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Abstract

A design process is presented for the selection of a set 

of instruction set extensions for the PowerPC 405 

processor that is embedded into the Xilinx Virtex Family 

of FPGAs. The instruction set of the PowerPC 405 is 

extended by selecting additional instructions from the full 

32-bit PowerPC instruction set architecture (ISA), of 

which the PowerPC 405 ISA is a subset. The selected 

instructions are supported in hardware using the 

reconfigurable resources of the FPGA. The proposed 

design process gathers execution statistics for a target 

application through profiling or simulation. These 

statistics are then used to estimate the speedup that would 

be achieved if selected instructions from the full PowerPC 

ISA are added to the ISA of the PowerPC 405 processor. 

An experimental study of two embedded benchmarks 

show significant speedup when this approach is used to 

extend the PowerPC 405 processor to support various 

floating-point operations through the use of floating-point 

cores developed by QinetiQ. 

1. Introduction

In contrast to a general purpose microprocessor or a 

digital signal processor, the architecture and/or 

instructions implemented by an application specific 

instruction processor (ASIP) can be customized for a 

target application or application domain. In the work 

presented here, a Xilinx Virtex-II Pro FPGA [1] is used to 

implement an ASIP. 

In the ASIP architecture assumed in this paper, 

portions of the architecture are implemented in 

reconfigurable hardware, which can be configured to 

improve the performance of a specific application or 

domain. A main objective of this work is to improve 

performance by best matching the instructions supported 

by the ASIP to the needs of a target application. 

The hardware architecture for the assumed ASIP 

consists of a PowerPC 405 processor core integrated with 

reconfigurable resources. This architecture allows the 

base ISA of the PowerPC 405 to be extended to include 

selected instructions from the full PowerPC ISA. Support 

for the selected instructions is added to the PowerPC 405 

by configuring the FPGA to implement their 

functionality. One advantage of this type of architecture is 

that the same hardware can be configured differently, if 

necessary, for different applications. 

The particular focus of this paper is on a design 

process that uses application profiling to guide the design 

of a hybrid instruction set architecture (ISA) for the 

PowerPC 405. The concepts presented here can be 

applied to other hard- or soft-processor cores embedded 

into a reconfigurable device. 

2. Related Work in Application Specific 

Instruction Set Processors 

2.1. Related Work in ASIP Design Flows 

Many design flows for ASIPs have been proposed and 

studied. These design flows can be classified into 

architectural exploration and instruction set exploration. 

In architectural exploration, the design engineer uses tools 

that guide the selection of parameters such as cache size, 

branch prediction strategy, and number and type of 

functional units. Some examples of tools that perform this 

type of processor customization are Sherpa [2] and 

BUILDABONG [3]. Such approaches allow the engineer 

to customize the processor to a target application by 

modifying the micro-architecture of the processor and 

thereby improve its performance for a given set of 

assumptions and constraints associated with the 

application. 

Sherpa is an ASIP design framework that is used to 

search the design space of an ASIP. The exploration of 

the design space is performed by modeling the design 
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problem as a set of independent optimization problems 

that represent specific sets of design features of the 

processor, such as cache size, register file size, data path 

size, branch prediction techniques, etc. A model for the 

design space is developed using a data driven analytical 

model or a simulation. Finally, the design parameters for 

each architectural feature of the processor are tuned using 

integer-linear programming in order to optimize the entire 

processor design [2]. 

BUILDABONG focuses on performing optimization 

of the architecture and compiler of the ASIP in tandem. In 

this approach, the user defines the base instruction set of 

the processor and a set of code-generation rules. A 

machine model for a custom compiler is extracted from 

the base instruction set and a user defined code-

generation rule set. Next, the target application is 

simulated and then analyzed by an architecture 

exploration tool that automatically explores the 

architecture and compiler design spaces in order to prune 

the design space [3]. 

In instruction set exploration, basic units of the 

processor such as the cache and branch predictor are 

statically defined and the functional units of the processor 

can either be modified or augmented by the design 

engineer. The instruction set exploration design flow 

shown in Figure 1 customizes an ASIP for a specific 

application by creating customized instructions for critical 

portions of the application (referred to as “hotspots”). 

Once a set of customized instructions have been identified 

and implemented in hardware, the critical portions of the 

application can be sped up by replacing them with calls to 

the customized instructions [4]. This design approach 

allows the engineer to tailor the processor to a target 

application by providing special or custom instructions 

that will speedup the application. Examples of work in 

this area are MINCE [4] and AutoTie [5]. 

