

1-4244-0910-1/07/$20.00 ©2007 IEEE.

1

A Study of Publish/Subscribe Systems for Real-Time Grid Monitoring

Chenxi Huang, Peter R. Hobson, Gareth A. Taylor, Paul Kyberd
School of Engineering & Design, Brunel University, Uxbridge, UK

chenxi.huang@brunel.ac.uk

Abstract - Monitoring and controlling a large number
of geographically distributed scientific instruments is a
challenging task. Some operations on these instruments
require real-time (or quasi real-time) response which
make it even more difficult. In this paper, we describe the
requirements of distributed monitoring for a possible
future Electrical Power Grid based on real-time exten-
sions to Grid computing. We examine several standards
and publish/subscribe middleware candidates, some of
which were specially designed and developed for Grid
monitoring. We analyze their architecture and function-
ality, and discuss the advantages and disadvantages. We
report on a series of tests to measure their real-time per-
formance and scalability.

Index terms – monitoring, real time systems, distrib-
uted computing, Grid Computing, publish/subscribe sys-
tems

I. INTRODUCTION
In the foreseeable future, there will be a larger num-

ber of small power generators that use renewable en-
ergy sources. They will be highly dispersed in different
physical locations. Monitoring and control of the ordi-
nary activities of such generators will become an im-
portant issue [1]. Power generators typically produce
data for monitoring that can be collected remotely and
updated frequently. Up to tens of thousands of power
generators will be distributed all over the UK, some of
them will only be connected through a low speed
ADSL line. Data monitoring must be processed in real-
time in order to accurately coordinate and control the
generators. For example, if a power generator has been
switched on but does not respond for a long time then
it will be considered to be malfunctioning. A real-time
system does not need to be very fast but should be sta-
ble and respond within a reasonable predefined time
limit. Power Grid monitoring is a distributed soft real-
time monitoring system. Most of the data for monitor-
ing should be received within a time limit (e.g. 5 sec-
onds). A small number of delays are sometimes al-
lowed (e.g. less than 0.5%). Traditional monitoring
systems are highly centralized and run on dedicated
Wide Area Networks (WANs). Considering the distrib-
uted nature and the large number of the generators, this
solution is expensive and will not scale very well.

The GRIDCC (Grid enabled Remote Instrumenta-
tion with Distributed Control and Computation) project
[2] aims to realize distributed monitoring and control
via Grid Computing. Other use cases include CMS
data acquisition system and Synchrotron Radiation
Storage Ring Elettra [3]. One of the objectives is to
find a scalable distributed monitoring solution that
could satisfy the soft real-time requirements.

The paper is organized as follows: We examine and
analyze the functionality and architecture of pub-
lish/subscribe middleware candidates in section II,
describe the experiments and analyze the results in
section III, review related work in section IV and con-
clude in section V.

II. PUBLISH/SUBSCRIBE SYSTEMS
A publish/subscribe (pub/sub) system is a many-to-

many data dissemination system. Publishers publish
data and subscribers receive data that they are inter-
ested in. Publishers and subscribers are independent
and need to know nothing about each other. The mid-
dleware delivers data to its destination. The middle-
ware’s functionality is more than forwarding data from
source to destination. It provides advanced functions
like data discovery, dissemination, filtering, persis-
tence and reliability, etc. Data are discovered through
the middleware and can be transferred either directly
from publisher to subscriber or via a broker. The sub-
scriber can be automatically notified when new data
becomes available. Compared to a traditional central-
ized client/server communication model, pub/sub sys-
tem is asynchronous and is usually distributed and
scalable.

Considering the distributed nature of the information
provider and consumer, and the high performance re-
quirement of our problem, pub/sub systems seem to be
the best solution towards distributed monitoring. Sev-
eral proposals and implementations have been devel-
oped for Grid monitoring. We examine these candi-
dates in the following sections.

A. GMA and R-GMA
Recognizing the complicated nature of a monitoring

system for Grid Computing, the Global Grid Forum

1-4244-0910-1/07/$20.00 ©2007 IEEE.

