
Self Adaptive Application Level Fault Tolerance
for Parallel and Distributed Computing

Zizhong Chen1, Ming Yang1, Guillermo Francia, III1, and Jack Dongarra2

1Jacksonville State University 2University of Tennessee, Knoxville
MCIS Department Department of Computer Science

Jacksonville, AL 36265 USA Knoxville, TN 37996
{zchen, myang, gfrancia}@jsu.edu dongarra@cs.utk.edu

Abstract

Most application level fault tolerance schemes in liter-
ature are non-adaptive in the sense that the fault toler-
ance schemes incorporated in applications are usually de-
signed without incorporating information from system envi-
ronments such as the amount of available memory and the
local or network I/O bandwidth. However, from an applica-
tion point of view, it is often desirable for fault tolerant high
performance applications to be able to achieve high perfor-
mance under whatever system environment it executes with
as low fault tolerance overhead as possibile.

In this paper, we demonstrate that, in order to achieve
high reliability with as low performance penalty as possi-
ble, fault tolerant schemes in applications need to be able
to adapt themselves to different system environments. We
propose a framework under which different fault tolerant
schemes can be incorporated in applications using an adap-
tive method. Under this framework, applications are able
to choose near optimal fault tolerance schemes at run time
according to the specific characteristics of the platform on
which the application is executing.

1. Introduction

As the number of processors in modern high perfor-
mance distributed computer systems continues to grow, the
issue of fault tolerance is becoming more and more impor-
tant. Even making generous assumptions on the reliability

This research was supported in part by the Los Alamos National Labora-
tory under Contract No. 03891-001-99 49 and the Applied Mathematical
Sciences Research Program of the Office of Mathematical, Information,
and Computational Sciences, U.S. Department of Energy under contract
DE-AC05-00OR22725 with UT-Battelle, LLC.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

of a single processor or link, it is clear that as the proces-
sor count in high end clusters grows into the hundreds of
thousands, the mean-time-to-failure of these clusters will
drop from a few years to a few days, or less. The cur-
rent DOE ASCI computer (IBM Blue Gene L) is designed
with 131,000 processors [1]. The mean-time-to-failure of
some nodes or links for this system is reported to be only
six days on average [1]. In recent years, the trend of the
high performance computing has been shifting from the ex-
pensive massively parallel computer systems to the clusters
of commodity off-the-shelf systems [5]. While the com-
modity off-the-shelf cluster systems have excellent price-
performance ratio, there is a growing concern with the fault
tolerance issue in such system. The recently emerging com-
putational grids [9] environments have further exacerbated
the problem. However, many computational science pro-
grams are now designed to run for days or even months.
Therefore the mean-time-between-failures (MTBF) of such
kind of high performance computing systems are signifi-
cantly shorter than the running time of many computational
science programs. Modern computational science programs
need to be able to tolerant failures.

Due to the large process state of such kind of applica-
tions, the relatively low I/O bandwidth between memory
and the central network disk, and the high enough frequency
of failures, for these systems, the classical system-level fault
tolerance approaches is often either impractical (an applica-
tion would spend most of its time taking checkpoints) or in-
feasible (there is no enough time for an application to save
its core to disk before the next failure occurs). Therefore
the cheaper application level fault tolerance schemes may
be deployed as an alternative in such large computational
science programs.

However, most application level fault tolerance schemes
proposed in literature are non-adaptive in the sense that the
fault tolerance schemes incorporated in applications are ei-

ther designed without incorporating system environments
(such as the amount of available memory and the local and
network I/O bandwidth, etc) or designed only for a specific
system environment. From the application point of view,
fault tolerant high performance applications need to be able
to achieve high performance under different system envi-
ronments with as low performance overhead as possible. In
order to achieve high reliability and survivability with low
performance overhead, the fault tolerance schemes in such
applications need to be adaptable to different (or dynamic)
system environments.

