
in Section 5 and present performance evaluation on PASH 
in Section 6. We conclude this work in Section 7. 
 
2. Related Work 
 

A spectrum of approaches have been proposed to 
improve search quality and efficiency in decentralized 
P2P systems, such as DHT-based, flooding-based, 
caching-based, topology optimization and hybrid search.  

DHT-based search techniques [7, 15, 16, 19] have been 
widely studied. An overview of DHT-based search 
approaches can be found in [5]. In such a scheme, items 
are inserted into a distributed hash table and found by 
specifying their unique keys. To efficiently implement a 
DHT, the DHT-based search algorithm must be able to 
determine which node is responsible for storing the item 
associated with the given key and then map the keys to 
nodes in a load-balanced manner. Meanwhile, each node 
needs to maintain a routing table based on the DHT 
overlay to forward messages and lookup items.  

Flooding-based approaches are widely deployed in 
practical decentralized and unstructured P2P systems such 
as Gnutella. In those systems, peers are interconnected in 
an ad-hoc pattern, and queries are flooded in P2P 
overlays. To make Gnutella-like networks scalable, a 
random walk based search algorithm [12] is introduced. 
GIA [6] modifies the k-walker algorithms and includes 
flow control, dynamic topology adaptation, and one-hop 
replication to handle the problem of nodes’ heterogeneity. 
In [27], authors proposed a popularity biased algorithm to 
enhance the efficiency of random walk based search. In 

each step of queries’ random walks, the next destination is 
determined based on the content popularities of current 
peer’s neighbors.  

Since Gnutella-like P2P is effective for locating highly 
replicated items but reluctant to find rare ones, a hybrid 
search infrastructure, SimpleHybrid, is proposed. 
SimpleHybrid combines Gnutella and the DHT-based 
PIERSearch [10, 11]. To improve the search efficiency, 
GAB [25] makes search decisions based on global 
statistics of documents’ popularity (In this paper, we will 
use the terms of “item” and “document” interchangeably). 
GAB outperforms SimpleHybrid by using a gossip 
algorithm to make popularity-biased search possible. 
However, global statistics of documents’ popularity 
obtained from gossip in GAB do not well reflect the 
dynamic characteristic of peers’ frequently joining and 
leaving. This leads to unnecessary flooding or 
inappropriate document publishing in DHT. 

 
3. Challenging Issues in Popularity Based 
Search 
 

In hybrid P2P systems, different heuristics have been 
used to identify which items are rare or popular, such as 
search frequency of keywords, keyword pair frequency, 
searching result size history, sampling of neighboring 
nodes, and historical statistics on item replicas [25]. For 
example, in [10, 11], a query is flooded with a limited 
depth first, and, if no result is returned, the query goes to 
the DHT. Such a design is simple and effective but 
inefficient in that it incurs extra overhead. It also 
increases the response time when searching rare 
documents and wastes the bandwidth due to the unfruitful 
flooding.   



item1 with Nodes  
(a) Nodes leave with replicas lost 

item2 with Nodes  
(b) Nodes join with replicas added 

Figure 2. Without considering the dynamic 
feature, gossip-obtained popularity values are 
not accurate in P2P environments. 

The most recent work is GAB [25]. In the design of 
GAB, when a node receives a document title it has not 
indexed before, it tosses a coin up to k times and counts 
the number of heads before the first tail appears. It stores 
this value of this title and then exchanges it with other 
nodes by gossip to compute a maximum value. As a result, 
the maximum value of this title can be represented the 
popularity of this document. Thus, a more widely 
replicated document would have a larger popularity value.  

Each node maintains a histogram of the popularity 
values of the documents it holds and a flooding threshold. 
When a peer would like to issue a query with a set of 
keywords, it first seeks the popularity values for that set 
of keywords and then compares them to the flooding 
threshold to determine the search selection. 

Our observations show that GAB is effective when 
peers are stable and active in a long run, for example, 
acting as the ultrapeers. In most P2P systems, however, 
not all “normal” hosts have as long expected uptimes as 
ultrapeers and they leave or join the P2P network 
randomly. The study in [17] shows that in Gnutella about 
half of the peers in the system are replaced by new comers 
within one hour. Under a dynamic environment, as shown 
in Fig. 2, popularity computed from GAB does not well 
reflect the snapshot of resources’ replication in P2P 
networks. 

