
A Pretty Flexible API for Generic Peer-to-Peer Programming ∗

Giuseppe Ciaccio

DISI, Università di Genova

via Dodecaneso 35

16146 Genova, Italy

E-mail: ciaccio@disi.unige.it

Abstract

We propose and motivate an API for programming

distributed applications using a structured overlay net-

work of peers as infrastructure. The API offers simple

primitives and powerful mechanisms, in a way that is

independent from the underlying overlay.

The dynamic set of participants is abstracted by

providing a flat space of keys, transparently scattered

across all participants in the overlay. The API prim-

itives allow application instances to send messages to-

wards individual keys. Two different kinds of mes-

sages can be exchanged, namely, unidirectional and

request-response; the latter takes place in a split-

phase non-blocking way, so that the application can

be made latency-tolerant and thus more performing.

The request-response pattern is also shown to be cru-

cial for those applications demanding a degree of user

anonymity.

The semantics of messages is not defined by the API

itself. Rather, the API offers a mechanism to allow

the application to set up handlers, which are upcalls

to run upon message arrivals at each peer. The over-

all behaviour of the application is thus shaped by the

handlers.

The API also allows to define application-level han-

dlers for other two typical tasks of any dynamic peer-

to-peer system, namely, the migration of keys across

peers after new peer arrivals, and the regeneration of

missing keys after peer departures.

1. Introduction and motivation

Overlay networks, both structured [23, 8, 16, 19, 15]
and unstructured [6, 2], have been receiving a lot of

∗This research is supported by the Italian FIRB project Web-

minds.

attention by the research community as flexible and
scalable low-level infrastructures for distributed ap-
plications of many kinds, especially those ones based
on the peer to peer (p2p) paradigm. They have
also been proposed as generic networking infrastruc-
tures [11, 22, 13], because of their potential ability to
decouple network addresses from physical placements
of cooperating hosts, an important feature for privacy
and mobility.

Structured overlays are receiving far more attention
compared to unstructured ones, because of the perfor-
mance guarantees they can in principle provide thanks
to their regular topologies. On the other hand, un-
structured overlays were at the core of the first large-
scale p2p applications deployed to the vast community
of users, with an astounding success that shedded light
over the immense potential of the p2p paradigm.

It is because of the success of p2p applications, that
one could expect a corresponding effort towards the
definition of mechanisms, abstractions, tools, and in-
frastructures supporting the design and implementa-
tion of p2p systems. However, it seems that the re-
search effort has mostly been devoted to the design,
validation and evaluation of impressively many vari-
ants of structured overlays. In addition to inventing
more and more overlay networks, a significant effort has
been put on porting to existing overlays a lot of classi-
cal distributed applications: network storage [12, 20],
naming [7], content publication [10, 6, 24, 21], multi-
cast [3], and secure communications [17].

All such effort allowed to validate beyond any doubt
the generality and flexibility of structured overlays as
low level distributed infrastructures.

In our opinion, it is now time for a deeper under-
standing of which primitives and mechanisms are bet-
ter provided by the low level infrastructure in order to
ease the development of distributed applications lay-
ered onto them. This is indeed the goal of this paper.
By “distributed application” we mean any kind of pro-

1-4244-0910-1/07/$20.00 ©2007 IEEE

gram whose state is scattered among a set of cooper-
ating entities, rather than kept in a centralized store.
Thus, we are not addressing any specific application
domain or family; the ultimate goal of a low-level p2p
infrastructure is to support distributed applications in
the broader sense.

The work by Dabek et al. [9] is a notable effort
(the only one, to our knowledge) to provide a general-
purpose API for distributed applications layered atop
p2p structured overlays. Our work was actually in-
spired by that proposal, but we came up to a slightly
different API once we tried to carefully re-think and
motivate each design choice. Our API shares a lot
with the API of Dabek et al., but also marks some
fundamental differences; these differences shall be high-
lighted in Section 7.

To fix the ideas, the work presented hereafter con-
cerns an abstraction layer that Dabek et al. call the
“Key-based Routing Layer” (KRB). Again, the reader
should pay attention to the fact, that we are exam-
ining primitives of a low-level infrastructure, which is
supposed to be neutral with respect to any application
domain.

