
Spinneret: A Log Random Substrate for P2P Networks

Jeff Rose1, Cyrus Hall1, and Antonio Carzaniga1,2

1University of Lugano 2University of Colorado
Faculty of Informatics Dept. of Computer Science

6900 Lugano, Switzerland Boulder, CO 80309-0430 USA
{jeffrey.rose,cyrus.hall}@lu.unisi.ch

antonio.carzaniga@unisi.ch

Abstract

Until now, structured and unstructured networks have

been considered in absentia of each other. We believe that

next-generation P2P services will require both structured

and unstructured algorithms, and that it therefore makes

sense to consider a unified substrate that provides good ser-

vice for both. In this paper we argue for the creation of a

semi-structured overlay substrate, called Spinneret, which

can serve as the base layer for a variety of structured and

unstructured search algorithms. In order to validate that

this structure forms a good foundation for various services,

we present two algorithms simulated on top of the Spinneret

substrate: an unstructured k-walker random walk search as

well as a logarithmic DHT search. Further, we argue that

such a substrate strikes a balance between the resilience

and reliability of unstructured networks and the efficiency

of structured networks.

1 Introduction

The initial widely deployed peer-to-peer (P2P) systems

used simple network flooding to search for objects on other

peers. This was shown to not scale well due to the explosion

of the number of messages in typical, well-connected net-

works. A fundamental improvement over unstructured P2P

systems was achieved through the development of struc-

tured P2P systems commonly referred to as distributed hash

tables (DHT).

This research was supported in part by the US National Science Founda-

tion, European Commission, and Swiss National Science Foundation under

agreement numbers ANI-0240412, IST-026955, and 200021-109562, and

by the National Competence Center in Research on Mobile Information
and Communication Systems (NCCR-MICS), which is also supported by

the Swiss National Science Foundation under grant number 5005-67322.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

While substantially more efficient in terms of both query

latency and bandwidth usage, DHTs are limited to queries

with exact matches. Further, most DHTs require that the

network maintain a strict set of peer connections, which,

like the pointers in an in-memory data structure, must stay

valid in order for the data structure to be traversed. Churn,

or the constant leaving and joining of nodes in the net-

work, can wreak havoc on an algorithm which requires

such a specific link structure [10]. Recent work in P2P

structures has focused on improving DHTs in these two di-

rections. For example, randomized graph structures have

been proposed instead of rigid structures. These structures

have superior resiliency in the face of failure and network

churn [5]. Randomized graph structures can also achieve

slightly better performance with high probability, routing in

Θ(log n/ log log n) hops [8].

Our research starts from the observation that, despite the

fundamentally superior theoretical performance of struc-

tured P2P systems, unstructured algorithms remain impor-

tant tools in building most of the widely deployed P2P ser-

vices. This choice is attributable to the two major short-

comings of structured P2P systems: exact match search and

churn vulnerability. Therefore, in this paper we argue for an

engineering solution that attempts to combine the best fea-

tures of structured DHTs with the flexibility and resilience

of algorithms like random walks and epidemic flood typical

of unstructured P2P systems.

Specifically, we envision a peer-to-peer substrate based

on a randomized semi-structured graph, amenable to both

exact-match queries, using DHT-style routing, and generic

queries using random peer sampling. We call this substrate

Spinneret.

Spinneret is intended to support DHT-style queries by

means of a greedy algorithm.In order to support generic

queries, we propose a two-pronged approach: First, we pro-

pose to develop random-walk algorithms that visit a random

sampling of peers. These algorithms provide a basis for

generic (probabilistic) query matching, and can be used in-

dividually or in combination with a greedy search. Second,

we propose to make the substrate parametric with respect

to the distance functions used to identify and compare ob-

jects and peers. These functions could embody semantic-

rich conditions to be exploited through greedy or random-

ized routing algorithms.

As for churn and maintenance, we propose to exploit the

randomness of the data structure as well as the presence of

query traffic to carry out opportunistic repair of the overlay.