2

(GGF) proposed the Grid Monitoring Architecture
(GMA) [4] as a solution. The objective of GMA is to
facilitate the development of interoperable and high
performance monitoring middleware.

GMA divides a pub/sub middleware into three basic
components: producer, consumer and directory service.
A producer gathers data from various sources, such as
an instrument or computer server. A consumer receives
data from a producer and forwards them to destination.
By separating data discovery from data transfer, GMA
ensures scalability and performance. Data discovery is
through a directory service. The directory service is an
information service where a producer or consumer
publishes its existence and relevant metadata to. Con-
sumer may search directory for the producer that it is
interested in. Then they can establish a connection and
transfer data directly. GMA proposes three data trans-
fer modes between producer and consumer: pub-
lish/subscribe, query/response, and notification. In the
publish/subscribe mode, either a producer or consumer
can initiate data transfer. The producer sends data con-
tinuously and either side can terminate. In the
query/response mode, a consumer initiates communi-
cation and the producer sends all the data to the con-
sumer in one response. In the notification mode, the
producer must be the initiator. The producer sends all
the data to the consumer in one notification.

The Relational Grid Monitoring Architecture (R-
GMA) [5] is an implementation of GMA. The novel
design of R-GMA is that it has a large virtual database
(Fig. 2) which looks and operates like a conventional
relational database. It supports a subset of the standard
SQL language. Data are published using SQL INSERT
statement and queried using SQL SELECT statement.
The difference between a virtual database and conven-
tional relational database is that a virtual database has
no central storage and data are distributed all over the
network.

 Data discovery is through registry and schema. Pro-
ducers and consumers register their addresses in the

registry. Data must be disseminated via the producer
and consumer to reach destination. Data transfer be-
tween consumer and destination is query/response
only.

R-GMA conforms to Web Services Architecture. It
uses SOAP messaging over HTTP/HTTPS and Java
Servlet technology to exchange request/response (ex-
cept data streaming which is implemented in a more
efficient way). R-GMA APIs are available in Java, C,
C++ and Python.

B. JMS and NaradaBrokering
Java Message Service (JMS) [6] is a widely ac-

cepted industry standard that aims to simplify the effort
needed for applications to use Message Oriented Mid-
dleware (MOM). JMS defines a set of Java APIs (Ap-
plication Programming Interfaces), with which Java
programmers can send and receive messages via MOM
in a uniform and vendor-neutral way regardless of
what the actual underlying middleware is.

 Data are discovered by destination. There are two
kinds of destinations: queue and topic. Data are
wrapped in a JMS message. JMS supports two data
dissemination modes: Point-To-Point (PTP) (broker-
less) and publish/subscribe (brokered). Messages are
delivered via a topic. JMS supports synchronous and

asynchronous data transfers. For synchronous transfer,
the subscriber can either poll or wait for the next mes-
sage. For asynchronous delivery, the subscriber regis-
ters itself as a listening object, and the publisher will
automatically send message by invoking a method of
the subscriber (callback).

NaradaBrokering [7] is an open source, distributed
messaging infrastructure. It is fully compliant with
JMS. NaradaBrokering supports SOAP message, JMS
message and complicated events. NaradaBrokering
supports PTP and pub/sub data dissemination modes,
and synchronous and asynchronous data transfer
modes proposed by JMS. NaradaBrokering supports a

Fig. 1. NaradaBrokering network map

Fig. 2. R-GMA virtual database

1-4244-0910-1/07/$20.00 ©2007 IEEE.

3

number of Web Services and Grid Services specifica-
tions, such as WS-Resource Framework (WSRF), WS-
Notification and WS-Eventing.

 Several brokers can form a Broker Network Map
(BNM) (Fig. 1). A specialized node called Broker Dis-
covery Node (BDN) can discover new brokers. Na-
radaBrokering has a very efficient algorithm to find a
shortest route to send the events to the destination in a
BNM. NaradaBrokering is a very fast message dis-
semination middleware and it has been successfully
adopted for audio/video conferencing. NaradaBroker-
ing supports a number of underlying data transport
protocols, including blocking and non-blocking TCP,
UDP, multicast, SSL, HTTP, HTTPS and Parallel TCP
streams.

