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Abstract

Protein sequences with unknown functionality are
often compared to a set of known sequences to de-
tect functional similarities. Efficient dynamic pro-
gramming algorithms exist for this problem, however
current solutions still require significant scan times.
These scan time requirements are likely to become even
more severe due to the rapid growth in the size of
these databases. In this paper, we present a new ap-
proach to bio-sequence database scanning using com-
puter graphics hardware to gain high performance at
low cost. To derive an efficient mapping onto this
type of architecture, we have reformulated the Smith-
Waterman dynamic programming algorithm in terms
of computer graphics primitives. Our OpenGL imple-
mentation achieves a speedup of approximately sixteen
on a high-end graphics card over available straightfor-
ward and optimized CPU Smith-Waterman implemen-
tations.

1. Introduction

Scanning protein sequence databases is a common
and often repeated task in molecular biology. The need
for speeding up these searches comes from the rapid
growth of the bio-sequence banks: every year their size
is scaled by a factor 1.5 to 2. The scan operation con-
sists of finding similarities between a particular query
sequence and all sequences of a bank. This allows bi-
ologists to identify sequences sharing common subse-
quences, which from a biological viewpoint have similar
functionality. Comparison algorithms whose complex-
ities are quadratic with respect to the length of the se-
quences detect similarities between the query sequence

and a subject sequence. One frequently used approach
to speed up this time consuming operation is to intro-
duce heuristics in the search algorithm. The drawback
is that the more efficient the heuristics, the worse is
the result. Another approach to get high quality re-
sults in a short time is to use high performance com-
puting. In this paper, we investigate how commodity
computer graphics hardware can be used as a compu-
tational platform to accelerate database scanning.

The fast increasing power of the GPU (Graphics
Processing Unit) and its streaming architecture opens
up a range of new possibilities for a variety of ap-
plications. With the enhanced programmability of
commodity GPUs, these chips are now capable of
performing more than the specific graphics computa-
tions they were originally designed for. Recent work
on GPGPU (General-Purpose computation on GPUs)
shows the design and implementation of algorithms
for non-graphics applications. Examples include scien-
tific computing [10], computational geometry [1], image
processing [22], and bioinformatics [8, 3]. The evolu-
tion of GPUs is driven by the computer game market.
This leads to a relatively small price per unit and to
very rapid developments of next generations.

Currently, the peak performance of high-end GPUs
such as the GeForce 7800 GTX is approximately ten
times faster than that of comparable CPUs. Further,
GPU performance has been increasing from two to two-
and-a-half times a year (see Figure 1). This growth
rate is faster than Moore’s law as it applies to CPUs,
which corresponds to about one-and-a-half times a year
[12]. Consequently, GPUs will become an even more
attractive alternative for high performance computing
in the near future.

However, there are still a number of challenges to be
solved in order to enable scientists other than computer
graphics specialists to facilitate efficient usage of these
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resources within their research area. The biggest chal-
lenge in order to solve a specific problem using GPUs is
reformulating the proposed algorithms and data struc-
tures using computer graphics primitives (e.g. trian-
gles, textures, vertices, fragments). Furthermore, re-
strictions of the underlying streaming architecture have
to be taken into account, e.g. random access writes to
memory is not supported and no cross fragment data
or persistent state is possible (e.g. all the internal reg-
isters are flushed before a new fragment is processed).
In this paper we show how bio-sequence database scan-
ning based on the Smith-Waterman dynamic program-
ming algorithm can benefit from this type of computing
power.
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Figure 1. Peak performance comparison
(measured on the multiply-add instruction) of
GPUs and CPUs in recent years. Figure taken
from Owens et al. [14].

The rest of this paper is organized as follows. In
Section 2, we introduce the basic sequence alignment
algorithm. Section 3 highlights previous work on par-
allelization of this algorithm on different parallel archi-
tectures. Important features of the GPU architectures
are described in Section 4. Section 5 presents our map-
ping of the algorithm onto the GPU architecture. A
performance evaluation is given in Section 6. Finally,
Section 7 concludes the paper with an outlook to fur-
ther research topics.

2. Smith-Waterman Algorithm

Surprising relationships have been discovered be-
tween protein sequences that have little overall simi-
larity but in which similar subsequences can be found.