A similar approach was proposed by Zhang et al. [12] to

find latency-minimal routes in a DHT. However, our goal

here is to reduce maintenance overhead and to reduce the

effect of link failures through proactive repair, even in the

presence of dynamic and unstable networks. Finally, we

argue that a common peer-to-peer substrate would be bene-

ficial from the viewpoint of the engineering of P2P applica-

tions, as it would modularize the maintenance and schedul-

ing of network resources.

In this paper we present our initial effort and results to-

wards the goal of a shared peer-to-peer substrate. As an

initial validation of the proposed structure and its provided

interface, both a greedy DHT-style search and a k-random

walk are implemented on top of Spinneret. Although dis-

cussed here, future work will look at network bootstrap and

maintenance under churn in more depth.

We continue in Section 2 with a discussion of the tech-

niques that have been applied to both unstructured and

structured networks. Next, Section 3 lays out the design

goals and the architecture of Spinneret, including a for-

mal description of the network structure and its interface

to higher layers. In Section 4 we present the two example

protocols, and then finally we conclude in Section 5 with a

discussion of ongoing development and directions for future

research.

2 Related Work

In order to build a substrate that can be utilized by both

unstructured and structured networks, we must start by un-

derstanding these two classes of P2P network algorithms.

2.1 Unstructured Networks

In an unstructured network the links maintained by each

node are random. A node joins at any point in the graph,

and then finds as many neighbors as it wants to maintain

connections with. On top of these random structures a num-

ber of search techniques have been utilized. In the original

Gnutella [6], a node would flood a search message to all of

its neighbors, who then forward it on to all of their neigh-

bors and so on, until a time-to-live (TTL) expires. This

type of algorithm results in many duplicate messages due

to peers that share neighbors to whom they both forward

the same message. Furthermore, superfluous messages con-

tinue to be transmitted even after a query has successfully

been answered. Improving on this, a number of other algo-

rithms for unstructured networks have been put forward by

the community.

The k-walker random walk query strategy [7] sends out

k messages, each of which is forwarded to a single ran-

dom neighbor at each hop. This type of technique has been

shown to find objects with the same probability as flood-

ing [3]; however, the total number of network messages can

be reduced by one to two orders of magnitude. Such re-

duced duplication can however lead to longer search laten-

cies because of the additional number of message iterations.

2.2 Structured Networks

Like regular data structures, structured P2P systems must

maintain specific links to peers at certain regions in the net-

work. These links allow for deterministic traversal of the

distributed structure. Chord [11] uses a set of logarithmic

connections around a circular address space, as well as ad-

ditional connections to immediate neighbors in both direc-

tions (successors and predecessors). CAN [9] assigns each

node to a region in a multi-dimensional torus, and each

peer maintains a connection to neighbors in every dimen-

sion. Many other DHTs also provide O(log n) queries, and

neighbor-of-neighbor greedy routing further reduces this to

Θ(log n/ log log n) [8].

These algorithms should be used for applications using

exact match queries with relatively stable peers; however, in

this work our goal is to support massively scalable networks

for applications where peers are expected to have high churn

rates. In a large network running a DHT, maintenance algo-

rithms can be expensive, requiring O(n2) or even O(n3)
rounds of communication [11]. In large part because of the

difficulty of maintenance, these systems are not widely de-

ployed in active peer-to-peer networks, and as of yet they

are unproven in their ability to continue operation under the

presence of many transient and unreliable nodes.

Last, and even more important for many applications,

these types of algorithms have no ability to handle partial-

match queries. Just like a hash table, DHT algorithms re-

quire that search queries are expressed by a reference iden-

tifier, and for routing it must be in the same address space

as that of the nodes themselves. This means that any type of

range query, best guess, or fuzzy matching is inappropriate,

which greatly limits the applicability for these techniques.

2.3 Improvements

There have been a number of attempts to improve upon

the standard flooding scheme, some of which take advan-

tage of the natural structure that arises in a typical network,

and some which try to impose additional state or structure.