In this paper, we propose a framework under which dif-
ferent fault tolerance schemes can be incorporated in appli-
cations using an adaptive method. In our framework, ap-
plications will be able to choose the best (minimizing the
mean execution time of the application) available fault tol-
erance schemes at runtime (or dynamically) according to
different (or dynamic) system environments. Applying this
frame work to self-adaptive numerical software such as LA-
PACK for Clusters [3] will result in self-adaptive fault tol-
erant numerical libraries. Applications that call this kind of
self-adaptive fault tolerant numerical libraries will be able
to survive certain processor failures transparently with very
low performance overhead.

The rest of this paper is organized as follows. Section 2
reviews briefly the existing related literature in checkpoint-
ing and rollback recovery. Section 3 explains the motiva-
tions of this research. Section 4 presents a self adapting ap-
plication level fault tolerance scheme for high performance
grid computing. In Section 5, some initial experimental re-
sults are presented. Section 6 concludes the paper and dis-
cusses future work.

2 Fault Tolerance in Parallel and Distributed
Systems

Fault tolerance techniques can be divided into two big
branches and some hybrid techniques. The first branch is
Messaging Logging. In this branch, there are three sub-
branches: Pessimistic Messaging Logging, Optimistic Mes-
saging Logging., and Casual Messaging Logging. The
second branch is Checkpointing and Rollback recovery.
There are also three sub-branches in this branch: Network
disk based Checkpointing and rollback recovery, Diskless
Checkpointing, and Local Disk based checkpointing.

Our research is mainly concentrated on incorporat-
ing fault tolerant techniques into tightly coupled large
scale high performance computational intensive applica-
tions. These applications are often communication inten-
sive, so checkpoint and rollback recovery approaches gen-
erally work better than message logging approaches. In
the rest of this section, we confine our literature review
to checkpointing and rollback recovery schemes instead of

general fault tolerance schemes
Most traditional distributed multiprocessor recovery

schemes are designed to tolerante arbitrary number of fail-
ures. So they store their checkpoint data in a central sta-
ble storage. The central stable storage usually has its own
fault tolerance techniques to prevent it from failures. But
the bandwidth between the processors and the central sta-
ble storage is usually very low. Several experimental stud-
ies presented in [13] have shown that the main performance
overhead of checkpointing is the time spent on writing the
checkpoint data to the central stable storage.

In [11] and [13], Plank proposed to use diskless check-
pointing technique as an approach to tolerant single failures
with low performance overhead when stable storage is not
available. Diskless checkpointing is a technique where pro-
cessor redundancy, memory redundancy and failure cover-
age are traded off so that a checkpointing system can oper-
ate in the absence of stable storage. Experimental studies
presented in [13, 14] have shown that diskless checkpoint-
ing have a much better performance than traditional disk
based checkpoint techniques.

There are also several papers which compare the perfor-
mance of different diskless checkpointing schemes. In [4],
Chiueh and Deng compare the performance of differ-
ent diskless checkpointing schemes on a massively par-
allel SIMD machine. Their experiments were done on
a DECmpp 12000 machine. The DECmpp 12000 ma-
chine has 8192 processors with each processor owning 64
Kbytes of RAM, but without any local disk for each pro-
cessor. They implemented three chechpointing schemes
(Checkpoint Mirroring, Parity Checkpointing and Partial
Party Checkpointing) for a Matrix-matrix Multiplication
Application. The XOR operation was done following an
O(logN) binary tree fashion. The results of their experiment
show that the Checkpoint Mirroring is an order of magni-
tude faster than the Parity Checkpointing, however intro-
duced twice as much memory overhead as Parity Check-
pointing. In [14], Silva also did some experimental studies
about diskless checkpointing The experiments were done
on an Xplorer Parsytec machine with 8 transputers (T805).
Their experimental results show that Checkpoint Mirror-
ing has a much better performance than the n+1 Parity
schemes. The drawback is that Checkpoint Mirroring al-
ways presents more memory overhead than the n+1 Parity
schemes. In [12], Plank also reported that Checkpoint Mir-
roring has lower performance overhead than Parity check-
pointing if the checkpoint data is stored in local disk instead
of the memory of the processor.

