
Implementing Hirschberg’s PRAM-Algorithm for Connected Components on a
Global Cellular Automaton

J. Jendrsczok1, R. Hoffmann1, J. Keller2

1TU Darmstadt 2 FernUniversität in Hagen
FB Informatik, FG Rechnerarchitektur Fakultät für Mathematik und Informatik

Hochschulstraße 10, D-64289 Darmstadt Universitätsstr. 1, D-58084 Hagen
{jendrsczok, hoffmann}@ra.informatik.tu-darmstadt.de Joerg.Keller@FernUni-Hagen.de

Abstract

The GCA (Global Cellular Automata) model consists of
a collection of cells which change their states synchronously
depending on the states of their neighbors like in the classi-
cal CA model. In differentiation to the CA model the neigh-
bors are not fixed and local, they are variable and global.
The GCA model is applicable to a wide range of parallel
algorithms, and it can be implemented on reconfigurable
hardware. We discuss the GCA implementation of PRAM
algorithms, exemplified by the algorithm of Hirschberg et
al., which determines the connected components of a given
undirected graph. Insights are that efficient mappings of
PRAM algorithms onto GCA exist, and that PRAM and
GCA optimality criteria differ because the latter takes mem-
ory consumption into account. This makes the GCA a par-
allel computational model and an implementation platform,
thus narrowing the gap between theory and practice.

1. Introduction

The GCA (Global Cellular Automata) model [7, 8] is an
extension of the classical CA (Cellular Automata) model
[10]. In the CA model the cells are arranged in a fixed grid
with fixed connections to their local neighbors. Each cell
computes its next state by the application of a local rule
depending on its own state and the states of its neighbors.
The data accesses to the neighbor’s states are read-only and
therefore no write conflicts can occur. The rule can be ap-
plied to all cells in parallel and therefore the model is in-
herently massively parallel. The CA model is suited to all
kinds of applications with local communication, like phys-
ical fields, lattice-gas models, models of growth, moving

1-4244-0910-1/07/$20.00 c©2007 IEEE.

particles, fluid flow, routing problems, picture processing,
genetic algorithms, and cellular neural networks.

The GCA model is a generalisation of the CA model
which is also massively parallel. It is not restricted to the lo-
cal communication because any cell can be a neighbor. Fur-
thermore the links to the neighbors are not fixed; they can
be changed by the local rule from generation to generation.
Thereby the range of parallel applications is much wider for
the GCA model. Typical applications besides the CA appli-
cations are graph algorithms, hypercube algorithms, logic
simulation [11], numerical algorithms, communication net-
works, neuronal networks, games, and graphics.

The state of a GCA cell consists of a data part and an
access information part. In most implementations the ac-
cess information part contains one or more pointers (Fig-
ure 1). The pointers are used to dynamically establish links
to global neighbors. We call the GCA model one handed
if only one neighbor can be addressed, two handed if two
neighbors can be addressed and so on. In our investigations
about GCA algorithms we found out that most of them can
be described with only one pointer. Also the presented al-
gorithm will use only one pointer. Additionally we call the
GCA cells uniform if all cells have the same transition rule
and otherwise non-uniform. The general aim of our research
(supported by Deutsche Forschungsgemeinschaft, project
Massively Parallel Systems for GCA) is the hardware and
software support for this model [4]. Recently we have in-
vestigated how graph algorithms can be implemented on the
GCA [2]. In this paper we describe the implementation of
the graph-algorithm of Hirschberg et al. on the GCA as an
example of the class of PRAM algorithms.

As the GCA cells work synchronously and can only read
from other cells, the GCA resembles the concurrent read
owner write (CROW) PRAM model, where each processor
may read any cell, whereas each cell may only be written
by a dedicated processor, the owner. In principle, the GCA

state

pointer1 pointer2

...

Rule

next state

data

access information
global state

dynamically linked

Figure 1. The operation principle of the GCA.

is able to implement any PRAM algorithm, as any algo-
rithm consists of a finite number of instruction from a finite
instruction set. However, an automaton implementation is
particularly advantageous for simple algorithms, which are
however available in abundance in the PRAM community.