2. Messages: name space, send, forward,

and receive

Let us define the key space as the set of 2k binary
words of k bits. This space is (dynamically) mapped
onto the (changeable) set of peers involved in the over-
lay, in such a way that each peer becomes responsible

for a contiguous key range. The key space is a conve-
nient abstraction for the set of peers involved in the
overlay, as it abstracts from Internet addresses as well
as membership changes in the overlay. The API thus
provides the key space, rather than Internet addresses,
as name space for the applications.

The key space is thus a name space, not a data set;
each individual key always exists on its own. Specific
application may associate pieces of information to indi-
vidual keys, as well as leave most keys “unpopulated”
(as it happens with DHTs), but this is just one partic-
ular way to use the key space provided by the low-level
infrastructure.

The mission of an overlay is to allow the exchange of
messages among, and throughout, participant entities.
As we choose the key space as abstraction of the set of
participants, messages are addressed towards individ-
ual keys, rather than individual peers.

A message directed towards key A must be trans-
parently routed towards its recipient, namely, the peer
whose key range contains A. The route traverses a
number of intermediate peers, starting from the sender.

At each peer on the path, the runtime system must take
a routing decision based on local information concern-
ing the neighbourhood, and according to such decision
it forwards the message to another peer.

The routing algorithm, transparently operated by
the runtime support at each participant site, is said
to converge if the message eventually reaches the re-
cipient except in case of “accidents” (both the peers
and the network links have a non-null failure proba-
bility). The convergence requirement turns into con-
straints on the overlay topology and the key-to-peer
mapping, which must allow monotonic routing choices
(each routing step must lead to a decrease of the resid-
ual distance to destination). Rings, trees, butterflies,
cartesian spaces, and other topologies, each with a suit-
able key-to-peer mapping, are fine, but the API must
abstract from the specific topology.

A message hitting its recipient is expected to con-
vey useful information in order for the recipient to ac-
complish some actions. Such actions are application
dependent; for instance, in a distributed storage the
action might be to store the payload of the arrived mes-
sage in the local repository, thus giving the message the
meaning of a write request on the provided data block.
However, a message might also be expected to trig-
ger application-dependent actions on the forwarders,
namely, those intermediate peers traversed by the mes-
sage during its trip. An example is proximity caching
of blocks in a distributed storage, but more examples
can come to mind when considering group communi-
cation.

3. Two messaging patterns: unidirec-

tional and request-response

Until now we have been talking about messages as
individual pieces of information sent to some recipient,
to trigger remote actions once there as well as along
the trip. This simple model corresponds to what we
call unidirectional messaging, in that the sender does
not expect anything back as a result of having sent a
message out. Instant messaging follows such a com-
munication pattern; it is up to the recipient to decide
whether to respond or not, and to do so the identity of
the sender must emerge to the application level, where
the answer can possibly be created and sent.

However, there are numerous cases in which a peer
expects a return answer as a response to a previously
sent message; the read operation in a distributed stor-
age and the lookup operation in a DNS are two notable
such cases.

It could be argued that a request-response commu-
nication pattern could just be implemented with uni-

2

directional messaging, provided that a sender identity
is conveyed along with the message and emerges at the
recipient side, where the application layer may take
the responsibility of sending a response back. However
this is not a general solution: providing sender identi-
ties along with messages is unwise whenever anonymity
or censorship-resistance are main concerns of a dis-
tributed application. Thus, the general solution can
only be another primitive of the overlay system in the
form of a specific request-response messaging feature,
in addition to the unidirectional one.

To tolerate the latency incurred by the response, the
request-response primitive should have a split-phase,
non-blocking architecture: sending a request and wait-
ing/testing for the corresponding response should be
distinct operations, in between which the application
should be allowed to accomplish other useful tasks, in-
cluding other communications. In many cases, accom-
plishing request-response cycles in a split-phase fashion
pays a lot in terms of performance. For instance, read-
ing a file from a distributed storage could be done in
a faster way by initiating a bunch of block read oper-
ations in sequence, without waiting for the completion
of any of them.