Local disk can also be used to store the checkpoint data.
In [12], Plank applies RAID strategies to deal with lo-
cal disk checkpoint data so that his checkpoint strategies
can yield better performance for a smaller amount of fault
coverage than traditional disk based checkpointing. In his

2

paper, coordinated checkpoints are first taken to the local
disk of each processor and then Checkpointing Mirroring,
n+1 Parity, or Reed-Solomon Coding are used to encode
the local checkpoint data to the local disk of other proces-
sors. This strategy uses the local disk to replace the mem-
ory to tolerate small process failures, which is important to
achieve low checkpoint overhead when there is not enough
memory to do diskless checkpoint.

To tolerate arbitrary number of failures with low perfor-
mance overhead, Vaidya proposed a two-level distributed
recovery approach in [15]. A two-level recovery scheme
tolerates the more probable failures with low performance
overhead, while less probable failures maybe tolerated with
a higher performance overhead. In his example, the more
probable single failures are tolerated with diskless check-
pointing (checkpoint mirroring), while the less probable
multiple failures are tolerated with traditional disk based
checkpointing. In that example, he demonstrated that to
minimize the average overhead, it is often necessary to take
both diskless checkpoints and disk based checkpoints.

Checkpoint can be done either at the system-level or
at the application level. In [14], Silva compared the per-
formance overhead of the system-level checkpointing and
the user defined checkpointing. Their experiments were
done on an Xplorer Parsytec machine with 8 transputers
(T805). Experiments show that the user defined checkpoint-
ing schemes have much lower performance overhead than
the system-level checkpointing schemes. But the degree of
the performance improvement is also dependent on specific
applications.

In summary, a review of the existing fault tolerance re-
search demonstrates that

• To tolerate arbitrary number of failures with low per-
formance overhead, a two-level (or multi-level) recov-
ery scheme should be used.

• If enough memory is available, Checkpoint Mirroring
should be used rather than Parity Based Checkpoint-
ing.

• If there is no enough memory but there is enough local
disk storage available, local disk storage can be used
to reduce the checkpoint performance overhead.

• To achieve low performance overhead, user defined
checkpointing schemes should be used instead of the
system-level checkpointing schemes.

3 Motivations for Self Adapting Fault Toler-
ance

From Section 2, we have seen that the previous fault tol-
erant research works have produced some very precious re-
sult. However, there appears to be a significant gap between

the fault tolerant research results and their optimal deploy-
ment into applications.

Each fault tolerance scheme has its own advantages and
disadvantages. Different systems have different resource
characteristics. What is the best way to incorporate differ-
ent fault tolerance schemes into applications so that the re-
liability and survivability is as high as possible while the
performance overhead is as low as possible?

From the application point of view, it is desirable that
fault tolerant high performance applications is able to
achieve both high performance and high reliability (surviv-
ability) with low fault tolerance overhead no mater under
which kind of system environments it is running. To achieve
this goal, the best strategy would be to adaptively choose
the fault tolerance schemes in applications based on differ-
ent (or dynamic) system environments that the applications
are running.

The key idea of our recovery framework is the adaptivity
of our checkpoint scheme to different system environments.
Our adaptive scheme is similar to Vaidyas two-level recov-
ery scheme in that both schemes take multi-level check-
point to tolerate arbitrary number of failures with low per-
formance overhead. However Vaidyas recovery technique
is static. He consider the availability of the memory and
the local disk storage at the software design time, but after
the design is finished, the software will never need to check
the information of the hardware architecture (such as num-
ber of available processors, amount of memory and local
disk storage) again. Thus we classify his scheme as static
scheme. However, in our scheme, the software will have to
check the information of the hardware architecture (such as
number of available processors, amount of memory and lo-
cal disk storage) to decide the optimal checkpoint scheme.
Thus, we regard our scheme as adaptive rather than static.

The application of this framework to self-adaptive nu-
merical software such as LFC will result in self-adaptive
fault tolerant numerical libraries. Applications that use this
kind of self-adaptive fault tolerant numerical libraries is
able to survival certain processor failures transparently with
very low performance overhead.

4 A Self Adapting Application Level Fault
Tolerance Scheme

In this section, we present a self adapting application
level fault tolerance scheme for high performance grid com-
puting.