In general, mapping a CROW PRAM algorithm onto a
GCA requires a number of considerations. First, in many
PRAM algorithms, the number P of processing elements is
expressed in terms of the problem size n, i.e. P = P (n)
while a particular GCA architecture has a fixed number p
of cells. Here, Brent’s theorem can be applied, stating that
each cell shall sequentially simulate P (n)/p processing el-
ements round robin. Second, PRAM shared memory has
to be mapped onto the GCA cells, in a manner similar to
PRAM simulations. If a cell hosts more than O(1) shared
memory elements, then the pointer mechanism of the GCA
may have to be revised. Currently, there is only a limited
number of registers that can be read in a neighbouring cell.
The mapping should be deterministic, in order to guaran-
tee that it is clear in the algorithm design stage. Then, all
CROW PRAM algorithms can be implemented directly on a
GCA. Third, if PRAM shared memory is distributed among
the GCA cells, then for a cell c, the number of cells to which
c is the neighbour in a current step, i.e. that will read c’s
registers in this step, can be up to p − 1. In the theory of
PRAM implementation on distributed memory machines,
this number is called congestion. The duration of one step
is bound from below by the maximum congestion of any
cell in this step. As the GCA implements a particular al-
gorithm, steps with known low congestion can be executed
faster than those with high congestion.

Congestion can either be large because of concurrent
reading (e.g. several cells trying to read the same array el-
ement), or because of an unfortunate mapping of memory
elements onto cells. Yet, the latter cannot occur for a single-
handed GCA, which considerably simplifies the mapping
in many cases, such as our example. Concurrent reading
can be handled in certain networks, in particular butterfly
networks, by special routing algorithms, e.g. Ranade’s al-

gorithm. Unfortunate mappings can be prevented either by
choosing an appropriate mapping in case where the neigh-
bour relations are known beforehand, or by applying uni-
versal hashing. Universal hashing presents two difficulties.
First, the owner relationship may get lost, second the con-
gestion can only get down to a value of O(log p) for hash
function classes that can be easily implemented. This can
be tolerated if the algorithm works in rounds or genera-
tions, the communication results are needed only in the next
round. The rounds then resemble Valiant’s super steps [9].
If the duration of the communication is not longer than the
length of the computation in a super step, then the commu-
nication will not lead to any slowdown at all. The duration
of the communication is not only determined by the con-
gestion, but also by the communication network. A fully
connected network may not be realizable. As a GCA can
be implemented in an FPGA architecture, the algorithm can
be compiled in the cells’ rule set, i.e. in hardware, and the
communication structure can be adapted to the needs of the
application. Thus, for many problems, the configurability
of a GCA can provide better performance than a universal
PRAM emulation.

2. Hirschberg’s Algorithm

Our example application is Hirschberg’s well known al-
gorithm [5] to compute the connected components of an
undirected graph on a CREW PRAM. Yet, only a CROW
PRAM is really needed. The example application serves
to explore the considerations sketched above in more de-
tail, and gain more insights into the issues to be consid-
ered while implementing a PRAM algorithm onto a GCA.
Hirschberg’s algorithm was seminal and is work-optimal for
dense graphs, i.e. graphs with n nodes where the number m
of edges is Θ(n2). In this case, the sequential complexity
of the problem is Θ(m + n) = Θ(n2). Starting with ev-
ery single node as a component, the algorithm divides the
number of components in every iteration by at least two.
So log(n) iterations are needed at most to determine how
many components are in the graph and to which component
each node belongs to. Each iteration needs time O(log(n)),
therefore the overall time complexity is O(log2(n)). Each
component is represented by its node vi with the smallest
index i. These representing nodes are called super nodes.
The index of a component is the index of its super node.
Our goal is to show that the algorithm of Hirschberg et al.
works efficiently on the GCA with n2 cells. This seems to
be in contradiction to the optimality criterion, but we refer
to the discussion in the next section.

Listing 1 shows the original algorithm (reference algo-
rithm) consisting of 6 steps. Each iteration starts with sev-
eral non connected components. During every iteration,
each component searches a connection to another compo-

nent. This is accomplished by listing 1. First every node
of the component searches a connection to a node belong-
ing to another component (step 2). If the node can connect
to more than one component, the component with the low-
est index is selected. Afterwards the super node picks the
component with the lowest index (step 3). The components
connect to each other and for each new component a super
node is chosen (step 4-6).

1. for all i in parallel do C(i) ← i
do steps 2 through 6 for log n iterations

2. for all nodes i in parallel do
T(i) ← minj{C(j) |A(i,j)=1 AND

C(j) != C(i)} if none then C(i)
3. for all i in parallel do

T(i) ← minj{T(j) |C(j)=i,T(j) != i}
if none then C(i)

4. for all i in parallel do
C(i) ← T(i)

5. repeat for log n iterations
for all i in parallel do T(i) ← T(T(i))

6. for all i in parallel do
C(i) ← min{C(T(i)) ,T(i)}

Listing 1. Pseudo code for the algorithm of
Hirschberg et al. on the PRAM (reference
algorithm)

The original algorithm was defined for the SIMD (single
instruction multiple data) parallel processors (e.g. vector
machines) [1, 5]. Later the algorithm was investigated for
the PRAM machines [3]. All these algorithms use a com-
mon memory.