III. EXPERIMENTS

We chose NaradaBrokering and R-GMA as candi-
dates because NaradaBrokering is an open-source, high
performance middleware. It is JMS compliant and has
been successfully used for video/audio conferencing.
R-GMA has been developed for Grid monitoring. It
has very good scalability and provides useful function-
ality like latest and historical query, content based fil-
tering, etc. We developed Power Grid simulation pro-
grams. We also measured the real-time performance,
throughput and scalability of the candidates.

A. Test environment
The Hydra cluster consists of 8 identical computer

nodes, (Hydra1 to Hydra8). They are interconnected
with each other using a 100Mbps switch to setup a
private LAN. The LAN is isolated from outside to en-
sure the validity of the test results. The actual data
transfer rate within the LAN is 7 ~ 8 Mbytes per sec-
ond (tested and reported by Linux sftp). Our tests were
all performed in Hydra cluster. We installed Linux,
Java and testing software on Hydra nodes. The hard-
ware specifications and software versions are listed in
Table I. NaradaBrokering is written in Java and re-
quires Java Virtual Machine. R-GMA is implemented
as a Java Servlet and requires Tomcat, MySQL and the
Java Virtual Machine.

B. Power Grid simulation
We have developed a Java program to simulate the

activities of a large number of distributed power gen-
erators. It could fork into a large number of threads.
Each thread may simulate one power generator and
generate monitoring data, such as power output and
voltage. These monitoring data were published to the
middleware periodically at a specified frequency (e.g.
every 10 seconds). Another Java program received data

from the middleware. Information of the monitoring
data (such as sending and receiving time, etc) was
dumped into a local text file for later analysis. Data
dumping used highly efficient logging APIs which
were mainly cached hard-drive write operations, so the
overhead was negligible. When simulating 750 genera-
tors on one computer, the publishing rate was 75 mes-
sages per second and the throughput was less than
50Kbytes per second. The CPU idle time was above
85%. For most tests, we simulated no more than 750
generators on one computer. We simulated 1000 gen-
erators per computer in only one test and the result
seemed to be consistent.

C. Performance metrics
We used the following parameters to measure per-

formance [8] [10]: Round-Trip Time (RTT), RTT
variation, loss rate and percentile of RTT. RTT was
calculated as the mean round-trip time of all the mes-
sages. The round-trip time of each message was the
difference between sending and receiving time. RTT
variation was calculated as the standard deviation
(STDDEV) of all the round-trip times. Percentile of
RTT was the percentage of the round-trip times.

Publishing and subscribing are asynchronous opera-
tions, which consist of two synchronous operations.
Response time is the time to complete one synchronous
operation, which is the time it takes to send or receive
a message.

We recorded CPU idle time and memory consump-
tion using Linux tool vmstat. CPU idle time was calcu-
lated as the average of CPU idle time during the tests.
Memory consumption was calculated as the difference
between peak and bottom values. It should be noted
that memory consumption was sometimes not very
accurate because Linux used some memory as cache.

D. Why not Web Services
We did not use Web Services to test the candidate

middlewares mainly for the reason of performance.
Web Services are known to be slow and not suitable
for high performance scientific computing [9]. The
serialization and de-serialization of XML and floating
point value/ASCII conversion are the bottlenecks. The
interoperability issue can be compensated by introduc-
ing a proxy that has a Web Services interface [3].

TABLE I HARDWARE SPECIFICATIONS AND SOFTWARE VERSIONS
CPU and
memory

OS and JVM Middleware

PentiumIII
866MHz, 2GB

Sci Linux, kernel
2.4.21, Sun Hotspot
JVM 1.4.2

NaradaBrokering
v1.1.3, RGMA gLite
v3.0, Tomcat v5.0.28

1-4244-0910-1/07/$20.00 ©2007 IEEE.