4.1 Overview

Our goal is to establish a framework under which differ-
ent fault tolerance schemes can be optimally incorporated in
applications using an adaptive method. In our framework,

3

applications will be able to adaptively choose the best (min-
imizing the mean execution time of the application) avail-
able fault tolerance schemes at runtime according to differ-
ent system environments.

Different fault tolerant schemes require different re-
sources. When designing the fault tolerant application, the
application developer may not have an apriori knowledge
of the system characteristics of the platform the application
will be running on. Therefore, a self adapting application
level fault tolerance scheme need to be able to detect system
information at run time. The system characteristics that is
necessary in determining checkpoint schemes may include

• The number of available processors

• The amount of available memory on each processor

• The amount of available local disk storage on each pro-
cessor

• Whether there is a central fail free stable storage avail-
able

• The I/O bandwidth of the local disk storage and the
central stable storage of each processor

• The network bandwidth between processors

• An estimate of the MTBF of the system environments

Different fault tolerant schemes have different degree of
reliability. To tolerate the failure of all processors, a central
stable storage is usually necessary. However, if we want to
tolerate only a small number of processor failures, a cen-
tral stable storage is usually not necessary. For example,
schemes such as neighbour-based diskless checkpointing
work fine to tolerate single processor failure. In order to
maximize the degree of reliability while maintaining low
performance overhead, a multi-level recovery scheme is of-
ten desirable in a self adapting application level fault toler-
ance scheme.

If the failure of all processors need to be tolerated in
grid environments, a grid file system such as IBP can be
used as a stable storage. In order to achieve low check-
point overhead, algorithm-based checkpointing method can
be used. In order to recover the system environments au-
tomatically, FTMPI/HARNESS [6, 7, 8] can be used as the
communication library. If the main memory is not enough,
consider using the local disk. In order to achieve low mem-
ory overhead, we also consider Kims checksum and reverse
computation method [10]. In order to achieve transparency,
consider and incorporating the fault tolerance in numerical
libraries such as LFC. Because we are using an application-
level approach, it is also possible to consider the character-
istics of the application.

4.2 A Multi-level Self Adaptive Recovery
Scheme

Assume a processor can access the following five types
of storage in the computing system

• local memory of the processor

• local disk of the processor

• neighbor processors’ memory

• neighbor processors’ disk

• central stable storage

If one type of storage is not available in the system, then
we assume there are zero bytes of that type of storage in the
system. We also assume that the bandwidth of these five
tpyes storages is strictly decreasing. Assume a node failure
also means that both its memory and its local disk becomes
unavailable.

Which kind of checkpoint schemes (or combination, or
modification of schemes) is best for a specific system is af-
fected by many factors. At the present time, we only con-
sider the following factors:

• The amount of available storage of each kind

• The overhead of each checkpoint scheme (which is
mainly dependent on the bandwidth of each storage
and the characteristics of that checkpoint schemes)

• The failure distribution of the system.

• The characteristics of the application

• The number of available processors for this applica-
tion.

The five candidate basic checkpoint schemes that we
consider at the present time are

• CSSC: Central Stable Storage Checkpoint scheme

• NDPC: Neighbor Disk-based Parity Checkpoint
scheme

• NDCM: Neighbor Disk-based Checkpoint Mirroring
scheme

• NMPC: Neighbor Memory-based Parity Checkpoint
scheme

• NMCM: Neighbor Memory-based Checkpoint Mir-
roring scheme

4

if (there is enough central stable storage) {
if (there is enough neighbor disk to check mirroring) {

if (there is enough neighbor memory to checkpoint mirroring) {
use schemes CSSC, NDMC and NMCM;

} else if (there are enough neighbor memory to parity/reverse comp.) {
use schemes CSSC, NDMC and NMPC;

} else {
use schemes CSSC, NDMC;

}
} else if (there is enough neighbor disk to parity/reverse comp.) {

if (there is enough neighbor memory to checkpoint mirroring) {
use schemes CSSC, NDPC and NMCM;

} else if (there are enough neighbor memory to parity/reverse comp.) {
use schemes CSSC, NDPC and NMPC;

} else {
use schemes CSSC, NDPC;