MINCE selects instructions from a pre-designed 

library of instructions and adds them to a processor core 

in order to customize the processor to a specific 

application. Combinational equivalence is used to ensure 

that the selected instructions are equivalent to the segment 

of application code they are chosen to implement. This 

approach provides an automated framework for 

instruction selection that effectively prunes the candidate 

instruction set by removing instructions that do not 

implement operations performed by the target application 

code [4]. 

AutoTie automatically determines the extensions 

required to customize a base processor to a specific 

application. The application is entered into the design 

tools as a C/C++ program. The source code of the 

program is then analyzed and compiled for the resulting 

ASIP architecture. The compilation process is used to  

determine what type and amount of extensions, such as 

register files, custom instructions, and operations, should 

be added to the base processor core. Performance and 

hardware estimation is performed to search the space of 

potential ASIP designs and choose the design that best 

matches the needs of the target application, thereby 

providing maximum performance [5]. 

2.2. Compiler Approaches 

Some of the ASIP design tools and frameworks listed 

above include tools that generate a compiler for the 

processor that allows programs to be compiled towards 

the specific architecture of the ASIP. The type of 

compiler generally utilized in this area is a ‘retargetable 

compiler’ that allows customization of the compiler for 

the new ASIP architecture and that may permit 

exploration of the design space of the architecture. These 

compiler frameworks generally fall into one of three 

categories: (1) automatically generated, (2) user 

generated, and (3) developer generated [6]. 

Compilers that are automatically generated (Category 

1) contain all of the information needed to work with any 

combination of architecture parameters within a specified 

architecture framework. However, these architecture 

frameworks generally only allow small variations in the 

architecture parameters. Developer generated compilers 

(Category 3) have the potential to support a wide set of 

architecture design parameters, but they require a 

relatively long amount of time to develop. User generated 

compilers (Category 2) bridge the gap between 

automatically and developer generated compilers, 

however they can take on the order of hours or days to 

generate [6]. 

Many compilers for ASIPs allow the designer to 

specify “hotspots” in program code that should be 

considered by the design tools for instruction extraction 

[7]. In [7], the gcc C compiler, part of the GNU Compiler 

Collection (GCC), is modified to allow the user to specify 

sections of code that are to be extracted as single 

instructions. These custom instructions can then be used 

elsewhere in the program. This approach assigns a single 

opcode for each section of user defined instructions. 

Disadvantages of this approach are that programs are not 

optimized using the extended instruction set and the 

programmer must be familiar with the framework used to 

define instructions. 

In Section 3.4, a hybrid compiler, which does not have 

to be regenerated when the instruction set is altered, is 

proposed that not only allows the programmer to use a 

custom instruction set, but also performs some 

optimizations for the hybrid instruction set. 
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Figure 1. Instruction set exploration 
approach to ASIP design, derived from [4]. 

3. Hybrid Instruction Set Selection Process 

3.1. Overview

Figure 2 illustrates a proposed design flow for selecting 

instructions to extend the PowerPC 405 ISA. This design 

flow can be applied to extend the ISA of a any base 

processor core (assumed here is the PowerPC 405) that 

implements a subset of a full ISA (assumed here is the 

full 32-bit PowerPC ISA such as that of the PowerPC 

7400) by adding selected instructions from the full ISA to 

the ISA of the base processor. This allows the application 

engineer to create a hybrid ISA that contains some but 

generally not all of the instructions found in the full ISA. 

However, instructions are not removed from the base ISA 

(i.e., the hybrid ISA implements all of the instructions of 

the base processor’s ISA). 

As shown in Figure 2, the target application is compiled 

for both the base processor’s ISA and the full ISA. Once 

the program has been compiled for both ISAs, the 

profiling step gathers statistics about the instructions that 

are executed by both versions of the compiled program. 

These statistics are used during the hybrid instruction set 

selection step to guide the engineer in selecting which 

instructions from the full ISA should be included in the 

hybrid ISA. Once a hybrid instruction set has been 

chosen, the hybrid compiler can be used to compile an 

application program based on the selected hybrid ISA. 

Sections 3.2, 3.3, and 3.4 describe the profiling, 

instruction selection, and compilation steps in more detail. 