Our analysis below will show that the statistic of item 
replicas in GAB is always a monotone increasing function 
of the gossip rounds. 

Let θ denote a round of gossip, vi(θ) is replicas statistics 
of item i in gossip round θ and vij is the popularity value of 
item i from node j. In GAB, for all vi(θ) and θ, we have 
Eqs. (1) and (2). 
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Obviously, the statistics of replicas in GAB will remain 
unchanged or increase even though there is a decrease in 
item replicas because of node departure. Indeed, under the 
dynamic environment, GAB statistics are far from 
accurate. 

Let η denote the ratio of the real popularity value of an 
item to the popularity value obtained from gossip. If the 
latter value is less than the former one, η > 1; otherwise, η 
< 1. 

If the flooding threshold is set at Tf, when η > 1, queries 
for the items whose real popularity values are within the 
interval [Tf , ηTf ] would be incorrectly published to DHT, 
because their gossip-obtained popularity values are among 
[Tf /η, Tf ]. On the other hand, when η < 1, queries for the 
items whose real popularity values are within the interval 
[ηTf , Tf ] would be incorrectly flooded since  their gossip-
obtained popularity values are within the interval [Tf, Tf /η].  

Both situations would result in a decline of the search 
performance described by Eqs. (3) and (4). Figure 3 plots 
the integrated metric, utility function U(pi), where pi is the 
popularity value for item i, proposed by the authors of 
GAB [25] and shows the performance decline when η > 1 
and η < 1. 
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Motivated to achieve a flexible hybrid P2P search 
mechanism that can work well in dynamic environment, 
we propose PASH, a hybrid search method which 
adaptively adopt the dynamic of items’ popularities, to 
improve the search accuracy and efficiency. 
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Figure 3. Utility decline. 

 



4. PASH Design 
 

In PASH, the popularity value of an item is computed 
based on historical statistics on item replicas as well as 
their dynamics information. While remaining the GAB’s 
gossip algorithm to collect the global statistics of item 
replicas, PASH designates “smart nodes” acting as sensors 
to detect the network dynamic. PASH also uses the sensing 
results to adjust the gossip-obtained popularity values to 
reflect the items’ popularities more accurately. This is 
shown in Fig. 4. 

Now we define the systems parameters of PASH. Given 
that there are R replications for all the items, and Ri 
replications for item i in a P2P system, such that ∑Ri=R, 
we define  

(1) βi, the dynamic rate of the item i’s replicas per 
time unit in Eq. (5), 

dt
dR

R
i

i
i

1=β
 

(5) 

(2) β, the dynamic rate of the replicas of all items per 
time unit in Eq. (6). 

dt
dR

R
1=β

 
(6) 

In general, nodes randomly join and leave the P2P 
systems. Accordingly, the dynamic of those nodes would 
have even influences on replicas dynamics of different 
items. Suppose in the time interval dt, there is a replicas 
change dR of all items, and a replicas change dRi of item i, 
we have Eqs. (7) and (8).   
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Equation (8) means that in decentralized P2P, we can 
use the value of β to represent βi. Let C denote the number 
of shared files a node can provide. We also suppose that 

• at time t, there are n nodes in the system and among 
them there are λ1 node with C1, λ2 node with C2,…, λj  

node with Cj, …, λu node with Cu, respectively, where 
∑λj = n and ∑λjCj = R. 

• in the time period ∆t, there are ∆λ1 nodes with C1, ∆λ2 
nodes with C2,…, ∆λj nodes with Cj, …, ∆λu nodes 
with Cu leaving the system, and ξ1 nodes with C1, ξ2 
nodes with C2,…, ξi nodes with Ci, …, ξv nodes with 
Cv joining the system. The distribution of the rate of 
nodes’ joining or departure is statistically 
homogeneous. 

• at time t + ∆t, there are n’ nodes in the system, 
where   n’ = n - ∑∆λj + ∑ξi 

Thus, we derive Eq. (9) from above assumptions. 

replicas of rates
dynamiclocalCollecting

 replicas of rates
dynamicglobalGenerating

iPi  ,  item of valuePopularity

GABfrom obtained
 itemof valuePopularity i

querytheFlooding DHTquery to theIssuing

fTiP ≥If fTi P <If

 

Figure 4. Flooding/DHT determination in PASH. 
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If the file set that the newly coming nodes bring has no 
overlap with the current file set, k = 0. If the file set 
brought in is a subset of the current file set, k = 1. 
Normally, k would be a value between zero and one 
according to the overlap ratio. 