}
} else {

if (there is enough neighbor memory to checkpoint mirroring) {
use schemes CSSC and NMCM;

} else if (there are enough neighbor memory to parity/reverse comp.) {
use schemes CSSC and NMPC;

} else {
use schemes CSSC;

}
}

} else {
if (there is enough neighbor disk to check mirroring) {

if (there is enough neighbor memory to checkpoint mirroring) {
use schemes NDMC and NMCM;

} else if (there are enough neighbor memory to parity/reverse comp.) {
use schemes NDMC and NMPC;

} else {
use schemes NDMC;

}
} else if (there is enough neighbor disk to parity/reverse comp.) {

if (there is enough neighbor memory to checkpoint mirroring) {
use schemes NDPC and NMCM;

} else if (there are enough neighbor memory to parity/reverse comp.) {
use schemes NDPC and NMPC;

} else {
use schemes NDPC;

}
} else {

if (there is enough neighbor memory to checkpoint mirroring) {
use schemes NMCM;

} else if (there are enough neighbor memory to parity/reverse comp.) {
use schemes NMPC;

} else {
there is no enough storage to do any checkpoint;

}
}

}

Figure 1. A multi-level self adapting fault tolerance scheme

5

The multi-level self adaptive recovery scheme is the
combination of some of the above five basic schemes. Just
as shown in existing research works, on most systems, the
performance of these five basic recovery schemes is increas-
ing (but it is also possible in the future to perform exper-
iments to decide the performance of different schemes at
run time). Since we also know the degree of fault tolerance
of each basic scheme, so which combination to choose is
mainly dependent on the availability and the amount of each
storage. The checkpoint frequency of each basic scheme is
mainly decided by the overhead of the scheme and the fail-
ure rate of the system.

Currently, we assume that we can check the availability
and the amount of each storage as well as the number of
available processors. We use this information to choose the
combination of the basic recovery scheme. If we can some-
how check the MTBF (or the failure rate) of the system in
the future, we will use it to decide the checkpoint frequency.
Otherwise we decide the checkpoint frequency based on the
assumption that the total performance overhead of the fault
application does not exceed certain percentage (say 5%).

Based on our discussion, we propose to use the algo-
rithm in Figure 1 to decide which combination of check-
point schemes to choose. By making decisions at run time,
we get the opportunity to know more information about the
platform the application will execute than making decisions
at the application design time. Therefore, we get the op-
portunity to make better decisions. This is why we can get
better performance in a self adapting fault tolerance scheme.

5 Performance Evaluation

In this section, we analyze the overhead of the proposed
self adapting application level fault tolerance scheme and
demonstrate some experimental results.

5.1 Performance Analysis

Let bcssc denote the bandwidth in bytes/sec for a proces-
sor to access the central stable storage. Assume there are
p processors in the system. Let c denote the size of check-
point. Then, the time Tcssc to perform one checkpoint to
the central stable storage can be approximated by

Tcssc =
p ∗ c

bcssc

Let bndpc denote the checkpoint bandwidth for neigh-
bour disk-based parity scheme and Tndpc denote the time
to perform one checkpoint in the neighbour disk-based par-
ity scheme, then

Tndpc =
c

bndpc

Assume bndcm denote the checkpoint bandwidth for
neighbour disk-based mirroring scheme and Tndcm denote
the time to perform one checkpoint in the neighbour disk-
based mirroring scheme, then

Tndcm =
c

bndcm

Assume the checkpoint bandwidth for neighbour
memory-based parity scheme is bnmpc and Tnmpc de-
note the time to perform one checkpoint in the neighbour
memory-based parity scheme, then

Tnmpc =
c

bnmpc

If we assume the checkpoint bandwidth for neighbour
memory-based mirroring scheme is bnmcm and Tnmcm de-
note the time to perform one checkpoint in the neighbour
memory-based mirroring scheme, then

Tnmcm =
c

bnmcm

Without loss of generality, in this analysis, we assume
bnmcm > bnmpc > bndcm > bndpc > bcssc. This assump-
tion is also consistent with the experimental results of dif-
ferent basic schemes in literature.