4

E. NaradaBrokering tests
Simulated power generators were created at the in-

terval of 0.5 second. Each generator first slept for a
random time between 10 to 20 seconds to allow the
monitoring data to distribute evenly, it then used a JMS
TopicPublisher to publish data to a JMS topic at the
interval of 10 seconds. Two integer, five float, two
long, three double and four string values were pack-
aged in a JMS MapMessage as monitoring data. An-
other Java program used JMS notification mechanism
to receive monitoring data from the same topic. It cre-
ated a listener and subscribed to the topic with a simple
JMS selector (e.g. “id<10000”). This selector did not
filter out any data but just to simulate real uses. The
listener would be automatically notified by Narada
broker when new messages become available. All the
tests used non-persistent delivery, non-durable sub-
scription, non-transaction, non-priority and
AUTO_ACKNOWLEDGE settings unless otherwise
indicated.

In order to create more than 1000 threads, we used
Linux command to set file descriptors to 50000
(‘ulimit -n 50000’). We allocated 1GB memory for
Java Virtual Machine of NaradaBrokering (‘-
Xms1024m -Xmx1024m’).

1) Comparison tests:
The aim of these tests was to measure how different

underlying transport protocols, payload and concurrent
connections could affect performance. We simulated
800 power generators. Each test lasted 30 minutes and
was performed twice to ensure validity. The settings of
the tests are listed in TABLE II. All tests used
AUTO_ACKNOWLEDGE except test 2, which used
CLIENT_ACKNOWLEDGE. Test 5 (Triple) used
triple payload and the publishing rate was reduced to
1/3, therefore the total data delivered remained the
same. Test 6 (80) used 80 generators (concurrent con-
nections), which is 1/10 of the other test. The publish-
ing rate was increased 10 times, therefore the total data
delivered remained the same.

In test 1 (UDP), a total of 144,000 messages were
sent and 143,914 messages were received. The loss
rate was 0.06%. In test 2 (UDP CLI), the loss rate was
0.03%. For all other tests, the loss rate was zero.

The results of the tests (fig. 3 & fig. 4) show that
TCP is a very stable transport protocol and has excel-

TABLE II COMPARISON TESTS SETTINGS
 Transport

protocol
ACK
mode

comment

Test1 (UDP) UDP
Test2 (UDP CLI) UDP CLIENT
Test3 (NIO) NIO
Test4 (TCP) TCP
Test5 (Triple) TCP Triple payload
Test6 (80) TCP 80 connections

0
2
4
6
8

10
12
14

UDP UDP CLI NIO Triple TCP 80

m
illi

se
co

nd

 RTT STDDEV

Fig. 3. Narada comparison tests
Round-Trip Time and Standard Deviation

0

50

100

150

200

250

300

95% 96% 97% 98% 99% 100% percentile

m
illi

se
co

nd

NIO

TCP

UDP

Triple

80

Fig. 4. Narada comparison tests, percentile of RTT

Fig. 5. Distributed architecture

0

20

40

60

80

100

500 1000 2000 3000 4000
concurrent

connections

C
P

U
 id

le

0

100

200

300

400

500

m
em

or
y(

M
B

) CPU
CPU2
MEM
MEM2

Fig. 6. Narada tests, CPU idle and memory consumption
CPU and MEM are single server tests
CPU2 and MEM2 are DBN tests

1-4244-0910-1/07/$20.00 ©2007 IEEE.

5

lent performance. The results of UDP test are surpris-
ingly high. The possible reason is that we used JMS
over UDP. UDP is connectionless which has no guar-
antee whether a packet will be received or not, but JMS
requires an acknowledgement. The way that Narada
acknowledges the messages severely slows the per-
formance down. Test 5 (Triple) and test 6 (80) were
aimed to compare the effect of the size of the messages
and the number of concurrent connections to perform-
ance. The performance slowed down with large pay-
load. This implies that Narada is good at small sized
messages. The percentile of RTT is shown in fig. 6.