The algorithm uses the following variables and con-
stants: Input is the adjacency matrix A = {A(i, j)|i, j =
1 . . . n}. If A(i, j) = A(j, i) = 1 then there is a link be-
tween node i and node j.

C = {C(i)|i = 1 . . . n}, T = {T (i)|i = 1 . . . n}
C(i) and T (i) are of type integer and hold the number of

a node or a super node.
In order to compute the min function in steps 2 and 3 in

parallel n2 temporary variables have to be reserved in the
common memory. The constant A, the variables C, T and
the temporary variables have to be stored in the common
memory of the SIMD or PRAM computer.

3. Mapping Hirschberg’s algorithm on the
GCA

Our first insight is the following: If a cell has a constant
number of rules, and needs only a constant number of regis-
ters of O(log n) bits to execute the algorithm, then the hard-
ware complexity of a cell itself is asymptotically not more

complex than the hardware complexity of a constant num-
ber of memory elements. As this prerequisite holds for an
implementation of Hirschberg’s algorithm, and as the algo-
rithm needs a shared memory of size O(n2) elements, there
is no asymptotic advantage in hardware cost to reduce the
number of processing elements below n2.

This presents a conceptional difference to PRAM algo-
rithms where besides the parallel runtime complexity tp,
which cannot be less than Ω(log n) for most problems, there
has been a strive to reduce the number of processing ele-
ments P to a level where the work w = tp ·P reaches the se-
quential time complexity ts of the problem, i.e. P = ts/tp.
Note that the work cannot be asymptotically less than the
sequential time complexity, because Brent’s theorem other-
wise would suggest a sequential algorithm with runtime less
than ts, which is a contradiction. The reason for this defini-
tion of work-optimality is that in PRAM algorithmics only
processing elements count as cost. Shared memory does
not count although shared memory may have much more
than O(P) elements. This seems appropriate as processing
elements are complex circuits while a memory element of
reasonable bit width needs only some hundreds of transis-
tors. In a GCA however, where the algorithm is compiled
into reconfigurable FPGA hardware, processing elements,
i.e. GCA cells, become cheap, while memory gets more
expensive in FPGAs. This motivates our investigation.

Designing the cell field and the cell data structure.
The first design decision is about the number and the struc-
ture of the cells. If plenty of cells are used they can be
structured more simply and the execution time can be mini-
mized. For this algorithm we decide between n and n2 cells.
We have decided for the n2 case because we want to design
and evaluate the GCA algorithm with the highest degree of
parallelism.

We use the following data structure: n2 cells (i, j) are
arranged in a square matrix. Each cell stores (a, d, p). The
data part d is used for the computation of the connected
component. It stores node or super node numbers. The
pointer p in each cells points dynamically to another cell (so
called global cell), and reads from that location the global
information (d∗, p∗) which is used for the computation of
the next cell state (d′, p′). Each cell (i, j) also stores in the
cell field a the entry A(i, j) of the adjacency matrix.

In addition n cells are necessary to store intermediate
results. They form the additional bottom row of the cell
matrix. Each of these cells has the data structure (d, p).

If the cells fields are assembled together they form three
matrices which are overlaid.

D: (n + 1) × n matrix, P: (n + 1) × n matrix, A: n × n
input matrix

The first column of D corresponds to the vector C(i) and
T (i) respectively of the reference algorithm. The last row
of D is required to save intermediate results.

Notation:
index = linear index of D and P : 0, 1, . . . (n2 + n − 1)
j = row(index) = row index of D and P : 0, 1, . . . n
i = col(index) = column index of D and P : 0, 1, . . . (n−1)
D(index) = D <j> [i]
D[i] = column i of D
D <j> = row j of D
• = for all elements in the row or column

d = the data field of a cell, d =D <j> [i]
d∗ = the data field of a global cell, d∗ = D(P <j> [i])
p = the pointer field of a cell, p =P <j> [i]
p∗ = the pointer field of a global cell, p∗ = P (P <j> [i])

D� = the square matrix D, the first n rows of D
P� = the square matrix P , the first n rows of P
D<n> = DN = last row of D

The Generations of the GCA algorithm. The six steps
of the Hirschberg algorithm have been expanded into 12
generations (Table 1). The actions in each generation are
controlled by a state machine (state graph, Figure 2).