3.2. Application Profiling 

The profiling step of the process outlined in Figure 2

can be performed using a simulator of a processor that 

supports the full ISA or by natively executing and tracing 

the execution of the compiled application on a processor 

that implements the full ISA. For the implementation used 

in this paper, the compiled application code is executed 

and traced using a PowerPC 7400 (PowerPC G4). The 

ISA of the PowerPC 405 processor, which is a subset of 

the full PowerPC G4 ISA, represents the base ISA. The 

ISA of the PowerPC 405 does not include floating-point 

instructions that are included in the ISA of the PowerPC 

G4.

A Linux-based tracing tool was developed that runs on 

the PowerPC G4 and can profile applications compiled 

for both the base processor’s (PowerPC 405) ISA and the 

full (PowerPC G4) ISA. Because the code generated 

under Linux for the PowerPC 405 is compatible with the 

PowerPC G4, both versions of the binary are traced using 

a standard PowerPC G4-based machine. 

The profiling tool developed for this work is based on 

the Linux ptrace [8, 9] system call. The target application 

is traced by the tool, one instruction at a time, using the 

PTRACE_SINGLESTEP mode of execution [8]. As each 

instruction is executed, the tool determines its mnemonic 

and updates how many times each instruction is executed. 
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Figure 2. Hybrid instruction set selection for a Hybrid PowerPC 405. “Base ISA” refers to the ISA of 
the PowerPC 405 and “Full ISA” refers to the entire 32-bit PowerPC ISA such as implemented by 
the PowerPC 7400. This design process can also be applied to other ISA families.



The execution statistics that are gathered by the 

profiling tool can be combined with instruction timing 

values (cycles required to execute each instruction) to 

estimate the number of cycles required to execute the 

application on the base ISA, full ISA, and the chosen 

hybrid ISA. Due to the nature of the profiling process, the 

timing results are based on the assumptions of perfect 

caching and branch prediction. Access to a cycle accurate 

simulator would result in different (and generally more 

accurate) speedup factors than reported in this paper due 

to architectural features, such as cache and branch 

prediction policies, and would give the engineer a more 

precise view of expected performance of the ASIP 

implementation of a hybrid ISA. However, the use of a 

simulator would increase the amount of time required to 

analyze the target application and generate execution 

statistics to be used in the ISA selection tool. Also, the 

main purpose of estimating cycles required for competing 

ISA selections is to determine relative improvements 

associated with instruction selections. 

Once the application is traced for the base ISA and the 

full ISA versions, the speedup of the full ISA version 

relative to the base ISA version can be computed. The 

profiling tool determines how many cycles are required to 

emulate each instruction executed from the full ISA 

(which are not supported by the base ISA). This is 

calculated by counting the number of base instructions 

executed by software modules used to emulate these 

instructions and scaling the results according to the 

number of clock cycles that are required to execute each 

base instruction executed. 

After the base ISA emulation of the instructions from 

the full ISA is complete, the hybrid instruction set 

selection tool can estimate the speedup of a hybrid ISA 

over the base ISA. This allows the engineer to choose the 

set of instructions from the full ISA to be added to the 

base ISA, and observe the results of the choices made. 

This calculation of the speedup of the hybrid ISA over the 

base ISA is computed without re-tracing the target 

application.  

3.3. A Framework for Automatic Instruction Set 

Selection

Motivated by Linear Programming models used to 

optimize the parameters of ASIPs using architectural 

exploration in [2], we propose a formal optimization 

model for the selection of a hybrid instruction set. The 

full ISA (FISA) is assumed to have N instructions that are 

labeled 1, 2,…, N and the base ISA (BISA) consists of the 

first NN0 instructions of FISA; therefore, BISA 

FISA. The instructions of the FISA are supported by a 

collection of execution units. Unit 0 represents the base 

processor and supports all of the instructions in the BISA. 

Units 1, 2,…, U are implemented in reconfigurable 

hardware and collectively support the instructions in the 

FISA that are not in the BISA. A configuration of the 

ASIP includes Unit 0 plus a combination of Units 1 

through U. The instructions supported by Unit 1 are 

labeled N0 + 1,…, N1. In general, the instructions 

supported by Unit i are labeled Ni-1 + 1,…, Ni, for i = 1, 

2,…, U (thus, NU = N).