From the programming point of view, the logical link
between the initiation of a request-response cycle and
its corresponding wait/test operation might be denoted
by an opaque object called a “handle”, returned as the
result of the former operation and passed as parameter
to the latter. This is the approach followed by the MPI
standard for message passing parallel programming [1].
An alternative architecture could be based on asyn-
chronous notification: the initiation operation could be
given the pointer to a callback routine as a parameter,
and the runtime system might asynchronously run the
callback when the response has successfully come back
or failed.

With request-response messaging, the runtime sys-
tem of the overlay must take care of correctly return-
ing responses back to the initiator peer, by somehow
managing the return paths. One possibility is that
each forwarder keeps internal state for the in-flight re-
quests; another, more appealing option is to keep the
return path inside the messages themselves, perhaps
using “onions” [18]. In both cases, however, a problem
arises when considering that peers and their links have
a non-null failure probability; what happens if an ele-
ment of the return path fails before the response has
travelled back? Each single request tracks a single re-
turn path, so the only way to recover from a broken
return path is that the runtime system transparently
retries the original request again, after a timeout on
the missing response. In case of persistent failure after

a maximum number or trials, however, the applica-
tion should be returned an error. The timeout interval
and the maximum number of trials are better decided
by the runtime system, based on statistics of past be-
haviour, rather than by the application via the API. A
degree of redundancy, as discussed in Section 4, may
help decrease the probability of persistent response fail-
ure, by issuing more copies of the request at a time.
This however is not strictly needed from the semantics
standpoint (the failure probability can never be null).

4. Departures and arrivals: the dynamics

of peer-to-peer

4.1. Redundancy

With a converging routing algorithm, a message
would always be routed towards its destination, was
the key-to-peer mapping total. In a realistic scenario,
however, a faulty or disconnected peer could break the
routing tables and also create a “hole”, a discontinuity
in the key space. The system as a whole must rely on
a degree of redundancy in order to attain a minimum
of availability.

This raises an important issue concerning how to
manage redundancy. One possible approach is that the
application takes care of redundancy, by implementing
own policies. Another approach is that redundancy is
supported by the runtime system, at least to some ex-
tent. The latter approach appears to be more general.
Of course the application programmer must be given
the possibility to bypass the runtime-level redundancy
mechanism, if he thinks it is unneeded or useless or a
bad match for the application.

Following the latter approach, we must require that
each peer, besides being responsible for its own key
range, also takes care of key ranges owned by other
peers. For a given key A, we thus distinguish between
its primary copy and the secondary copies. The pri-
mary copy resides at the peer who is responsible for
the key range that includes A. Secondary copies, how-
ever, reside at other peers, transparently chosen by the
runtime system in such a way that the routing algo-
rithm could also converge to them. An easy way to
find a place for a secondary copy of A is by applying a
simple transformation to A (for instance, by toggling
one of its bits), obtaining an alternative key A′, and
require that the peer responsible for A′ also take care
for A.

Each time a message is issued towards A, the run-
time system should also propagate a copy of the mes-
sage towards secondary copies of A. In order for recip-
ients not to make confusion, the original key A should

3

also be sent along with those secondary messages. In
the case of request-response messaging, issuing multi-
ple copies of a request creates multiple return paths for
responses, which increase the probability of getting at
least one response back.

The presence of secondary copies of keys should be
kept transparent to the applications, that is, nothing
should emerge at the API level where the name space
is unique. What might emerge at the API level is just
the amount of desired redundancy for each given key,
plus the coherency semantics established among the
multiple copies. When issuing a message towards a
key, each peer should be allowed to specify how many
additional message replicas (if any) are to be sent to-
wards as many secondary copies of the key, not ex-
ceeding a given system-decided maximum. The level
of coherency is a controversial issue. On one hand,
coherency in a distributed system is not scalable; on
the other hand, different applications demand different
coherency requirements. A good solution might be to
have no coherency inside the runtime support, and hav-
ing the API provide primitive to allow the application
writer to implement own coherency policies.