2) Performance and scalability tests:
We simulated a number of generators to test the per-

formance of a single Narada broker and Distributed
Broker Network. The test settings were the same as
previous TCP test (test 4).

We setup a distributed topology which could take
advantage of middleware’s capability to efficiently
route messages to destinations. This topology is scal-
able. It can sustain an even larger number of concur-
rent connections and maintain a good performance (fig.
5). Brokers are components of pub/sub middleware.
They are located on different computers and intercon-
nected with each other to comprise a broker network.
Publishers connect to publishing brokers. Subscribers
connect to subscribing brokers. Messages published to

any one of the brokers can be received by any sub-
scriber who is also connected to the network and has
subscribed data. A publishing broker accepts no more
than m concurrent connections. A subscribing broker
accepts throughput of no more than n. If m and n are
the safe thresholds for a broker and will not cause “out
of memory” error or severe performance slow down,
then this topology is able to maintain a large number of
concurrent connections. We used four nodes to setup a
Distributed Broker Network (DBN). One of them was
the unit controller and assigned addresses to the other
three nodes. We used the other four nodes to simulate
generators and publish data. Data were received by the
node where they were sent and there was no time syn-
chronization problem.

Fig. 7, fig. 8 and fig. 9 show the test results. Narada
performed very well. 99.8% of messages arrived within
100 milliseconds. There was a smooth increase of
round-trip time according to the number of concurrent
connections. Both round-trip time and standard devia-
tion were very low. Our tests also showed that on our
testbed a single Narada broker cannot accept 4000
concurrent connections. It ran out of memory to create
new threads to serve more incoming connections. The
DBN could accept more than 4000 concurrent connec-
tions and maintain a good performance.

Round-trip time and standard deviation are com-

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000
concurrent

connections

m
illi

se
co

nd

RTT

STDDEV

RTT2

STDDEV2

Fig. 7. Narada tests, round-trip time and standard deviation
RTT and STDDEV are standalone server tests
RTT2 and STDDEV2 are DBN tests

0

50

100

150

200

250

300

95% 96% 97% 98% 99% 100% percentilem
illi

se
co

nd

500

1000

2000

3000

Fig. 8. Narada single server tests, percentile of RTT
For a number of 500 ~ 3000 concurrent connections

0

100

200

300

400

500

95% 96% 97% 98% 99% 100% percentile

m
illi

se
co

nd

2000

3000

4000

Fig. 9. Narada DBN tests, percentile of RTT
For a number of 2000 ~ 4000 concurrent connections

0

5

10

15

20

25

30

35

40

95% 96% 97% 98% 99% 100% percentile

se
co

nd

200

100

50

Fig. 10. R-GMA Primary and Secondary Producer tests
For a number of 50 ~ 200 concurrent connections
percentile of RTT

1-4244-0910-1/07/$20.00 ©2007 IEEE.

6

pared in fig. 7. We expected the results of DBN tests to
be better than single server. However, they are a little
disappointing and are higher than single server. We
have monitored unnecessary data flow between nodes,
that is, data flowed to a node even if there was no sub-
scriber linked to it. This unnecessary data flow slowed
performance down. CPU idle and memory consump-
tion were recorded in fig. 6. CPU load of the DBN
tests was higher than single server. All these strongly
suggested that data were broadcast and not diverged to
different routes. It would be difficult for Narada DBN
to accept more connections and higher throughput.

3) Summary:
Narada has excellent real-time performance and high

throughput. We recommend TCP as the underlying
transport protocol to reach high performance. Both
message size and publishing rate affect performance. A
single Narada broker could not accept more than 2500
concurrent connections on our testbed. A Distributed
Broker Network could support a larger number of con-
current connections. But the current version has some
deficiency that limits its scalability.