Suppose that the statistics value of item i’s replicas, 
vi(θ), is obtained through a gossip message at time t + ∆t0. 
At time t + ∆t (∆t0 < ∆t), we hope PASH is able to adjust 
it with a parameter γ to better reflect the real item replicas 
in the system. Then we have: 

)(1,)(v)(v 0ii ttwhere ∆−∆+=⋅← βγγθθ  
We also need to compute η, the ratio of the real 

popularity value to the gossip-obtained popularity value. 
Thus, η = γ × n / n’. It is difficult, if not impossible, to 
measure the accurate η or γ in a real P2P environment. 
Therefore, our later discussion will focus on how to 
estimate them and use them to help the search selection. 
 
4.1. Node type and message type 
 

In PASH, all nodes are divided into three groups: smart 
nodes, backup smart nodes, and lazy nodes. Smart nodes  
act as sensors to detect the dynamic of item popularity in 
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Figure 5. PING/PONG messages in PASH. 

the system. Each of them maintains a host list, 
SmartNodes List, and a list of the monitored nodes as well 
as the global replica dynamic rate βg and the local replica 
dynamic rate βl. Backup smart nodes are candidates for 
smart nodes, maintaining a host list and βg as well. The 
others are lazy nodes. Each node whether it is a smart, 
backup smart or lazy one maintains the information of the 
smart node it belongs to.  

In the Gnutella 0.6 [2], byte 15 of the GUID field is 
reserved. We utilize the first two bits of this byte to 
identify the node’s type, where “00” means lazy, “01” 
means backup smart, and “10” or “11” means smart. 
Furthermore, “10” means a smart node is “idle” and “11” 
means a smart node is “busy”. When a smart node is 
capable of monitoring extra nodes, it marks itself as “idle”, 
otherwise as “busy”. Each node marks its neighbors as 
“smart”, “backup smart”, or “lazy”. For a smart node, the 
third bit of byte 15 in GUID field is used as a “calculating 
bit”. The default value of this bit is set to “0”. 

To reduce the traffic cost, we further modified the 
PING/PONG messages of Gnutella 0.6 protocol to 
piggyback the dynamics information of the system. We 
present the modified PING/PONG messages in Fig. 5. All 
types of PONG message have a “sensor” field to indicate 
to which smart node the responding node belongs.  

One key issue here is how many smart nodes we need to 
deploy in the P2P system. An obvious tradeoff is that too 
many smart nodes incur unnecessary overhead and too few 
might lead to inaccuracy. We need to consider the size of 
the P2P system, computational capability of each node, 
sensing coverage, expected sensing accuracy, and 
acceptable traffic overhead, etc. In PASH, we select a 
proper ratio of the number of smart nodes to the number of 
all nodes through experiments, and we have more 
discussions on this issue in Section 5.  

Each smart node maintains a SmartNodes List. It 
includes a number of other smart nodes. When initializing, 

a smart node creates its SmartNodes List from its host list. 
All smart nodes construct a mesh, as illustrated in Fig. 6. 
A smart node would utilize the information of “sensor” 
field in the received PONG messages. For example, a 
smart node s receives a PONG message, in which the 
“sensor” field has indicated a node u is a smart node but 
not included in s’s local SmartNodes List. The node s will 
try to contact node u. If node u is active, node s includes u 
into its SmartNodes List. In this way, smart nodes can 
expand their SmartNodes Lists. As an option, SmartNodes 
List could be implemented as a subset of the host list in 
order to reduce the storage cost. 
 
4.2. Smart node selection 
 

Suppose the P2P system has n nodes and x smart 
nodes. PASH hereby sets the probability of a node 
becoming a smart node to x/n. Each smart node would 
monitor approximately n/x nodes and include them into its 
monitoring list. 

When a fresh node joins the system, it obtains a host list 
from the bootstrapping node. It then calculates a 
probability p = S × (x/n), where S is the number of its 
neighboring host. If p < 1, it acts as a lazy node. If p > 1, 
and the number of smart nodes in its host list has exceeded 
p, the node would become a backup smart node. Otherwise, 
if the number of smart nodes in its host list is less than p, 
the node becomes a smart node.  