4.2. Regeneration and migration of state

Implementing redundancy is not enough: the sys-
tem must also quickly repair the routing tables and
regenerate the keys that got lost after a peer depar-
ture, or redundancy would eventually degrade. The
actual actions consequent to key regeneration depend
upon the particular application on run. For instance,
a distributed storage might have to rebuild blocks of
data formerly associated to the now lost keys. In gen-
eral, the regeneration of application-level state is a dis-
tributed task requiring cooperation among peers, be-
cause the peers in charge of rebuilding some lost keys
must rely on redundant copies found at other peers.
As the regeneration task is application-dependent, it
would be the case that the API allows the application
to define suitable regeneration handlers.

The nature of regeneration handlers is very elusive.
At first glance, such handler should run at the peer,
say P , who becomes responsible for the keys formerly
owned by the now departed peer Q. As P is the new
owner of those lost keys, P must rebuild them. P must
have been notified, by the runtime system, about this
new responsibility, and the notification has triggered
the regeneration handler at P . Now, the handler must
seek for redundant copies of the lost keys and bring
them back to life. To this end, it should emit requests
towards the secondary copies of the missing keys, and
await responses. This is simply done by having P is-

sue requests towards the missing keys specifying the
maximum degree of redundancy, as this ensures that
message replicas will travel towards (all the existing)
secondary copies of keys. Once a peer R, owning a sec-
ondary copy of a key, is hit by one such request, it must
emit a response which will convey back to P one of the
pieces of information that P needs to restore the lost
application state. The way R builds the response, how-
ever, is the real application-dependent piece of the re-
generation task, whereas the way P emits the requests
and awaits responses is totally generic. This makes
us think that the regeneration handler is a piece of
application-dependent code to be run at R rather than
P . In other words, we come to a reverted scenario:
P does not run any specific code for key regeneration,
the runtime support at P directly emits redundant re-
quests towards the missing keys, and those peers who
happen to own secondary copies of keys, when hit by
such requests, will run their own regeneration handler.
These handlers will take application-dependent actions
aimed at reproducing the lost pieces of state formerly
associated to the primary copies of the missing keys,
and will do this by emitting suitable messages towards
those very keys; those messages will be routed to P and
the missing pieces of application state shall be rebuilt
there, thanks to the invocation of P ’s receiver handlers.

A more subtle point concerns regeneration of sec-
ondary copies of keys. The departure of a peer Q im-
plies the loss of primary copies of some keys, plus the
loss of secondary copies of other keys. This aspect,
however, does not affect the API level, and for lack of
space we must omit to discuss this point.

Another frequent event in an overlay is the subscrip-
tion by a new peer. When a newcomer joins the over-
lay, it must be assigned a key range so that the key-
to-peer mapping remains consistent with the overlay
topology. This implies that some of the keys so far
owned by another peer must migrate to the newcomer.
In a ring-shaped overlay, for instance, the peer who
happens to become the immediate neighbour of the
newcomer should split its own key range in two parts,
and yield one part to the newcomer. As in the case of
key regeneration, the actions to be carried out in case
of key migration is applications-specific. For instance,
a distributed storage might have to flush data blocks
towards the newcomer. The migration also affects sec-
ondary copies of keys.

5. Different meanings for different mes-

sages

The scenario outlined so far, in which a message
is to trigger a given application-specific behaviour at

4

each traversed peer and another behaviour at the fi-
nal recipient, is overly simplified. Practical distributed
applications are coalitions of cooperating distributed
services; for instance, surfing the Internet usually re-
quires DNS lookups for address resolution plus HTTP
communications for the actual access to web pages. In
the end, all these services rely on network messages;
however, these messages have different formats, differ-
ent meanings, and demand different treatments on the
hosts they happen to reach. It is for this reason, that
each host running the IP protocol is given the possi-
bility of listening to a number of Internet ports rather
than only one, and attach a possibly different daemon
to each enabled port.