In some recently deployed systems [4, 6] a concept of

super-peers has been introduced, where nodes with higher

than average resources form a P2P network that is then uti-

lized by lower class nodes which act as clients. In this work

we wish to avoid the constraint of assuming ample quanti-

ties of high resource nodes.

Lv et al. [7] show that a power law graph distribution is

undesirable because it leads to a high message duplication

rate when using any variation of flooding. Reliance on a

small subset of high resource nodes can also lead to scala-

bility and attack vulnerability issues.

Spinneret bears some resemblance to recent work pub-

lished using Chord as a base. G. Manku et al. [8] and Zhang

et al. [12] define Chord structures very similar to our own.

The first analyzes the theoretical path length of neighbor of

neighbor greedy routing, where each node keeps track of

its neighbor’s neighbors so that it has a larger table to use

when making next-hop route decisions, a scheme they call

NoN-greedy routing. They find that NoN-greedy routing

results in paths of length Θ(log n/ log log n). The second

paper discusses using latency to refine fingers in a Chord

to decrease lookup latency. This, in effect, creates a finger

table where each finger is chosen from within [2i−1, 2i),
where 1 ≤ i ≤ m. However, neither paper analyzes these

semi-structured Chord networks in the context of unstruc-

tured search, nor considers the implication of churn to their

performance.

3 The Spinneret Substrate

Spinneret is a peer-to-peer network substrate that is de-

signed to support both structured and unstructured P2P al-

gorithms. We start by discussing the numerous goals we

have for such a shared substrate. These goals apply to both

practical and algorithmic concerns. Finally, we define the

network structure and the application interface that charac-

terize Spinneret.

3.1 Design Goals

The primary goal for virtually any P2P network is to of-

fer a service on top of the resources provided by the indi-

vidual nodes in the network. This typically requires some

form of query being injected into the network, which should

result in one or more node ids, satisfying the query, being

returned. In Spinneret we do not provide a query mecha-

nism. Instead we leave the semantics of the upper layers

open for specialization on top of the common network sub-

strate.

Any type of P2P network that exhibits unbalanced re-

source usage, such as super-peer structured networks or

Figure 1. The Spinneret Stack: An example
Peer-to-Peer stack on top of the Spinneret

substrate.

those that utilize power-law connectivity, are vulnerable to

directed attacks that can disproportionally effect large num-

bers of nodes. For example, in super-peer networks, dis-

abling only a subset of super-peers can severely cripple or

even partition the entire network [2]. By maintaining bal-

ance in the network, the Spinneret system should deempha-

size the importance of any specific node, thus minimizing

the effect of this form of attack.

As peer-to-peer networks proliferate and an increasing

number of applications are P2P aware, the overhead of sim-

ply maintaining connections for multiple networks becomes

prohibitive for a typical desktop computer. If mobile de-

vices and other resource constrained computers are to be

connected to P2P networks, reduced resource usage is nec-

essary. To that end, a shared network infrastructure that can

be used simultaneously by multiple P2P protocols would

vastly reduce the strain on both local operating system re-

sources as well as global network resources. Figure 1 shows

an example architecture that could be implemented on top

of the Spinneret substrate.

Currently, P2P application developers must spend a con-

siderable effort engineering their basic network-level struc-

tures. For example, maintaining active links to a large num-

ber of neighbors requires constant heartbeat messages and

discovery of new peers to take the place of those that have

left. Separating this aspect of P2P protocol development

from the algorithmic design should ease the process of P2P

development. Furthermore, as is suggested by Gummadi

et al. [5], such a separation would allow research to focus

on the best designs for each component and progress along

parallel tracks. Research at both the substrate layer and the

higher algorithmic layer would no longer be intertwined.

3.2 Network Structure

Spinneret is designed to support graph traversal to any

node in as close to logarithmic time as possible, while not

requiring the strict maintenance of links between any spe-

cific pairs of nodes. Intuitively, our solution is to organize

the network into an approximation of a DHT, but keep the

exact structure flexible enough so that maintenance can be

done in a very light-weight fashion. Here we describe the

initial design of the of the Spinneret substrate.