The state graph shows on the left the computation of the
actual pointer p and on the right the data operation d ← . . .
for any cell. Note that each cell executes the same uniform
algorithm. Some operations depend on the position of the
cell. In particular the first column D[0], the last row DN

and the square field D� are distinguished by appropriate
conditions. The pointer p can either be computed in the
current generation, just before the global data d∗ = D(p)
is accessed, or one generation in advance. In our algorithm
the pointer is computed in the current generation (therefore
the assignment symbol ”=” is used for p in the state graph).

The GCA algorithm will be explained using the original
variables C(i) and T (i) as well as the GCA variables D and
P . Also data parallel assignments will be used where in the
GCA algorithm (state graph) p- and d-operations are used.

Generation 0. The first step of the reference algorithm
requires the data of the vector C to be set to the correspond-
ing index (C(i) ← i).

In order to keep the GCA algorithm (and the logic in a
hardware implementation) as simple as possible, the whole
field (instead of the first column) is initialized with the row
number of each cell. This is not harmful because in the next
generation the values of the remaining field are overwritten.

Initially the data field d of a cell is set to its row number,
d ← row(index). This operation can also be described in a
classical data parallel way:

D(index) ← row (index), or D <j> [i] ← j. The result
of the initialization is

D = 000. . .
111. . .
222. . .
. . .

Generation 1. In order to prepare the field for the cal-
culation of the minimum the vector C (saved in the first
column D[0]) is copied into each row of the field.

D <•>← D[0]

Thus the vector C is saved in the last row DN , too.
All cells of a column [i] point to the cell in row <i>

and column [0]: P <j> [i] = (<i> [0]). The computation
d ← d∗ is equivalent to D <j> [i] ← D(P <j> [i]), or
D <j> [i] ←D <i> [0].

The function C is set up in steps 2 and 3 (generations
1-8). In step 2 (generations 1-4), each node i examines the
component memberships of its neighbors and sets C(i) to
the smallest-numbered neighboring component. In step 3
(generations 5-8), each i ∈ Vr examines its own component
members (specified by D(j) = i) and picks the smallest-
numbered of all the smallest-numbered components that the
members found [6]. The only difference between the sec-
ond and the third step of the algorithm is the condition for
the calculation of C′ and T ′ respectively in generation 2 and
in generation 6. Thus the generations 7 and 8 are performed
similarly to generations 3 and 4.

Generation 2. If the condition A(i, j) = 1 AND
C(j) �= C(i) is fulfilled d remains unchanged, otherwise
d is set to ∞. That means for the first iteration that d is
set to ∞ for all diagonal positions in D� and for all posi-
tions which have a 0-entry in the adjacency matrix. In other
words: only 1-entries in the adjacency matrix (connections
from node i to other cells) leave the value i of the data field
unchanged. The last row of DN remains unchanged. All
cells in row <j> of D� point to the same cell in row <n>
and column [j]: P <j> [i] =<n> [j].

Generation 3. In this generation all the minj functions
of step 2 of the Hirschberg algorithm are computed in par-
allel. The function minj is the minimum of all the elements
d in each row <j>. The technique is tree reduction. This
process needs log

2
(n) iterations (sub generations).

Generation 4. The last row DN contains the initial node
numbers and remains unchanged.

The first column of D� will contain the results of min
functions. If the result was ∞ (meaning that there are no
connections to other components), then D� <j>[0] is set
to DN [j], the initial node number.

In order to accomplish this operation the pointers of the
cells in the first column have been set to the cells in the last
row: P� <j>[0] = (<n>[j]). The operation is

D� <j> [0] ← D�(P� <j> [0]).
Generation 5. Similar to generation 1, the vector T

(saved in the first column) is copied into each row of the
field D�.