The concept of communication port actually adds
nothing to the network semantics, but provides an un-
questionable degree of flexibility to the programmer of
distributed applications. With separate ports, the var-
ious distributed services cooperating to the same appli-
cation can be made more independent of one another,
and, if one thinks at an overlay network deployed as a
generic, public networking infrastructure, communica-
tion ports become a necessary feature of whatever API
for distributed applications.

6. Put it all together: a general-purpose

API

In this Section we propose a general-purpose API for
p2p programming which provides all the basic primi-
tives and mechanisms that have emerged after the anal-
ysis displayed so far. The buiding blocks for the appli-
cation layer are:

• unidirectional messaging;

• request-response non-blocking messaging;

• mechanisms to support some form of state redun-
dancy;

• mechanisms to implement coherency in case of re-
dundant state;

• receiver handlers, to give semantics to messages
arriving at the recipient;

• forwarder handlers, to take actions at the interme-
diate peers along the path of a given message;

• migration handlers, to manage the migration of
keys when a new peer joins the system;

• regeneration handlers, to restore the system state
integrity after peer failures;

• communication ports, to support multiple dis-
tributed services on the same infrastructure.

The API shall be defined using a language-neutral
notation similar to the one of [9]. A parameter p shall
be denoted by →p if it is read-only and ↔p if it is
read-write.

6.1. Messaging and redundancy

void UD send (int →copies, int →port, key →A,
message →M)

Send message M unidirectionally (UD) towards key A

at the specified port. The message is sent out in as
many multiple copies as specified by the copies pa-
rameter. The system will transparently dispatch an
instance of the message towards the peer responsible
for the primary copy of the key A, while the message
replicas (if any) are routed towards secondary copies.
The application writer can choose not to take advan-
tage of this redundancy mechanism, and instead imple-
ment ad-hoc redundancy policies at application level.

void REQ send (int →copies, int →port, key →A,
message ↔M, handle ↔H)

void RES waitall (handle →H[], status ↔S[])

void RES testall (handle →H[], status ↔S[])

Send out a request message M and wait/test for the
arrival of the corresponding response. The message is
sent towards key A at the specified port. For (op-
tional) redundancy, the message is sent out in as many
multiple copies as specified by the copies parame-
ter. On return from REQ send() the message M has
been registered with the system; the system can reuse
the memory occupied by M to store the response if
and when it arrives. A handle H is also provided,
that can be used later with the RES waitall() and
RES testall() to wait/test for the response arrival (or
failure).

The RES waitall() routine is expected to sleep,
rather than busywait, until all responses related to all
the handles stored in the vector H[] have either ar-
rived or timed out; on return, the status vector S[]
reports about the individual outcome of each han-
dle (completed, timed out). The RES testall() rou-
tine, however, is expected to return immediately, with
status vector S[] reporting about the current status
of each individual handle (pending, completed, timed
out). In case the message has been issued in multiple
copies, multiple replies might travel back to the orig-
inator peer; in this case, only one of them is selected
as the “official” reply (the choice is implementation-
dependent).

void replica keys (key ←R, key →A, int ↔n)

5

Yield the n-th alternative key R for a given key A. The
alternative key R locates the n-th copy of primary key
A. This is useful when implementing coherency policies
for key replicas at application level.

6.2. Receiver and forwarder handlers

typedef status (int→P, key→A, message↔M) ms-

ghandler

This is the most generic type definition of a message
handler: a function taking as parameters all the rele-
vant information concerning the arrived message (the
destination port P and key A, and the message M

itself). The handler can change the message; this is es-
pecially useful with request-response communications:
at the recipient, the request can be overwritten by the
corresponding response, then the system returns the
response back to source. The handler returns a status
value, that can be used to tell the system to suppress a
given message; this can be useful with forwarder han-
dlers, in case the message should not be forwarded on.
void set receiver handler UD (int →P, msghan-
dler →rec handler)
void set forwarder handler UD (int→P, msghan-
dler →forw handler)
Routines invoked by the application at startup time,
to attach a handler to port P so as to manage unidi-
rectional (UD) messages for port P.

The runtime system of each peer, once detected a
message of unidirectional kind arrived at port P, eval-
uates whether the peer itself is recipient or not; in the
former case it runs rec handler, otherwise it runs the
forw handler.