We describe the structure of the Spinneret substrate

within the reference model proposed by Aberer et al. [1].

We model a P2P network as a directed graph G = (P, E)
where P is a set of n = |P | peers, E the set of edges, and

an edge (i, j) ∈ E represents the connection between peers

i and j. We also denote with N(i) the neighbor function,

the set of peers to which i is connected, so N(i) = {j |
(i, j) ∈ E}. The properties of the network are completely

defined by the N function, which is used to derive the link

table maintained by each peer in a Spinneret network.

Specifically, the N function defines the network geome-

try as discussed by Gummadi et al. [5]. The geometry per-

tains to the pattern of links connecting the P2P network. In

practice, the geometry is defined by an addressing scheme

and by a distance function d, which is a design parameter of

Spinneret. The addressing scheme is based on a closed and

uniform address space A. In practice, we can assume that

A consists of all B-bit binary strings. Each participant in

the network is assigned an address a from A. Assignments

from A must be uniformly random so that no part of the

address space is more densely populated than another. This

is very similar to the way addresses are assigned in many

DHTs. (In the following text we simplify the notation a bit

by denoting with i ∈ P both a peer and its address.)

The Spinneret geometry is then defined according to the

distance function d : A × A → R. From a network-

wide perspective, the geometry consists of a random graph

where the probability that link (i, j) ∈ E is proportional to

2−d(i,j). From a local perspective, each peer i maintains a

set of links to peers whose addresses are chosen uniformly

at random within regions of the address space that are at

exponentially-increasing distances from i. In other words,

N(i) contains addresses that are distributed uniformly at

random over a log d scale.

This results in a geometry that is akin to a loosely de-

fined Chord [11], but rather than mandating specific neigh-

bors at certain addresses it will accept any node within a

given address range. Such “randomized” geometries have

been suggested before [8, 12], but while our formalization

differs only slightly, none of the previous work has studied

this type of geometry as the basis for both structured and

unstructured algorithms.

As is shown in Figure 2, the link table maintained by the

substrate at a peer i is represented as a set of bins, where

each bin contains nodes twice as distant from i as the previ-

ous. In order to adjust the size of this link table each bin has

a given number of slots that define the maximum number of

links that a bin may hold. The number S of slots in each bin

is a design parameter of Spinneret that can be used to adjust

Figure 2. Log-Bin Structure: The log-bin

structure is shown for node A.

overall network connectivity.

3.3 Substrate Parameters

The Spinneret substrate is parameterized by three main

components: an address, a distance function, which takes

two addresses and returns the distance between them, and

the number of slots in each address bin, which determines

the number of links maintained by each node.

• Address: The address assigned to each node is used

to place that node in relation to other nodes in the net-

work. We leave the specifics of the address space and

properties of distribution up to the higher layers, but

for most systems this will probably be a uniformly ran-

dom value such as the result of a hash function over an

object or address. The dimensionality of the address

space also directly affects the choice of efficient algo-

rithms for a given P2P network. Although the distance

value will always be used to determine which bin a re-

mote peer should be placed in, the substrate can not

know in which direction in multi-dimensional space

this peer resides. Therefore, there is no guarantee that

a given bucket will indeed hold a node in the appropri-

ate direction in order to answer a query. However, as

long as the dimensionality remains low, and the num-

ber of slots for each bin is reasonable in relation to this

dimensionality, the probability of having a useful next

hop remains high.

• Distance Function: The choice of distance function in

structured P2P networks has a direct impact on the al-

gorithms used to build routing tables, search for data,

and maintain the network. As the distance function

is what is used to build the logarithmic link table, all

nodes wanting to cooperate to provide a P2P service

will need to share their distance function. We imag-

ine that two networks with different distance functions

could run side-by-side, each using their own routing

tables.