0

5

3

2

1

11

10

4

9

8

7

6

p = col(index) . n

p = n2+row(index)

p = index + (1<<subGeneration)

(1a)

if ((col(index)==0) &(row(index)!=n))
then p = n2+row(index) else p = index

p = n2 + col(index)

(3a)

(4a)

p = row(index) . n

p = d . n

if (col(index)==0) then p = (d . n) + 1
else p = index

d row(index)

d d*

if (((d!=d*)&(A==1))OR(row(index)==n)) then d d else d

if ((D*<d) &(row(index)!=n))
then d d* else d d

if (d==) then d d*
else d d

if ((row(index))==n) then d d
else d d*

if (((d*==row(index)) &(d!=row(index)))OR(row(index)==n))
then d d else d

(5b)

(3b)

(4b)

if(col(index)==0) then d d*
else d d

if(d<d*) then d d
else d d*

Pointer Operation Data Operation

log(n)

log(n)

log(n)

log(n)

(3b)

(4b)

(5b)

(3a)

(4a)

(1a)

Figure 2. GCA algorithm with pointer operation (actual access pattern) and data operation.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

Generation 10 Generation 11

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

(1) (1)

(2)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

Generation 1,5 Generation 2 Generation 3,7

Generation 4,8 Generation 6 Generation 9

(1) (1)

(2)

(1) (1)

(2)

(1) (1)

(2)

Figure 3. Access Patterns for n = 4. The cell numbers correspond to the linear index. The first four
rows form D�, the last row forms DN . Active cells are shaded.

STEP GENERATION ACTIVE CELLS # cells with δ = # of concurrent
(modifying cell state) read access read accesses (congestion)

1 0 Initialization n(n + 1) 0
2 1 n(n + 1) n2 0

n n + 1
2 n2 n2 0

n n
3 log(n) sub generations, n2/2 (n − 1)2 1

minimum calculation n + n 0
4 n n 1

n2 0
3 5 n(n + 1) see gen. 1 see gen. 1

6 n2 see gen. 2 see gen. 2
7 log(n) sub generations, n2/2 see gen. 3 see gen. 3

minimum calculation
8 n see gen. 4 see gen. 4

4 9 (n − 1)2 n n − 1
n2 0

5 10 log(n) sub generations n n n
n2 0

6 11 n n n
n2 0

Table 1. Generations for each step. Active cells are cells that perform a calculation within a genera-
tion. δ is the number of concurrent read accesses to each of the # cells.

D� <•>= D[0]
The values of the cells of the last row remain unchanged.
All cells j of a column [i] point to the cell in row <i> of

column [0] like in generation 1: P <j> [i] =<i> [0]. The
computation d ← d∗ is executed for the square matrix D�

which is equivalent to D�<j> [i] ← D�(P <j> [i]), or
D� <•> [i] ← D� <i> [0].

Generation 6. (Similar to generation 2). In contrast to
generation 2 the condition has changed.

All cells in row <j> of D� point to the same cell in row
<n> and column [j]: P <j> [•] =<n> [j]. If the condition
(d =<j>)&(d∗ �= d) is fulfilled d is set to ∞. The last row
of D remains unchanged.

Generation 7, 8. They are identical to generations 3, 4.
Generation 9. This generation is similar to generation 5,

the only difference is that the first row (vector T) is copied
to the other columns and not the other rows. A second result
is that the vector T is saved in the last row of the field (DN).

D�[•] ← D[0], DN ← D[0]
Generation 10. This generation iterates log

2
n times.

Only the first column [0] (corresponding to Hirschberg’s
C(i) Vector) is modified. The pointers are data dependent.
The cell <j>[0] points to <row(d)> [0]. Thus the neighbor
depends on the value of the cell and it is possible to set the
value of C(i) to the value of C(C(i)) in one generation.

Generation 11. Generation 11 is similar to generation

STEP OF THE ALGORITHM GENERATION

1 1
2 1 + log(n) + 1 + 1
3 1 + log(n) + 1 + 1
4 1
5 log(n)
6 1

Table 2. Generations per step.

10. In both generations the pointers are data dependent. In
addition to the previous generation the value of C(T (i)) is
compared to the stored value of T (i) in the last row (DN)
of the field. The minimum out of both values is saved as the
new value for C(i).

P [0] ← row(d) + 1

D[0] ← min(d, d∗)

Time complexity. (Figure 2, Table 2) The steps 1, 4 and
6 can be performed in one generation. Steps 2 and 3 each
need 1 + 3 · log(n) + 4 generations, because the minimum
needs log(n) sub generations. Step 5 needs one generation,
but this step is repeated log(n) times. The steps 2 to 6 are
executed in log(n) iterations. So the total amount of gener-
ations is 1 + log(n) · (3 · log(n) + 8). This is equivalent to
a time bound of O(log2(n)) using n · (n + 1) processors.

…

reg. 0

reg. 1

reg. 2

cell-ID

generation

A

cell content

neighbor cell content

generated static interconnections

…

…

calculation modul

additional multiplexer for extended cell

Figure 4. Cell implementation.