When a smart node leaves the system normally, it 
selects a backup smart node from its host list as its 
successor. The smart node then transfers the list of the 
monitored nodes to its successor. In addition, it informs its 
leaving to all other backup smart nodes in its host list with 
a “busy” Smart PING message. When a smart node is 
overloaded, it balances its work by delivering a part of its 
list of the monitored nodes to a backup smart node in its 
host list. Each leaving or overloaded smart node sends a 
“busy” Smart PING message to the monitored nodes to 
inform the handover. Meanwhile, the chosen smart node 
sends the “idle” Smart PING messages to those monitored 
nodes to confirm this replacement. 

When a node joins the system, whatever role it chooses, 
say as a lazy, backup smart, or smart node, it selects one 
and only one “idle” smart node as its sensor node. During 
its lifetime, the node would not change its sensor node 
except: 1) the smart node hands over the duty to another 
smart node; or 2) the sensor is abnormally offline. In the 
second case, the node would check its host list to choose 
another “idle” smart node as its sensor.  

4.3. Popularity dynamics sensing 

PASH requires each smart node detect the changes of 
its monitored nodes and share this information with other 
smart nodes. 
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Figure 6. Collectors’ selection. 

 
4.3.1. Local sensing 
 

Periodically, a smart node checks the replica changes 
of the node in its monitoring list and computes local 
dynamic rate of the replicas, βl. To make the local sensing 
available, a smart node still holds the information of 
leaving nodes in its host list until this sensing time period 
ends in case it loses the trace of those leaving nodes. 
Suppose the sensing time period is τ and there are ψ1 node 
with C1, ψ2 node with C2,…, ψj node with Cj, …, ψs node 
with Cs in last sensing time point t. During this time 
period, there are ∆ψ1 nodes with C1, ∆ψ2 nodes with C2,…, 
∆ψj nodes with Cj, …, ∆ψs nodes with Cs  no longer active, 
and ζ1 nodes with C1, ζ2 nodes with C2,…, ζi nodes with Ci, 
…, ζg nodes with Cg  joining the monitoring set. Then, βl is 
given by Eq. (10). 
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The local sensing period τ for each smart node is equal 
to the global exchange period, which is a pre-determined 
system parameter. The τ is adjusted accordingly when a 
new global exchanging period is adopted.   
 
4.3.2. Global exchanging 
 

Smart nodes obtain the perspective of the global 
dynamics by periodically exchanging the detected 
dynamic information of monitored nodes. During a 
globally exchanging period, each smart node has an 
option for its role: acting as a collector or a non-collector. 
A collector is in charge of collecting, computing, and 
releasing the global dynamic information, while a non-
collector only provides its local information and accepts 
updated global dynamic information from the collector. 

A smart node can be a collector candidate if and only if 
there is no other node in its SmartNodes List has an IP 
address smaller than itself. Otherwise, it will request the 
node with the smallest IP address in its SmartNodes List 
as the collector. The requested node would serve as a 



collector if and only if there is no other Smart node with a 
smaller IP address in the SmartNodes List of its own. 
Otherwise, it would forward/redirect the request to the 
node with the smallest IP address in its SmartNodes List. 
Figure 6 plots an example of this election routine. For 
saving traffic overhead, a requested non-collector node 
forwards/redirects all requests with only one packet 
instead of sending a bunch of packets for those requests. 

To lessen the processing cost and traffic overhead, a 
smart node that currently is a non-collector would call the 
collector election routine only under the following three 
situations: a) its current collector node is no longer active; 
b) there exists a new coming smart node with a smaller IP 
address than the current collector in its SmartNodes List; 
c) as a newly joining node, when there is no any collector 
node. On the other hand, a smart node serving as a 
collector would call the collector election routine only if it 
includes a new smart node with a smaller IP address into 
its SmartNodes List. 

The global exchange period is divided into two sub-
periods, shown in Fig. 7. In the first sub-period, a 
collector issues Smart PING messages, in which the 
“calculating bit” is set to “1”, to all the requesting non-
collectors and waits for replied PONG messages. Each 
non-collector provides the dynamic rate of its local 
replicas, βl, as well as the size of its monitoring set, nl, to 
the collector with a Smart PONG message.  