In all cases, it is the runtime system that passes the
appropriate parameters (port, key, and message) to the
handler at the time of invoking them.
void set receiver handler REQ (int →P, msghan-
dler →rec handler)
void set forwarder handler REQ (int →P, ms-
ghandler →forw handler req)
void set forwarder handler RES (int →P, ms-
ghandler →forw handler res)
Routines invoked by the application at startup time,
to attach a handler to port P so as to manage request-
response messages for port P.

The runtime system of each peer, once detected a
request message arrived at port P, evaluates whether
the peer itself is recipient or not; in the former
case it runs rec handler, otherwise it runs the
forw handler req.

However, if the detected message is a response to a
previously seen request, the runtime system runs the
forw handler res, unless the peer is the originator of

the previously seen request, in what case the message
emerges to the application without running any han-
dler (see REQ send(), RES wait(), and RES test()
above).

In all cases, it is the runtime system that passes the
appropriate parameters (port, key, and message) to the
handler at the time of invoking them.

6.3. Migration and regeneration handlers

typedef status (key →A, key →B) manager

This is the type definition of a manager: a special kind
of handler that runs in case of regeneration of lost keys
(caused by peer departures) or migration of keys from
peer to peer (due to peer arrivals). As with message
handlers, the managers are application-level functions.
The relevant information for a manager is a key range
〈A,B〉, to be passed to the managers by the runtime
system upon invocation.
void set refresh handler (manager →M)
void set migrat handler (manager →M)
Routines invoked by the application at startup time,
to register a handler for, respectively, regeneration or
migration of a key range of the overlay.

The runtime system, in case of key regeneration,
sends a suitable request to each potential owner of sec-
ondary copies of the missing keys. The infrastructure
“knows” how to route towards secondary copies (Sec-
tion 4).

The regeneration handler, run on the owner of a sec-
ondary copy of a lost key, might use the communication
routines of Section 6.1 to send messages aimed at recre-
ating the lost state on the peer P who is attempting to
restore the lost information. To this end, it is sufficient
that the messages are issued towards the keys under re-
construction; the routing algorithm of the overlay will
implicitly route the messages to P , because P has been
given ownership of those keys.

Things are simpler for the migration handler. As
soon as the migrant key range has changed ownership
from peer P to peer Q, the runtime system on peer P

should run the migration handler. The handler might
simply use the communication routines of Section 6.1
to send messages aimed at recreating the application
state on Q. To this end, it is sufficient that the mes-
sages are directed towards the migrated keys; the rout-
ing algorithm of the overlay will implicitly route the
messages to Q. The migration handler could also clean
up the migrated information after it has been sent out.
boolean in range (key →X, key →A, key →B)
Auxiliary routine to probe the inclusion of a given key
X in the key range 〈A,B〉. Useful for programming
regeneration handlers, a typical task of which is to pick

6

up pieces of application state related to a key range
under reconstruction.

6.4. Miscellaneous

void init (void)

status subscribe (void)

Routines invoked by the application at startup time,
to respectively initialize the runtime system and join
the overlay.

Typically, an application is expected to first initial-
ize the runtime system, then register all of its handlers,
and finally join the overlay so as to begin distributed
cooperation by exchanging messages.

7. Related work

The work by Dabek et al. [9] is a notable effort to
provide a general-purpose API for distributed applica-
tions based on p2p structured overlays. In our opinion,
that API lacks some useful features while providing
other features of doubtful usefulness.

For instance, the API of [9] lacks primitives for the
request-response communication pattern. As pointed
out in Section 3, such primitives are mandatory for
anonymous and censorship-resistant infrastructures,
and generally pay in terms of performance because of
their non-blocking nature.

The API of [9] also lacks powerful mechanisms to
support application-level policies for peer arrivals (key
migration) and departure (key regeneration). The
only available mechanism to set up a callback for ar-
rival/departure events is the update (), but it is just
to inform a peer that something has changed in its
neighbourhood (a new peer has joined the neighbour
set, or a current neighbour has departed away). As we
have shown in Section 4, the regeneration of lost keys
involves the owners of secondary copies of the keys,
which are not necessarily neighbours of the departed
peer.