Recall from Figure 2 that the full ISA version of the 

application can be profiled. The optimization technique 

proposed in the present section requires that the number 

cycles required to execute each instruction j in hardware 

in the full ISA version of the application (j  FISA) is 

known. This value is denoted by nj, where j  FISA. Also 

needed from the profiling process is the number of cycles 

required to emulate each FISA instruction j using BISA 

instructions, and this quantity is denoted by fj.

Additionally, 1,0iu , i = 1, 2,…, U, indicates whether 

Unit i is configured in the reconfigurable hardware; if ui = 

1, then Unit i is configured, otherwise it is not configured.  

Because there are U possible reconfigurable units and 

each unit is either configured or not, there are 2U possible 

configurations for the ASIP architecture under 

consideration. Note that in this formulation, each 

configurable unit generally supports multiple instructions 

from the FISA. Associated with each possible 

configuration of the ASIP is the corresponding hybrid 

ISA (HISA) it supports. 

The speedup associated with a given configuration of 

the ASIP relative to the BISA (i.e., the ASIP with none of 

the reconfigurable resources utilized) is given by 

Equation (1). 
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Note from Equation (1) that the “boundary conditions” 

of the ASIP configurations are consistent. In particular, 

consider first the configuration where ui = 1 for all i = 1, 

2,…, U, which corresponds to the ASIP configuration in 

which all of the units are configured. In this case, the 

equation yields a speedup that corresponds to the ratio of 

the number of cycles required to execute instructions for 

the BISA divided by the cycles required assuming 

complete support for the FISA. The other extreme case is 

associated with the configuration where ui = 0 for all i = 

1, 2,…, U, which corresponds to a ASIP configuration in 

which none of the configurable units are implemented. In 

this case, the formula yields a speedup of unity, as 

expected.

The reconfigurable resources required to implement a 

configuration of the ASIP are also modeled and can be 



used as a constraint in the optimization of Equation 1. In 

this model, ri denotes the reconfigurable resources 

required to implement Unit i in reconfigurable hardware 

where i = 1, 2,…, U. The expression below describes the 

total amount of reconfigurable resources required to 

implement a given configuration of the ASIP. 
U

i

iiru
1

 (2) 

Based on the definitions presented and the expressions 

provided in Equations (1) and (2), an optimization 

problem can be formulated as follows. 

Given the following four items: 

1. The assumed total amount of reconfigurable resource 

available on the ASIP, denoted by R;

2. The amount of reconfigurable resource required for 

each reconfigurable unit under consideration, 

denoted as ri, i = 1, 2,…, U;

3. The number cycles required by each instruction in 

the FISA to be executed in hardware, denoted by nj,

j = 1, 2,…, N;

4. The total number of cycles required to execute the 

BISA instructions used to emulate each instruction in 

the FISA,  denoted by fj, for all j = 1,…, N;

Ui
ui

S

,,2,1
1,0

max

subject to 
U

i
ii Rru

1

The dual problem of minimizing the required amount 

of reconfigurable resource subject to a lower-bound 

constraint on the speedup can also be formulated. 

Note that there are 2U possible configurations for the 

ASIP. Thus, an exhaustive search approach for solving 

the formulated optimization problem requires up to 2U

evaluations of the formula for S given in Equation (1). 

Typically the value of U will be relatively small (less than 

ten), thus evaluating the speedup for all combinations in 

an off-line design process is reasonable.  

3.4. Hybrid Compiler 

The final step of the design flow shown in Figure 2

involves a compiler that generates machine code based on 

the selected hybrid ISA. The compiler assumed in the 

proposed design flow differs from traditional compilers 

used with ASIPs that are based on instruction set 

exploration. Typically, compilers for instruction set 

exploration operate with program source code that has 

been annotated to use new instructions generated by the 

design tools being used or that have been provided by the 

programmer. 

The hybrid ISA for the ASIP considered in this paper 

is a subset of an existing full ISA. Furthermore, the 

hybrid ISA includes all of the instructions of an existing 

base ISA, which is also a subset of the full ISA.  

A compiler targeting the full ISA can be modified to 

compile towards an appropriate subset of the full ISA. 