F. R-GMA tests
Simulated power generators were created at an in-

terval of 1 second. Each generator waited for a random
time between 10 to 20 seconds to allow publishing data
to distribute evenly and to allow R-GMA server
enough time to ‘warm up’. The generator then used
Primary Producer API to publish monitoring data into
a table at the interval of 10 seconds. Primary Producers
used memory storage to allow fast query. The latest
retention period was set to 30 seconds and history re-
tention period was set to 1 minute. We used four inte-
ger, eight double and four char (length 20) values,
which were wrapped in an SQL statement, as monitor-
ing data. Consumer used continuous query to receive
data from Primary Producers. Another Java program
(subscriber) used Consumer API to receive data from
the Consumer. The subscriber could not be automati-
cally notified by the Consumer and it queried the Con-
sumer at the interval of 100 milliseconds. Therefore
there was a 100 millisecond error. Monitoring data
were received by the machine where they were sent
and there was no time synchronization problem.

R-GMA server ran within Tomcat. The number of
concurrent connection of Tomcat was increased to
1000. Memory allocated to Java Virtual Machine was
increased to 1GB (‘-Xmx1024m’). R-GMA used non-
secure mode and the underlying transport protocol was

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 200 400 600 800 1000
concurrent

connectionsm
illi

se
co

nd

RTT

STDDEV

RTT2

STDDEV2

Fig. 11. R-GMA Primary Producer and Consumer tests
RTT and STDDEV are tests on single server
RTT2 and STDDEV2 are distributed network tests

2000

3000

4000

5000

6000

7000

95% 96% 97% 98% 99% 100%percentile

m
illi

se
co

nd

100

200

400

600

Fig. 12. R-GMA Primary Producer and Consumer single server tests
For a number of 100 ~ 600 concurrent connections
percentile of RTT

0
10
20
30
40
50
60
70
80
90

100

100 200 400 600 800 1000
concurrent

connections

C
P

U
 id

le

0

100

200

300

400

500

m
em

or
y(

M
B

) CPU
CPU2
MEM
MEM2

Fig. 13. RGMA Consumer tests, CPU idle and memory consumption
CPU and MEM are tests on single server
CPU2 and MEM2 are distributed network tests

2500

3000

3500

4000

4500

95% 96% 97% 98% 99% 100%

percentilem
illi

se
co

nd

400

600

800

1000

Fig. 14. R-GMA Primary Producer and Consumer distributed network
tests, percentile of RTT
For a number of 400 ~ 1000 concurrent connections

1-4244-0910-1/07/$20.00 ©2007 IEEE.

7

HTTP.
1) Performance and scalability tests:
We simulated a number of generators to test R-

GMA components on a single server and a distributed
R-GMA architecture.

R-GMA has a natural way to implement a distrib-
uted architecture. The R-GMA Producer, Consumer
and Registry can be installed onto different machines.
The Producer gathers monitoring data and the Con-
sumer sends data to the subscribers. R-GMA was in-
stalled onto four Hydra nodes: two Producer nodes and
two Consumer nodes. R-GMA client and power gen-
erator simulation programs were installed on the other
four Hydra nodes, two nodes published data and two
received data. The time of the computers were syn-
chronized by NTP (Network Time Protocol).

R-GMA supports two underlying application layer
protocols for message transfer: HTTP and HTTPS. We
did not use HTTPS because of the encryption over-
head. In our tests we found that when creating a large
number of Primary Producers, each thread must wait
for a short time (5 ~ 10 seconds) before publishing data
otherwise data will probably be lost. This is probably
because it took some time for the producer to look for
the consumer. We have tested 400 generators publish-
ing data without waiting for the server to ‘warm up’. A
total of 72,000 messages were sent and 71,876 mes-
sages were received. The loss rate was 0.17%.

The results of the Primary Producer and Secondary
Producer tests are shown in fig. 10. The delays were up
to 35 seconds. The results of the Primary Producer and
Consumer tests are shown in fig. 11, fig. 12 and fig.
14. The loss rates were zero for all tests. Both round-
trip time and standard deviation were higher than those
of Narada tests. 99% of messages arrived within 4000
milliseconds. Our tests also showed that one R-GMA
server cannot accept 800 concurrent connections. It ran
out of memory to create new threads to serve incoming
connections.