In the second sub-period, the collector collects all 
received βl and computes βg. Suppose the collector has 
received r PONG messages, each with information (βli, 
nli), it computes βg as follows.  
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The collector then forwards the updated βg to all of the 
requesting smart nodes with a Smart PING message, in 
which the “calculating bit” is reset to “0”. When the 
requesting smart nodes receive the message, they deliver 
the information to all their monitoring nodes also by 
sending Smart PING messages. 

 
4.4. Search selection 

 
PASH utilizes the global dynamic information to 

adjust item popularity when publishing a query or 
gossiping the item popularity to other nodes.  

Whenever a node receives a query for item i, it will 
compute the popularity value of item i before making a 
search decision. For any node, suppose current time is t, 
the popularity value for item i that the node has held is 
pi(t0) with a timestamp t0 , where t0 < t, it adjusts pi(t0) into 
pi(t) by using Eq. (12). 

)](1)[()()( 00i0ii tttptptp g −+=⋅← βγ  (12)

global exchange period

sub-period 1 sub-period 2

local dynamics
    collection

global dynamics
statistics/release

 
Figure 7. Global exchange period and sub-

periods. 
 

If pi(t) exceeds the threshold Tf, the query will be 
flooded. Otherwise, the query will be issued via DHT.  

During the Gossip process, if a node has known a vi, 
the replica statistic of item i with a timestamp t1. When 
receiving a gossip message from a node j at time t, within 
which the replica statistic of item i is vij with a timestamp 
t2, it updates vi by using Eq. (13) 
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5. Simulation Methodology and Metrics 
 

We evaluate PASH through synthetic and trace-driven 
simulations. The Ion P2P Snapshots [20] we used in this 
work include topologies of a hybrid Gnutella system from 
2004 to 2005. Based on the real P2P topologies from this 
trace, we construct our testbed with a P2P network 
including 103 ~ 104 peers. To perform the flooding and 
DHT search simultaneously, we mainly include ultrapeers 
into our testing topologies. Each peer holds resources 
which follow the Zipf distribution. The physical internet 
layer is generated by BRITE [13], in which the internet 
topology holds about 30000 nodes. Peers are joining and 
leaving the network based on existing observations on 
P2P behaviors [18].  

In our simulation, we construct the DHT by using the 
SHA-1 algorithm. Therefore, any key stored in nodes has 
a size of 20 bytes. The flooding search is performed by 
employing the Breadth First Search (BFS) algorithm. To 
investigate the search performance, we simulate 105 
queries iteratively for each run and report the average of 
30 runs. 

We use the following metrics to evaluate PASH 
performance. 

Estimation error. It is used to evaluate the accuracy 
of estimated popularity values of items when performing 
PASH. Since the dynamic change of P2P systems is 
considered by PASH, we expect PASH can report more 
accurate popularity values of items when making the 
selection between flooding and DHT. 
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Figure 8. Smart node ratio determination. Figure 9. Computing accuracy.  
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Figure 10. Estimation error vs. system dynamic 

rate (Topology size is 103). 
Figure 11. Estimation error vs. system dynamic 

rate (Topology size is 104).  
 

Traffic overhead. From the network administrators’ 
point of view, traffic cost is the most important metric to 
reflect the impact caused by P2P applications. In the P2P 
overlay, each edge is uniquely mapped into a path in the 
underlying internet layer, whose length is l. In one query 
cycle, we calculate the sum of the distances of the 
enrolled edges that this message traversed. Thus, the 
traffic overhead of a query cycle can be computed as H = 
M × L = ∑ |mi | × li, 1 ≤ i ≤ e, where |mi | is the size of 
messages that traverse, and e is number of enrolled edges. 
We report the traffic overhead per link in performing 
PASH to reflect the reduced traffics cost. 

Response time. This is an important metric which end 
users of P2P systems are mainly concerned. Shorter 
response time leads to higher degree of satisfaction and 
better service quality. In this work, we define the response 
time as the period of time from starting a search to 
receiving the first response, and show the response time 
reduction achieved by PASH. 

We also examine several system parameters of PASH, 
such as the smart node ratio and algorithm convergence. 
These important parameters guarantee the effectiveness 
and efficiency of PASH. 
 