4. Fully parallel hardware implementation

To implement the GCA algorithm of the previous section
in hardware, the field is separated into n2 standard cells and
n extended cells with the ability to choose the neighbor cell
on the basis of the cell data (Figure 4). Except for genera-
tions 10 and 11 the neighbor cell is connected statically to
each cell and is chosen through a multiplexer addressed by
the generation. The extended cells need in addition a sec-
ond multiplexer with the cell data as address. Every cell
saves its own state with a register inside the cell. With a
fully parallel hardware where the number of cells is equal
to the number of calculation modules, each generation can
be calculated in one step. The design was described in Ver-
ilog and synthesized for an ALTERA CYCLONE II FPGA.
While the congestion suggests that some of the steps are
very slow, the static nature of the communication can be
used to either implement the concurrent reads in a tree-like
manner, or to use replication for arrays C and T to get con-
gestion down to 1. For example, in the second step, each
cell (i, j) accesses C(i) and C(j). If the array C is repli-
cated in each row, rotated by i positions in row i, then all
cells in row i could access all the C(j) values in this row,
and each cell of this row could access the C(i) value in
its column. This however would require extended cells in
all places. One result from the synthesis for the ALTERA
CYCLONE II FPGA (EP2C70) with the QUARTUS II soft-
ware is: N ×(N +1) = 272 cells; logic elements = 23,051;
register bits = 2,192; clock frequency = 71 MHz.

5. Conclusion

We have presented a study how Hirschberg’s PRAM al-
gorithm for connected components can be mapped onto a

Global Cellular Automaton. By compiling the algorithm
into a configurable hardware, the cost per processing ele-
ment, i.e. cell, is decreasing to a level where it approaches
the cost of a small number of memory cells. Hence, the
cost of the resulting GCA is dominated by the cost of the
n2 memory cells, and thus we can afford to employ appro-
priate cells, which considerably simplify the implementa-
tion. A prototype implementation on a field programmable
gate array indicates the feasability of the implementation.
The GCA may thus serve as a tool to implement PRAM
algorithms on a cost-efficient, yet highly scalable and con-
figurable platform, thus narrowing the gap between theory
(PRAMs) and practice (parallel machines). Our future work
will comprise the implementation of more elaborate PRAM
algorithms.

References

[1] F. Y. Chin, J. Lam, and I.-N. Chen. Efficient parallel
algorithms for some graph problems. Commun. ACM,
25(9):659–665, 1982.

[2] C. Ehrt. Globaler Zellularautomat: Parallele Algorithmen.
Master’s thesis, Technische Universität Darmstadt, 2005.

[3] A. Gibbons and W. Ritter. Efficient Parallel Algorithms.
Cambridge University Press, New York, Port Chester, Mel-
bourne, Sidney, 1998.

[4] W. Heenes, R. Hoffmann, and J. Jendrsczok. A multipro-
cessor architecture for the massively parallel model GCA.
In International Parallel and Distributed Processing Sym-
posium (IPDPS), Workshop on System Management Tools
for Large-Scale Parallel Systems (SMTPS), 2006.

[5] D. S. Hirschberg. Parallel algorithms for the transitive clo-
sure and the connected component problems. In STOC ’76:
Proceedings of the eighth annual ACM symposium on The-
ory of computing, pages 55–57, New York, NY, USA, 1976.
ACM Press.

[6] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate. Com-
puting connected components on parallel computers. Com-
mun. ACM, 22(8):461–464, 1979.

[7] R. Hoffmann, K.-P. Völkmann, and S. Waldschmidt. Global
Cellular Automata GCA: An Universal Extension of the CA
Model. In Worsch, Thomas (Editor): ACRI 2000 Confer-
ence, 2000.

[8] R. Hoffmann, K.-P. Völkmann, S. Waldschmidt, and
W. Heenes. GCA: Global Cellular Automata. A Flexible
Parallel Model. In PaCT ’01: Proceedings of the 6th Inter-
national Conference on Parallel Computing Technologies,
pages 66–73, London, UK, 2001. Springer-Verlag.

[9] L. G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33(8):103–111, 1990.

[10] J. von Neumann. Theory of Self-Reproducing Automata.
University of Illinois Press, Urbana and London, 1966.

[11] C. Wiegand, C. Siemers, and H. Richter. Definition of
a Configurable Architecture for Implementation of Global
Cellular Automaton. 23-26 March 2004.