Comparing the results, distributed architecture per-
forms better than a single server. The distributed archi-
tecture can accept up to 1000 concurrent connections
(and could be even more). CPU idle and memory con-
sumption are shown in fig. 13. CPU load of a distrib-
uted architecture is lower than a single server. The re-
sults strongly suggest that R-GMA scales very well.

2) Round-trip time decomposition:
In order to further analyze the performance of R-

GMA, we decompose Round-Trip Time into three
phases. PRT is Publishing Response Time, which is
how long it takes to publish data. PT is Process Time,
which is how long it takes to process data in the mid-
dleware. SRT is Subscribing Response Time, which is

how long it takes to receive data when it is available.
Their relationship is represented in the following equa-
tion:

RTT = PRT + PT + SRT

Fig. 15 shows these phases of R-GMA and Narada-

Brokering. PRT is before_sending ~ after_sending in
the graph. PT is after_sending ~ before_receiving. SRT
is before_receiving ~ after_receiving. As we can see
from the graph, both Publishing and Subscribing Re-
sponse Time of R-GMA are short, but the Process
Time is very long. This long delay occurs in the Pri-
mary Producer and Consumer. The three phases of
NaradaBrokering are very short.

3) Summary:
R-GMA has lower performance and throughput than

NaradaBrokering, because R-GMA takes a long time
to process data. A Primary Producer should wait for a
few seconds to let R-GMA server ‘warm up’ to avoid
data delay and lost. A single R-GMA Producer could
not accept more than 500 concurrent connections on
our testbed. R-GMA has very good scalability. A dis-
tributed R-GMA network has better performance and
can deal with a larger number of concurrent connec-
tions.

We find discrepancies between our test results and
[11], where the authors achieved high performance
with R-GMA. This is because we tested different ver-
sions of R-GMA. They tested an old API of R-GMA
(Stream Producer and Archiver) and we tested a newer
version (Primary Producer, Secondary Producer and
Consumer). We contacted R-GMA developers and
found that there was now a deliberate delay of 30 sec-
onds in the Secondary Producer. However, the delays
in the Primary Producer and Consumer need further
investigation.

0

500

1000

1500

2000

be
for

e_
sen

din
g

aft
er

_s
end

ing

be
for

e_
re

ce
ivin

g

aft
er

_re
ce

ivin
g

phases

m
illi

se
co

nd

RGMA

Narada

Fig. 15. RTT decomposition

1-4244-0910-1/07/$20.00 ©2007 IEEE.

8

IV. RELATED WORK
IBM Reliable Multicast Messaging (RMM) [12] is a

high-throughput low-latency publish/subscribe middle-
ware. Their tests show that RMM is the fastest Mes-
sage Oriented Middleware (MOM) available in the
market. The performance of publish/subscribe middle-
ware is usually restricted by the size and quantity of
the messages delivered. Their study shows that in
MOM the quantity of the messages is the dominant
overhead. RMM achieves high performance by using
message aggregation. Message aggregation is to reduce
the number of total messages by combining several
messages addressed to the same destination into one
big message. Message aggregation can be accom-
plished either at the sender side or the middleware side.

X. Zhang et al. [13] have tested and compared three
Grid monitoring systems, which were MDS, R-GMA
and Hawkeye. They distinguished four components of
the systems and tested their throughput and response
time separately. Their test results show that different
components of different middleware have different
performance.

V. CONCLUSION AND FUTURE WORK
We explained the requirements of real-time monitor-

ing of the future Power Grid. We examined the archi-
tecture and functionality of several standards and
pub/sub middlewares. The middlewares are all decen-
tralized and Web Service compliant. We carried out
tests to measure their performance. The test results
show that NaradaBrokering has very good real-time
performance, high throughput, and average scalability.
R-GMA has lower real-time performance, lower
throughput and very good scalability (Table III). Con-
sidering additional network and application delays, the
current version of R-GMA is not suitable for real-time
monitoring. We are working with R-GMA developers
to improve performance in this area.