• Connectivity: In order to be confident that the net-

work is connected, all nodes maintain links to other

nodes through at least some minimum number of

neighbors. Erdös and Rényi show that with very high

probability a random graph with more than n ln n
2 edges

will be connected. In Spinneret each node tries to

maintain order O(log |A|) links to peers, for order

O(n log |A|) total links in the entire network. The level

of connectivity can be further increased on a node by

node basis by adjusting the number of bin slots

3.4 Maintenance

In order to determine when replacement of a node entry

in the link table is necessary, Spinneret needs a way to de-

tect failing or failed peers. A typical heartbeat mechanism

that pings all peers in the link table once per time th can be

used to determine liveness. Ideally, these pings would be

spread out over th, and th could be relatively large, in or-

der to reduce network traffic. If links are symmetric, nodes

can send one ping every 2th, as receiving a ping indicates

the sender is alive, alleviating the need to send a ping to the

sender for another th. As such, the total failure-detection

traffic generated in the network amounts to nS log |A|/2th
messages per time unit, or nS log |A|/th in the case of

asymmetric links.

The primary role of this shared substrate is to keep it-

self informed about the status of remote nodes in the net-

work. For the purposes of firewall traversal and low over-

head keep-alive and routing, most P2P systems utilize UDP

datagrams at the socket layer [10]. Thus connections are not

held open, but up to date status information about each of a

node’s peers is maintained through periodic messaging.

While we can imagine many possible maintenance

schemes for Spinneret, there are two main classifications:

opportunistic, and proactive. Opportunistic algorithms use

the naturally occurring message traffic in the network to

refresh bins, replacing failed or poorly performing nodes.

Proactive schemes would actively search for new nodes,

possible in response to under-full bins or failed neighbors.

Opportunistic schemes should have zero additional cost

over the basic heartbeats. As remote peers make requests

via the Spinneret interface, their routing information is

cached in a pool of nodes available to be used for replace-

ment. When a failure is detected the maintenance algo-

rithms find an appropriate replacement. If no appropriate

replacement is found then a proactive scheme can be uti-

lized.

Proactive schemes require nodes to perform extra work

to find replacements for failed links detected using heart-

beats. Instead of, or in combination with, using the oppor-

tunistic algorithm, proactive recovery would attempt to find

nodes in specific distance ranges in order to keep bins full.

Ideally, a proactive approach would maintain full bins at all

times, or at least keep each bin as full as possible given a

specific distribution of nodes in the network.

Preliminary work, not presented in this paper, has

pointed toward hybrid schemes consisting of an initial

proactive bootstrap phase using a push-pull mechanism

[10], and a second phase that is opportunistic, with fall-back

to push-pull under network stress.

3.5 Substrate Interface

The interface to Spinneret is structured around the ad-

dress space. Two methods are used to configure the node

and two methods are used to query the underlying sub-

strate. Specifically, set address(address) sets the address

of the current node; set distance function(distance func)

sets the distance function to be used for building the

link table; get random node() returns a random neighbor,

uniformly chosen across all bins in the link table; and

get closest node(address) returns the closest node in the

link table to the given address. Many higher level proto-

cols, both structured and unstructured, can be implemented

using only these four methods. We give examples of two

such protocols in Section 4.

4 Analysis

Here we describe two typical P2P algorithms imple-

mented on top of the Spinneret log-random substrate: a

Chord like DHT and a k-walker random walk. We also be-

lieve that various types of range queries, semantic searches,

and other P2P search algorithms would work well on top

of Spinneret, but lack of space presents us from presenting

them here. Currently, we use a simple euclidean distance

function (d(i, j) = |j − i|) in a single dimensional address

space, which will probably suffice for most applications, but

it is possible that for some systems a different distance func-

tion might be appropriate.