Another point of that proposal that we do not quite
agree upon, is the possibility for forwarder handlers to
alter the routing and even the destination of a passing-
through message. Of course such a possibility would
yield a huge degree of flexibility to the application pro-
grammer, but we feel that it would belong to the fa-
mous ”90% features used by just 10% programmers”.
On the other hand, it forces the API itself to become
heavier because of the need to refer to routing concepts
(peer identities, neighbourhood lists, routing hops, sec-
ondary recipients) to be presented as opaque objects,
and thus to be accompanied by a court of auxiliary

functions. We feel it is better to leave the routing in-
side the runtime support, and offer a more agile API
to the programmer.

Finally, in the API proposed in [9] the support
to redundancy is weak. A peer of the application
may only invoke function replicaset () to know the
names of those peers who are possibly storing sec-
ondary copies of a given key. While this allows imple-
menting application-level redundancy and coherency
policies, it causes the emersion at the API level of a
new name space, namely, the name space of the indi-
vidual peers. In our opinion, it is better not to ex-
plicitly name the peers at application level, because
the set of peers is not static, and because censorship-
resistant distributed applications may not want to ex-
plicitly bind any given piece of information to any spe-
cific peer descriptor. Our proposed API avoids such a
complication by leaving peers outside the namespace,
with no loss of expressiveness.

That said, we hope to have provided a meaningful
contribution to the explicit request for feedback made
by the authors of [9] in their interesting paper. We
argue that our proposal is much simpler yet more com-
plete, and powerful enough for p2p programming.

I3 [22] is a messaging system built on top of an over-
lay network. It offers messaging services, but lacks
mechanisms for managing a distributed state, that
must be therefore entirely built at application level,
so it lacks the necessary flexibility to serve as a general
middleware for distributed systems.

Meteor [14] is a middleware for distribued applica-
tion more tailored to the domain of sensor networks. As
such, it focuses on a content-based information man-
agement through associative matches, rather than a
namespace-based content retrieval. It appears to be a
higher-level middleware oriented to a specific applica-
tion domain, rather than an application-neutral infras-
tructure.

8. Ongoing and future work

In the near future we plan to validate the proposed
API by porting a number of classical distributed appli-
cations to it. To this end we need a working prototype
of a runtime system presenting the API itself; this is
one of the reasons (not the most important though)
why we have recently implemented NEBLO.

NEBLO, a NEarly BLind Overlay, is a structured
overlay network organized as a Chord ring [23], in
which the use of imprecise finger lists, whose size
and extent are severely constrained, yields a pretty
good anonymity to information requestors as well as
providers [5].

7

NEBLO is presented to distributed applications in
the form of a runtime library. An alternative pre-
sentation, more suitable if the system is to act as a
generic networking infrastructure, would be in the form
of a RPC daemon; we are considering to provide both
kinds of interface. NEBLO is free software, released
under the GNU General Public Licence and available
for download at [4].

References

[1] Message Passing Interface Forum,
http://www.mpi-forum.org.

[2] K. Bennett and C. Grothoff. GAP: Practical Anony-
mous Networking. In Proc. of Workshop on Privacy
Enhancing Technologies (PET 2003), Dresden, Ger-
many, Mar. 2003.

[3] M. Castro, P. Druschel, A. M. Kermarrec, and
A. Rowstron. Scribe: A Large-scale and Decentral-
ized Application-level Multicast Infrastructure. IEEE
Journal on Selected Areas in Communications, special
issue on Network Support for Multicast Communica-
tions, 20(8), Oct. 2002.

[4] G. Ciaccio. The NEBLO homepage,
http://www.disi.unige.it/project/neblo/.

[5] G. Ciaccio. Improving Sender Anonymity in a Struc-
tured Overlay with Imprecise Routing. In Proc. of
the 6th Workshop on Privacy Enhancing Technologies
(PET 2006), Cambridge, UK, June 2006. Springer.