We have found a deficiency in the current version of
NaradaBrokering, which causes data congestion and
limits its scalability. We have contacted the developers
and are going to test the newest release in the future.
Related work shows that an old version of R-GMA has
improved performance compared to the current release.
We have contacted R-GMA developers and so far
found a performance bottleneck. However, further in-
vestigation needs to be conducted.

Another important conclusion that can be drawn
from this research is that when evaluating middleware
for real-time monitoring applications an important con-
sideration is the efficiency of the middleware to locate
resources within a predefined time limit. If a real-time
monitoring resource is not located within a predefined
time limit then data loss can occur.

R-GMA has many advantages over other MOM
middleware. It provides content-based filtering, latest
and history query, etc. For applications where there is
no such strict real-time requirement, R-GMA will be
considered.

ACKNOWLEDGEMENT
This work is funded by the GRIDCC EU project un-

der contract number 511382 and is presented on behalf
of the GRIDCC consortium.

REFERENCES

[1] G. A. Taylor, M. R. Irving, P. R. Hobson, C. Huang, P. Kyberd
and R. J. Taylor, “Distributed Monitoring and Control of Fu-
ture Power Systems via Grid Computing”, IEEE PES General
Meeting 2006, Montreal, Quebec, Canada, 18-22 June 2006.

[2] Grid enabled Remote Instrumentation with Distributed Control
and Computation (GRIDCC), www.gridcc.org

[3] Frizziero, E. Gulmini, M. Lelli, F. Maron, G. Oh, A.
Orlando, S. Petrucci, A. Squizzato, S. Traldi, S. “Instru-
ment Element: a new grid component that enables the control
of remote instrumentation”, IEEE international Symposium on
Cluster Computing and the Grid, Singapore, May 2006.

[4] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Tay-
lor, R. Wolski, “A Grid Monitoring Architecture”,
http://www.gridforum.org/documents/GFD.7.pdf

[5] A.W.Cooke et al., “The Relational Grid Monitoring Architec-
ture: Mediating Information about the Grid”, Journal of Grid
Computing, vol 2 no 4 December 2004

[6] Java Message Service specification, version 1.1, available from
http://java.sun.com/products/jms

[7] NaradaBrokering, http://www.naradabrokering.org
[8] Lowekamp, B., Tierney, B., Cottrel, L., HUGHES- JONES, R.,

Kielemann, T., and Swany, M. “A hierarchy of network per-
formance characteristics for grid applications and services”,
Tech. Rep. Recommendation GFDR. 023, Global Grid Forum,
May 2004.

[9] K. Chiu, M. Govindaraju, and R. Bramley. Investigating the
limits of SOAP performance for scientific computing. In Pro-
ceedings of the 11th IEEE International Symposium on High
Performance Distributed Computing, pages 246–254, 2002.

[10] C. Demichelis and P. Chimento, “IP Packet Delay Variation
Metric for IP Performance Metrics (IPPM)”, IETF RFC3393,
Nov 2002.

[11] R. Byrom et al, “Performance of R-GMA for Monitoring Grid
Jobs for CMS Data Production” 2005 IEEE Nuclear Science
Symposium Conference Record pp. 860-864 (2005).

[12] B. Carmeli, G. Gershinsky, A. Harpaz, N. Naaman, H. Nelken,
J. Satran and P. Vortman, “High Throughput Reliable Message
Dissemination”, ACM Symposium on Applied Computing,
Nicosia, Cyprus, Mar 2004

[13] X. Zhang, J. Freschl, and J. Schopf, “A Performance Study of
Monitoring and Information Services for Distributed Systems”,
Proceedings of HPDC, August 2003.

TABLE III R-GMA AND NARADABROKERING COMPARISON

 Real-time
performance

Concurrent Connec-
tions & Throughput

Scalability

R-GMA Average Average Very good
Narada Very good Very good Average