Thus, it is possible to modify an existing full ISA 

compiler to create code associated with a hybrid ISA that 

is a subset of the full ISA.  Because no instructions have 

been added, the compiler can still perform all of the 

machine independent (i.e., intermediate form) code 

optimizations and then use emulation routines as 

necessary to create the final hybrid code from the 

intermediate form. This requires the availability of a 

library that contains the necessary emulation routines to 

support the operations not directly supported by the 

hybrid ISA. Employment of emulation routines is the 

same approach used when a compiler generates code for a 

processor lacking a floating-point processing unit (FPU), 

e.g., the compiler for the PowerPC 405.  

We have developed a prototype hybrid compiler that 

effectively merges compilers for the PowerPC 7400 (full 

ISA) and the PowerPC 405 (base ISA) to generate code 

based on a selected hybrid ISA that is a subset of the full 

ISA. This hybrid complier takes the desired hybrid ISA as 

an input. Because the data paths, registers, and other 

architectural components of the architecture, except for 

configurable execution units, are fixed, the hybrid 

compiler does not have to be regenerated or recompiled 

when the instruction set of the hybrid processor is 

modified. This approach enables the compiler to compile 

for any subset of the full ISA and still perform 

optimizations on the resulting intermediate code and the 

final machine code. 

For example, the experimental studies of Section 4 can 

be supported by combining the PowerPC 405 found in 

some members of the Xilinx Virtex family of FPGAs with 

floating-point soft-cores provided by QinetiQ [10]. The 

hybrid ISA consists of the base PowerPC 405 ISA 

extended with floating-point instructions from the full 

PowerPC ISA. QinetiQ provides a modified version of 

the gcc C compiler [11] that implements a system similar 

to the hybrid compiler described in this section. 

The modifications made to the gcc C compiler by 

QinetiQ include a –mfpu command line switch, through 

which the developer is able to select what level of 

floating-point support the compiler is to add to the 

instruction set used during compilation. The levels of 

floating-point support available in QinetiQ’s gcc compiler 

include: (1) no floating-point support, (2) basic floating-

point support, (3) basic floating-point support with 

division, (4) basic floating-point support with square root, 

and (5) full floating-point support [11]. While these levels 

of support reflect the capabilities of QinetiQ’s line of 

floating-point cores, the modifications made to the 

compiler are not vendor specific. It is possible to modify 



the compiler to support other soft floating-point cores for 

the PowerPC405. 

The compiler provided by QinetiQ provides a medium 

scale of granularity relative to the control of the floating-

point support provided; i.e., the designer can choose one 

of several configurations that add groups of multiple 

floating-point instructions to the ISA. Our proposed 

design process allows for an even finer level of 

granularity in which the addition of single instructions 

from the full ISA to the base ISA can be made. 

Additionally, this approach can be extended to apply to 

instructions other than just floating-point instructions. 

4. Experimental Results 

In this section, the base PowerPC 405 ISA is extended 

by selecting additional instructions from the full PowerPC 

G4 ISA using the hybrid instruction set selection process 

of Section 3.3. Tools that support all of the steps of Figure

2 have been developed. The study presented here focuses 

on the speedup achieved when extending the base 

PowerPC 405 ISA to include selected floating-point 

instructions from the full PowerPC G4 ISA. 

Reconfigurable resource requirements presented are 

estimated assuming the use of the Quixilica floating-point 

execution unit cores from QinetiQ [10].  

In order to determine how many cycles are required by 

the floating-point instructions used in the target 

application, the profiling tool discussed in Section 3.2, 

captures data operands from the floating-point registers 

that are used by the floating-point instructions of the full 

ISA while the full ISA version of the application is being 

traced. These collected register values are then provided 

as input to the emulation modules, which use only base 

ISA (integer-based) instructions to support the floating-

point operations associated with the full ISA. By profiling 

the emulation code in this way, determination of the 

number of cycles required is based on the same data 

values that were used by the corresponding floating-point 

instructions associated with the full ISA version of the 

application. This is important because the number of 

cycles (required to emulate a floating-point instruction) is 

dependent on the values of the input data operands to 

these emulation modules. 

Because the Quixilica cores and PowerPC 405 run at 

different clock rates, the latency of the instructions 

supported by the core are normalized to the speed of the 

PowerPC 405 (which is assumed to run at 300 MHz as 

defined in [12]). Additionally, the latencies account for 

communication overhead between the PowerPC 405 and 

the Quixilica cores, which are assumed to be connected to 

the Processor Local Bus (PLB) of the PowerPC 405 that 

is available to reconfigurable resources of the FPGA [12]. 