4.1 K-walker

The ability to make efficient queries in an unstructured

network reduces to a simple task: visit the most nodes in

the network in the shortest amount of time, while using the

smallest number of messages. Lv et al. [7] present a k-

walker random walk algorithm which produces results sim-

Algorithm 1 K-walker random walk search

1: procedure RANDOM WALK SEARCH(o, htl)

2: if have object?(o) then
3: return self

4: else if htl = 0 then
5: return none

6: else

7: next← spinneret.get random node()
8: return next.random walk search(o, htl − 1)
9: end if

10: end procedure

11:

12: procedure K RANDOM WALK SEARCH(k, o, htl)

13: results← []
14: for i ∈ (1..k) do
15: results[i]← random walk search(o, htl)
16: end for

17: return first result(results)
18: end procedure

ilar to that of the original Gnutella-style flooding, but they

cut traffic by two orders of magnitude by reducing duplicate

messages. Furthermore, Lv et al. also found that random

graphs are the best network structure for supporting ran-

dom walks, as they result in better load distribution among

nodes. For these reasons the k-walker random walk algo-

rithm is a good fit on top of the Spinneret substrate.

The k-walker algorithm starts a query by issuing k re-

quests to a set of k random nodes from the underlying

substrate. At each node the message is forwarded on to a

random neighbor until the hops-to-live (HTL) has expired.

In this simulation we did not implement the checking de-

scribed by Lv et al., which would result in additional ben-

efits in terms of saved network messages. We did however

simulate their state-saving technique, which helps to fur-

ther minimize duplicate messages by not forwarding ran-

dom walkers for a given query to the same neighbor twice.

Additionally we test the success of queries where multiple

nodes can satisfy the query request. This test models the

replication of a given object onto multiple random nodes in

the network.

In Algorithm 1 we present pseudo-code for the basic ran-

dom walk search on top of the Spinneret substrate.

4.1.1 Results

In order to validate our simulation we compare our results

with an analytical solution. A random walk can be thought

of as a method for efficiently taking an approximate random

sample from a graph structure, thus we use uniform sam-

pling to model our ideal performance [3]. The probability

of finding the desired node in a uniformly sampled network

is the sum of the hypergeometric distribution:

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16

K
-W

al
k
er

 S
u
cc

es
s

R
at

e

Number of Replicas

1000 no-state
1000 with state

100 no-state
100 with state

Figure 3. Random Walker Success Rate: The

probability of success of the random walker
vs. the number of replicas placed in the net-

work.

f(x|R, F, s) =

R
∑

x

(

R

x

)(

F

s−x

)

(

R+F
s

) (1)

Here R is the number of nodes that hold replicas of the

desired data, F the number of the nodes that do not, and

s is the sample size, which is the number nodes sampled.

This reduces to a binomial distribution in the case where

R = 1. x is the minimum number of nodes that we would

like to find as the result of a given query, so typically x = 1,

because we only need one copy to be successful.

The primary metric for testing the k-walker random walk

algorithm is the percentage of successful queries which

are achieved. In the following experiments, 100 queries

are made over 10 different networks for a total of 1,000

queries per data point. From each randomly selected node

we launched 32 random walkers with an HTL of 20, and

searched for another randomly selected node, or in the case

of replication, a set of nodes. In Figure 3 the k-walker al-

gorithm is run for increasing levels of replication in both a

100 and 1000 node networks. Our results show the state-

less walkers succeeding at around 45% while the stateful

walkers improved to an average of right around 56%. The

theoretical probability given by Equation 1 for this configu-

ration is ∼64%, which implies that the stateful walkers are

closely approximating a uniform random sampling. We also

found that the number of slots per bin had almost no effect

on the performance of the k-walkers.

Figure 3 also shows that a small amount of replication re-

sults in considerable gains in the query success rate. These

numbers are consistent with both our analytical model in

Equation 1, as well as the results found by Lv et al.

Figure 4 shows the number of times nodes are visited

more than once during a run of the k-walker algorithm with

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5 6 7 8 9

%
 D

u
p
li

ca
te

 N
o
d
e

V
is

it
s

Bin Slot Size

1000 no-state
1000 with state

Uniform random sample

Figure 4. Nodes in Multiple Walker Paths: The

percent of node visits that are at nodes al-
ready seen by a walker.