 
 
 

 
6. Performance Evaluation 
 

We first determine the best smart node ratio of PASH. 
As mentioned in Section 4, we employ a probability based 
smart node assignment scheme. We compute the expected 
sensing accuracy of different traces. Figure 8 plots the 
expected smart node ratio x/n in two representative P2P 
topologies. For any given P2P topology, the sensing 
accuracy increases when enlarging the x/n ratio. We 
increase the smart node ratio x/n from 0, and stop when 
the derivative of sensing accuracy tends towards zero. At 
this point, we say the system obtains a sufficient smart 
ratio. The results show that the proper value of x/n is 
about 15% when there are about 1000 nodes, whereas this 
value is less than 10% when the size of P2P topology 
reaches 104. 

We find the proper ratio would decrease when the size 
of the system increases. Figure 9 depicts this trend with 
different computing accuracy. Indeed, the larger the P2P 
network size is, the less smart nodes are needed. 
Following our smart node generation strategy, PASH 
always selects those nodes with a probability p = S × x/n, 
where S is the number of candidate peers. In this way, 
those nodes with high connection degree would be 
selected as smart nodes with a higher probability.  
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Figure 12. Traffic overhead. Figure 13. Traffic overhead per overlay link. 
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Figure 14. CDF curve of response time of 105 
queries (Topology size is 103). 

Figure 15. CDF curve of response time of 105 
queries (Topology size is 104). 

 
As shown in Fig. 9, PASH reduces the smart node ratio 
when increasing the system size, while the computing 
accuracy of popularity values can still be guaranteed.  

After determining the proper smart node ratio, PASH 
makes use of it to compute the popularity values for the 
requested items. Here we compare PASH with GAB in 
the estimating accuracy of item popularity. Both GAB and 
PASH would incur some estimation errors in the 
flooding/DHT decision. PASH reduces the errors by 
involving the system dynamics into the estimation. We 
define the estimation error ε by ε = (E - P) / P, where the 
E is estimation value and P is the exact popularity value 
of an item. Figures 10 and 11 show that PASH 
outperforms GAB in estimating the accuracy of popularity 
values of items in a dynamic P2P system. 

Another key issue is the convergence of PASH, that is, 
how fast the PASH is able to enter a stable state. To this 
end, we keep inserting queries into the system at a fixed 
speed, around 100 queries per second. The desired objects 
follow the Zipf distribution [13]. We also assign each 
node a lifetime that follows a log-quadratic curve [18], 
which can be approximated by using two Zipf 
distributions. We observe the change of network traffic in 
the system. At the very beginning, PASH has minor 
impact on the system as peers do not come and leave 
frequently, and the traffic overhead of using GAB is 
similar to PASH, as shown in Fig. 12. Later, when the 

network tunes due to the peers’ joining and leaving, the 
traffic overhead decreases as PASH avoids unnecessary 
flooding. Specifically, PASH works steadily after about 
200s. 

In Fig. 13, we show the average traffic overhead of 
PASH on P2P overlay. The curves indicate that PASH 
reduces traffic overhead on overlay link by about 20-35%. 
Note that we let both protocols search the same items. 
PASH is particularly effective for those items whose 
popularity values are close to the flooding/DHT threshold. 
Another benefit in using PASH is the reduction of 
response time. Figures 14 and 15 show that the average 
response time of queries is reduced by 50%. It is because 
that the more accurate selections between flooding and 
DHT help PASH outperform GAB-like protocols in both 
the traffic overhead and response time. 

7. Conclusion 

In a hybrid P2P system, flooding and DHT are both 
employed for content locating. The decision to use either 
a flooding search or a DHT search depends on the 
population of desired data. Existing works do not consider 
the dynamic factors of P2P systems when counting data 
popularities.  

In this paper, we propose PASH, which provides an 
efficient and accurate search decision mechanism by 



dynamically detecting the P2P overlay change and hereby 
refining the estimation of the content popularity. By 
enrolling the P2P dynamic factor, not only the traffic 
overhead can be reduced in P2P systems, end users can 
also obtain the desired resource with shorter search 
latency. The simulation results validate the effectiveness 
of our overall design – making proper search selection 
decision and saving the traffic cost as well as the response 
time.  
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