The benchmarks studied here are the Basicmath and 

Susan benchmarks from the Automotive and Industrial 

Control category of the MiBench set of embedded 

benchmarks [13]. The purpose of the Basicmath 

benchmark is to exercise the processor to see how well it 

can perform mathematical operations. The Susan 

benchmark is an application that is used to detect corners 

and edges in images [13]. 

Figures 3 and 4 show the estimated speedup of the 

Basicmath and Susan benchmarks versus specific 

floating-point instructions that can be added to the base 

PowerPC 405 ISA. The maximum speedup for Basicmath 

is 6.9 and 3.5 for Susan. Figures 5 and 6 show the number 

of slices (a measure of the amount of utilized 

reconfigurable resource for the Virtex-family of parts) 

required to configure hardware support for these extra 

instructions in a Virtex-II Pro FPGA; these values are 

derived from [10]. 

Note that the speedup and number of slices required 

for the selected instructions is cumulative, e.g., the 

speedup shown for the fsub instruction in Figure 3

assumes that the hybrid instruction set also includes the 

instructions fadd, fmul, and fmadd. Since the Quixilica 

floating-point execution unit cores provide support for a 

subset of the floating-point instructions present in the full 

PowerPC G4 ISA, the model used in this study only 

allows the instructions supported by Quixilica to be added 

to the base ISA. The remaining instructions, fabs, fcmpu,

fctiwz, fmr, fnabs, fneg, and frsp, which are not shown in 

Figures 3 - 6, must be performed using emulation 

libraries. Also, the model assumes that floating-point load 

and store instructions are supported in hardware. 

The order in which instructions are added to the hybrid 

ISA affects the shape of the speedup curve observed for a 

particular benchmark. Furthermore, observe that in the 

speedup results for both Basicmath and Susan there is a 

point at which no increase in speedup occurs as more 

instructions are selected. This occurs because these 

instructions are not executed (frequently) in the 

benchmark. 

Figures 5 and 6 show how multiple instructions can be 

added to the instruction set together without requiring 

extra hardware resources. This benefit comes as a result 

of adding functional units to the base processor as needed 

instead of modifying the existing hardware to 

accommodate the new instruction(s). In this unit-based 

approach, certain instructions become intrinsically 

supported when an instruction associated with the same 

unit is added to the instruction set. 
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Figure 6. Amount of reconfigurable 
resources required to support Susan for the 
instructions shown in Figure 4. 

Table 1 presents the result of enumerating all possible 

configurations for the Basicmath application when only 

three double-precision floating-point units (provided as 

part of the Quixilica floating-point cores) are considered 

for inclusion in the ASIP. Note that Quixilica [10] 

provides both single and double precision versions of the 

floating-point units; however, Basicmath [13] only uses 

double precision floating-point instructions. As discussed 

earlier, certain floating-point instructions are not 

supported by the Quixilica floating-point execution unit 

cores and are always emulated using emulation libraries. 

Table 1 illustrates that some configurations of the 

ASIP that require more reconfigurable resource than 

others do not always deliver better performance in terms 

of speedup. For example, compare the configurations 

where a floating-point adder and divider are used versus 

the configuration where a floating-point adder and 

multiplier are used. 



Table 1. The amount of reconfigurable 
hardware required and the resulting 
speedup for Basicmath when different 
combinations of the Quixilica double-
precision floating-point cores are used to 
augment the PowerPC 405 BISA. 

FP

Add

FP

Multiply 

FP

Divide

# of 

Slices 

Speedup

0 0 0 0 1.0 

0 0 1 3127 1.1 

0 1 0 923 1.3 

0 1 1 4050 1.5 

1 0 0 815 1.3 

1 0 1 3942 1.5 

1 1 0 1738 4.5 

1 1 1 4865 6.9 

5. Conclusions

A process for selecting an ISA for a configurable ASIP 

is introduced. The approach assumes the ASIP is capable 

of supporting a range of possible ISAs. Each of these 

ISAs represents a hybrid combination of two extreme 

ISAs referred to as the base ISA and the full ISA. The 

ISA selection approach is evaluated in the context of an 

existing commercially available product that can function 

as an ASIP. Future work includes finalizing the initial 

development of a hybrid compiler, which is necessary to 

complete the implementation of the proposed process, 

extension of the analytical model, and development of a 

prototype ASIP using a Xilinx Virtex FPGA. 
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