32 walkers, each set to an HTL of 20. The uniform ran-

dom sample line represents duplicate visitations in 640 sam-

ples across 1000 nodes. This represents the amount of du-

plication one would expect from a k-walker random walk

if each node visitation was independent of the last, (i.e, a

truly random sampling). Figure 4 suggests that Spinneret

offers a near-random sample of the nodes in the network,

even though there is a bias toward close nodes in the link

table, with the number of duplicate visits approaching the

level seen in truly random sampling. Adding state to the

walker further reduces duplication, although some remain

from multiple path pairs to the same destination peer.

4.2 DHT

We have chosen a ring structure similar to the one in-

troduced in the Chord system [11] as the basic geometry

for our DHT implementation [5]. Each node chooses a uni-

formly random identifier a ∈ A, where A is an B-bit iden-

tifier space which wraps around at the ends of the number

line. Each node in the DHT is responsible for the region of

address space at its own identifier as well as half the dis-

tance to each of its immediate neighbors, the predecessor

and the successor.

Sitting on top of the Spinneret substrate gives the DHT

access to a table of nodes which are already placed in bins

of logarithmically increasing distance. This flexibility in

route selection for bins does not effect path distance. As

is shown by Gummadi et al. [5], the ith neighbor used for

logarithmic routing on a ring can be any node in the range

[(d + 2i), (d + 2i+1)]. This means that for each bin there

are 2i possible neighbors.

To route a query packet which is looking for a given id,

at each hop the routing node requests the closest node to the

Algorithm 2 DHT search

1: procedure DHT SEARCH(a)

2: closest← spinneret.get closest node(a)
3: if closest = none then

4: closest← close immediate(a)
5: end if

6: if closest = none then

7: return self

8: else

9: return closest.dht search(a)
10: end if

11: end procedure

id from the Spinneret link table (using get closest node(a)),

and then forwards on to that node. If no nodes in the

link-table are closer than the nodes in the neighbor list,

the neighbor list is used instead. Routing can be done ei-

ther iteratively, where the requesting node does successive

queries to nodes, or recursively where each node forwards

the packet without communicating to the requesting node.

4.2.1 Results

Figure 5 shows the average number of hops taken from

one node to another during a DHT style search in a 1000

node Spinneret network. 10 trials were performed for each

bin size, with each trial consisting of 100 searches per-

formed between randomly selected node pairs. The error-

bars depict the minimum and maximum number of hops

seen across the 10 trials. The trials with bins of slot size

0 are a special case, as only the successor and predecessor

links are used, resulting in ∼222 hops on average. This is

not a realistic case, and is therefore not show on the graph.

Adding a single node per bin reduces this hop count to ∼6.0

hops, with additional slots further reducing the hop count.

All trials successfully found their search target because we

are not simulating failure in these experiments.

We also looked at the use of predecessor and successor

links during a DHT-style lookup. While these links are nec-

essary for correctness, their use is less than optimal and in-

dicates that the bins did not hold a useful link. For slot size

0, every next hop is necessarily either a predecessor or suc-

cessor, so they are used for every hop. For the other num-

bers of slots the usage quickly drops, reaching 0.21 uses per

search with slot size 1, and 0.0 at slot size 5.

Finally, we looked at the density of the usage of ad-

dresses in the address space. The density was changed by

holding the number of nodes steady while increasing the

size of the address space. This should have no effect on the

performance of DHT-style search, and our experiments run

over a 1000 node topology using a bin slot size of 3 show

that this is in fact the case.

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10

A
v
g
.
H

o
p
s

to
 G

lo
b
al

 M
in

im
u
m

Bin Slot Size

hops

Figure 5. Avg. Hops to Search Target: For bin

sizes 0–9 the graph shows the average num-
ber of hops taken to find a target node. Bin

size 0 forces the DHT to use only predeces-
sor and successor links.