Assume there are five kinds of storage a processor can
access in the computing system and

• Sm denote the amount of the local free memory for a
processor

• Sd denote the amount of the local free disk storage of
a processor

• the amount of neighbor processors’ free memory is Sm

• the amount of neighbor processors’ free disk storage is
Sd

• Sc denote the amount of central stable storage

Consider a simple adaptive scheme which choose only a
single basic scheme (choose the best one) from the five ba-
sic schemes at run time according to the amount of different
storage available. Assume Sm ≤ Sd ≤ 1

pSc. Let Tadaptive

denote the time to perform one checkpoint in the simple
self adapting application level fault tolerance scheme above,

6

then

Tadaptive =

c
bnmcm

, if c ≤ 1
2Sm

c
bnmpc

, if 1
2Sm < c ≤ Sm

c
bndcm

, if Sm < c ≤ 1
2Sd

c
bndpc

, if 1
2Sd < c < Sd

pc
bcssc

, if Sd < c ≤ 1
pSc

∞, if 1
pSc < c

(1)

Compared to basic non-adaptive schemes such as
”checkpoint to central stable storage” in which the time for
one checkpoint is pc

bcssc
, the simple adaptive scheme always

has better performance unless 1
pSc < c. When 1

pSc < c,
there is no enough storage to store any checkpoint.

Schemes with low fault tolerance overhead tend to use
local (or neighbour) memory or local (or neighbour) disk
instead of central stable storage to store checkpoint data.
However, it is usually unclear what is the amount of local
storage that can be used to store the checkpoint data un-
til the program execution time. By postponing the time to
make decisions to the program execution time, we get the
opportunity to use as much local and neighbour storage as
possible to store the checkpoint data. Therefore, we are
able to get better performance by adapting the fault toler-
ance scheme to system environments at run time.

5.2 Experimental Results

In this section, we evaluate the performance of the pro-
posed self adapting fault tolerance scheme experimentally.
We compare the time for one checkpoint of the following
two checkpoint schemes

• NMPC: a Neighbor Memory-based Parity Checkpoint
scheme

• SSAC: a Simple Self Adapting Checkpointing scheme
which choose only a single basic scheme (choose the
best one) from the five basic schemes at run time ac-
cording to the amount of different storage available.

The application we used to perform experiment is the
PCG code describled in [2]. The number of simultaneous
processor failures we want to survive is one. The total num-
ber of processors we used in PCG is sixteen. The program-
ming environment we used is FT-MPI [6, 7, 8]. All experi-
ments were performed on a cluster of 32 Pentium IV Xeon

2.4 GHz dual-processor nodes. Each node of the cluster has
2 GB of memory and runs the Linux operating system. The
nodes are connected with a Gigabit Ethernet. The timer we
used in all measurements is MPI Wtime.

Table 1. Performance of a simple self adapt-
ing checkpointing scheme for PCG

Size of checkpoint T SSAC T NMPC
(MBytes) (Seconds) (Seconds)
100 2.21 2.55
200 4.55 5.09
300 6.56 7.66
400 8.91 10.10
500 10.58 12.61
600 15.30 15.20
700 17.85 17.75
800 20.40 20.11
900 22.93 22.95
1000 25.50 25.48

Table 1 reports the time for performing one checkpoint
for both the SSAC and the NMPCschemes. By changing the
input problem size in PCG, we varied the amount of data
that need to be checkpointed from 100 MBytes to 1,000
MBytes. The results in Table 1 indicate that the SSAC
scheme performs better than the NMPC scheme when the
size of checkpoint is less than 500 MBytes. However, when
the size of checkpoint is larger than 500 MBytes, the SSAC
scheme performs approximately the same as the NMPC
scheme. This is because, when the size of checkpoint is
less than 500 MBytes, the SSAC scheme detects that a pro-
cessor can store both a copy of its own checkpoint data and
a copy of its neighbour processor’s checkpoint data in its
local memory. Therefore, the use the Neighbor Memory-
based Checkpoint Mirroring scheme (which has lower per-
formance overhead but high memory overhead than NMPC)
is recommended. However, when the size of checkpoint is
larger than 500 MBytes, the SSAC scheme detects that there
is no enough local memory for a processor to store both its
own checkpoint data and his neighbour processor’s check-
point data, therefore, choose to store only its own check-
point data in his local memory and at the same time store
the parity of all local checkpoint data into the memory of an-
other dadicate processor, which is exactly what the NMPC
scheme does.