[6] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A Distributed Anonymous Information Stor-
age and Retrieval System. In Proc. of Designing
Privacy Enhancing Technologies: Workshop on De-
sign Issues in Anonymity and Unobservability (PET),
pages 46–66, July 2000.

[7] R. Cox, A. Muthitacharoen, and R. Morris. Serving
DNS using a Peer-to-Peer Lookup Service. In Proc. of
the 1st International Peer To Peer Systems Workshop
(IPTPS02), Mar. 2002.

[8] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek,
and R. Morris. Designing a DHT for low latency and
high throughput. In Proc. of the 1st USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI ’04), San Francisco, CA, Mar. 2004.

[9] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and
I. Stoica. Towards a Common API for Structured
Peer-to-Peer Overlays. In Proc. of the 2nd Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS03),
Berkeley, CA, 2003.

[10] R. Dingledine, M. J. Freedman, and D. Molnar. The
Free Haven Project: Distributed Anonymous Storage
Service. In H. Federrath, editor, Proc. of Designing
Privacy Enhancing Technologies: Workshop on De-
sign Issues in Anonymity and Unobservability (PET).
Springer-Verlag, LNCS 2009, July 2000.

[11] J. Eriksson, M. Faloutsos, and S. Krishnamurthy.
PeerNet: Pushing Peer-to-Peer Down the Stack. In

Proc. of the 2nd International Workshop on Peer-to-
Peer Systems (IPTPS03), Berkeley, CA, 2003.

[12] J. K. et al. Oceanstore: An Architecture for Global-
scale Persistent Storage. In Proc. of ACM ASPLOS,
Nov. 2000.

[13] I. Goldberg. A Pseudonymous Communications In-
frastructure for the Internet. PhD thesis, UC Berkeley,
Dec. 2000.

[14] N. Jiang, C. Schmidt, V. Matossian, and M. Parashar.
Enabling Applications in Sensor-based Pervasive En-
vironments. In Proc. of BaseNets 2004, San Jose, CA,
Oct. 2004.

[15] G. S. Manku, M. Bawa, and P. Raghavan. Symphony:
Distributed Hashing in a Small World. In Proc. of the
fourth USENIX Symposium on Internet Technologies
and Systems (USITS’03, Seattle, WA, Mar. 2003.

[16] P. Maymounkov and D. Mazières. Kademlia: A Peer-
to-peer Information System Based on the XOR Metric.
In Proc. of the 1st International Peer To Peer Systems
Workshop (IPTPS02), Mar. 2002.

[17] P. Perlegos. DoS Defense in Structured Peer-to-Peer
Networks. Technical Report UCB-CSD-04-1309, U.C.
Berkeley, Mar. 2004.

[18] M. Reed, P. Syverson, and D. Goldschlag. Anony-
mous Connections and Onion Routing. IEEE Journal
on Selected Areas in Communications, special issue on
Copyright and Privacy Protection, 1998.

[19] A. Rowstron and P. Druschel. Pastry: Scalable, Dis-
tributed Object Location and Routing for Large-scale
Peer-to-peer Systems. In Proc. of Int.l Conf. on Dis-
tributed System Platforms, Nov. 2001.

[20] A. Rowstron and P. Druschel. Storage Management
and Caching in PAST, a Large-scale, Persistent Peer-
to-peer Storage Utility. In Proc. of 18th ACM Symp.
on Operating Systems Principles, Oct. 2001.

[21] A. Serjantov. Anonymizing Censorship Resistant Sys-
tems. In Proc. of the 1st International Peer To Peer
Systems Workshop (IPTPS02), Mar. 2002.

[22] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and
S. Surana. Internet Indirection Infrastructure. In Proc.
of ACM SIGCOMM, Aug. 2002.

[23] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: a Scalable Peer-to-peer
Lookup Service for Internet Applications. In Proc. of
ACM SIGCOMM, Aug. 2001.

[24] M. Waldman, A. Rubin, and L. Cranor. Publius:
A Robust, Tamper-evident, Censorship-resistant and
Source-anonymous Web Publishing System. In Proc.
of the 9th USENIX Security Symposium, pages 59–72,
Aug. 2000.

8