5 Conclusions and Future Work

We have presented Spinneret, which is a low-level sub-

strate for developing peer-to-peer networks. By maintaining

a log-random network structure, higher level algorithms can

make use of both structured and unstructured style search

techniques.

The algorithms presented are two of the most common

search techniques for P2P networks, but in the future we

would like to experiment with a wide variety of algorithms

on top of Spinneret. One family of search that is missing

is a query mechanism for multi-dimensional or fuzzy data.

A distributed clustering algorithm, for example, would be

complementary to the current set.

One of the primary goals in creating a two-level design,

where the substrate maintains the network structure while

higher layers utilize the set of shared links, is to separate

network maintenance from the algorithmic aspects of P2P

systems. The two case studies we presented are an initial

validation of the network structure, but our current work is

now focused on efficient network construction and mainte-

nance algorithms. Additionally, we plan to consider the im-

plications of using different distance functions and address

assignment schemes.

An additional unexplored aspect of this work is looking

at the interaction of multiple P2P algorithms running side

by side. Although the substrate can ameliorate problems re-

lated to local resource usage, such as open network connec-

tions, it can not deal with distributed issues such as network

congestion from one service effecting the performance of

another service. Looking at bandwidth usage, latency and

other issues in specific examples of P2P services will be

necessary for achieving the overall goals of this work.

Finally, another key characteristic of this work is to de-

velop a structure that does not require unfair usage of re-

sources. Towards that end, we would like to study equilib-

ria in the management interactions taking place within the

substrate, with the purpose of structuring intra-peer com-

munications in a way that does not allow free-riders.

References

[1] K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas,

S. Haridi, and M. Hauswirth. The essence of P2P: A refer-

ence architecture for overlay networks. In Proceedings of the

Fifth IEEE International Conference on Peer-to-Peer Com-

puting (P2P’05), pages 11–20, Konstanz, Germany, Aug.

2005.
[2] N. Daswani and H. Garcia-Molina. Query-flood DoS attacks

in gnutella. In CCS ’02: Proceedings of the 9th ACM con-

ference on Computer and communications security, pages

181–192, Washington, DC, USA, Oct. 2002.
[3] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in

peer-to-peer networks. In Proc. of the 23rd Conference of the

IEEE Communications Society (INFOCOM), Hong Kong,

China, Mar. 2004.
[4] L. Gong. Project JXTA: A technology overview. technical

report, SUN microsystems, Apr. 2001.
[5] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,

S. Shenker, and I. Stoica. The impact of dht routing ge-

ometry on resilience and proximity. In Conference on Ap-

plications, Technologies, Architectures, and Protocols for

Computer Communication (SIGCOMM ’03), pages 381–

394, Karlsruhe, Germany, Aug. 2003.
[6] P. Kirk. Gnutella protocol rfc, 2002.
[7] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and

replication in unstructured peer-to-peer networks. In Pro-

ceedings of the 16th international conference on Supercom-

puting, pages 84–95, June 2002.
[8] G. Manku, M. Naor, and U. Wieder. Know thy neighbors

neighbor: the power of lookahead in randomized P2P net-

works. In Proceedings of the thirty-sixth annual ACM sym-

posium on Theory of computing (STOC 04), 2004.
[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Schenker. A scalable content-addressable network. In

Proceedings of ACM SIGCOMM 2001, pages 161–172,

Aug. 2001.
[10] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling

churn in a DHT. In Proceedings of USENIX’04, pages 127–

140, Boston, Massachusetts, USA, June 2004.
[11] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.

Kaashoek, F. Dabek, and H. Balakrishnan. A scalable peer-

to-peer lookup protocol for Internet applications. Technical

Report TR-819, Lab. Computer Science, Massachusetts In-

stitute of Technology, 2001.
[12] H. Zhang, A. Goel, and R. Govindan. Incrementally improv-

ing lookup latency in distributed hash table systems. SIG-

METRICS Performance Evaluation Review, 31(1):114–125,

2003.