6 Conclusion and Future Work

In this paper, we presented a self adapting application
level fault tolerance framework for high performance paral-

7

lel and distributed computing. Within our framework, ap-
plications are able to choose near optimal (from the per-
formance point of view) fault tolerance schemes at runtime
(or dynamically) according to different (or dynamic) system
environments. By making decisions at run time, we get the
opportunity to know more information about the platform
the application will execute. Thus, we get the opportunity
to make better decision. This is why we can get better per-
formance in a self adapting fault tolerance scheme.

Our future plan is to implement and incorporate this fault
tolerance technique into the Self Adaptive Numerical Soft-
ware Effort [3]. We would also like to evaluate this tech-
nique on systems with large number of processors.

References

[1] N. R. Adiga and et al. An overview of the BlueGene/L
supercomputer. In Proceedings of the Supercomputing
Conference (SC’2002), Baltimore MD, USA, pages 1–
22, 2002.

[2] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou,
T. Angskun, G. Bosilca, and J. Dongarra. Fault tol-
erant high performance computing by a coding ap-
proach. In Proceedings of the ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Program-
ming, PPOPP 2005, June 14-17, 2005, Chicago, IL,
USA. ACM, 2005.

[3] Z. Chen, J. Dongarra, P. Luszczek, and K. Roche.
Self-adapting software for numerical linear algebra
and LAPACK for clusters. Parallel Computing, 29(11-
12):1723–1743, November-December 2003.

[4] T. Chiueh and P. Deng. Evaluation of checkpoint
mechanisms for massively parallel machines. In
FTCS, pages 370–379, 1996.

[5] J. Dongarra, H. Meuer, and E. Strohmaier. TOP500
Supercomputer Sites, 28th edition. In Proceedings
of the Supercomputing Conference (SC’2006), Pitts-
burgh PA, USA. ACM, 2006.

[6] G. E. Fagg and J. Dongarra. FT-MPI: Fault tolerant
MPI, supporting dynamic applications in a dynamic
world. In PVM/MPI 2000, pages 346–353, 2000.

[7] G. E. Fagg, E. Gabriel, G. Bosilca, T. Angskun,
Z. Chen, J. Pjesivac-Grbovic, K. London, and J. J.
Dongarra. Extending the MPI specification for pro-
cess fault tolerance on high performance computing
systems. In Proceedings of the International Super-
computer Conference, Heidelberg, Germany, 2004.

[8] G. E. Fagg, E. Gabriel, Z. Chen, , T. Angskun,
G. Bosilca, J. Pjesivac-Grbovic, and J. J. Dongarra.
Process fault-tolerance: Semantics, design and appli-
cations for high performance computing. Submitted to
International Journal of High Performance Comput-
ing Applications, 2004.

[9] I. Foster and C. Kesselman. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kauffman,
San Francisco, 1999.

[10] Y. Kim. Fault Tolerant Matrix Operations for Parallel
and Distributed Systems. Ph.D. dissertation, Univer-
sity of Tennessee, Knoxville, June 1996.

[11] J. S. Plank and K. Li. Faster checkpointing with n+1
parity. In FTCS, pages 288–297, 1994.

[12] J. S. Plank. Improving the Performance of Coordi-
nated Checkpointers on Networks of Workstations us-
ing RAID Techniques. In 15th Symposium on Reliable
Distributed Systems, pages 76–85, 1996.

[13] J. S. Plank, K. Li, and M. A. Puening. Diskless
checkpointing. IEEE Trans. Parallel Distrib. Syst.,
9(10):972–986, 1998.

[14] L. M. Silva and J. G. Silva. An experimental study
about diskless checkpointing. In EUROMICRO’98,
pages 395–402, 1998.

[15] N. H. Vaidya. A case for two-level recovery schemes.
IEEE Trans. Computers, 47(6):656–666, 1998.

8