In that sense, the identification of similar subsequences
is probably the most useful and practical method for
comparing two sequences. The Smith-Waterman algo-
rithm [19] finds the most similar subsequences of two
sequences (the local alignment) by dynamic program-
ming (DP). The algorithm compares two sequences by
computing a distance that represents the minimal cost
of transforming one segment into another. Two ele-
mentary operations are used: substitution and inser-
tion/deletion (also called a gap operation). Through
series of such elementary operations, any segments can
be transformed into any other segment. The smallest
number of operations required to change one segment
into another can be taken into as the measure of the
distance between the segments.

Consider two strings S1 and S2 of length l1 and
l2. To identify common subsequences, the Smith-
Waterman algorithm computes the similarity H(i, j)
of two sequences ending at position i and j of the two
sequences S1 and S2. The computation of H(i, j),
for 1 ≤ i ≤ l1, 1 ≤ j ≤ l2, is given by the following
recurrences:

H(i, j) = max{0, E(i, j), F (i, j), H(i−1, j−1)+sbt(S1[i], S2[j])}
E(i, j) = max{H(i, j − 1) − α, E(i, j − 1) − β},
F (i, j) = max{H(i − 1, j) − α, F (i − 1, j) − β},

where sbt is a character substitution cost
table. Initialization of these values are given by
H(i, 0) = E(i, 0) = H(0, j) = F (0, j) = 0 for
0 ≤ i ≤ l1, 0 ≤ j ≤ l2. Multiple gap costs are taken
into account as follows: α is the cost of the first gap;
β is the cost of the following gaps. This type of gap
cost is known as affine gap penalty. Some applications
also use a linear gap penalty, i.e. α = β. For linear
gap penalties the above recurrence relations can be
simplified to:

H(i, j) = max{0,H(i, j − 1) − α,H(i − 1, j) − α,
H(i − 1, j − 1) + sbt(S1[i], S2[j])},

Each position of the matrix H is a similarity value.
The two segments of S1 and S2 producing this value
can be determined by a trace-back procedure. Figure.
2 illustrates an example.

3. Related Work

A number of parallel architectures have been de-
veloped for bio-sequence database scanning with the
Smith-Waterman algorithm. In addition to architec-
tures specifically designed for sequence analysis, exist-
ing programmable sequential and parallel architectures
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Figure 2. Example of the Smith-Waterman al-
gorithm to compute the local alignment be-
tween two DNA sequences ATCTCGTATGAT
and GTCTATCAC. The matrix H(i, j) is shown
for the linear gap cost α = 1, and a sub-
stitution cost of +2 if the characters are
identical and −1 otherwise. From the high-
est score (+10 in the example), a traceback
procedure delivers the corresponding align-
ment, the two subsequences TCGTATGA and
TCTATCA.

have been used for solving sequence alignment prob-
lems.

Special-purpose architectures can provide the fastest
means of running a particular algorithm with very high
processing element (PE ) density. Each PE is specifi-
cally designed for the computation of one cell in the
DP matrix (see Figure 2). However, such architectures
are limited to one single algorithm, and thus cannot
supply the flexibility necessary to run a variety of al-
gorithms required for analyzing DNA, RNA, and pro-
teins. P-NAC was the first such machine and computed
edit distance over a four-character alphabet [11]. More
recent examples, better tuned to the needs of compu-
tational biology, include BioScan [18], BISP [4], and
SAMBA [6].

An approach presented in [17] is based on instruction
systolic arrays (ISAs). ISAs combine the speed and
simplicity of systolic arrays with flexible programma-
bility. Several other approaches are based on the SIMD
concept, e.g. MGAP [2], Kestrel [5], and Fuzion [17].
SIMD and ISA architectures are programmable and
can be used for a wider range of applications, such
as image processing and scientific computing. Since
these architectures contain more general-purpose par-
allel processors, their PE density is less than the den-

sity of special-purpose ASICs. Nevertheless, SIMD
solutions can still achieve significant runtime savings.
However, the costs involved in designing and producing
SIMD architectures are quite high. As a consequence,
none of the above solutions has a successor generation,
making upgrading impossible.

Reconfigurable systems are based on programmable
logic such as field-programmable gate arrays (FPGAs).
They are generally slower and have lower PE densities
than special-purpose architectures, e.g. [13, 23]. They
are flexible, but the configuration must be changed for
each algorithm, which is generally more complicated
than writing new code for a programmable architec-
ture. Solutions based on FPGAs have the additional
advantage that they can be regularly upgraded to state-
of-the-art-technology.

All these approaches can be seen as accelerators - an
approach satisfying the demand for a low cost solution
to compute-intensive problems. The main advantage of
GPUs compared to the architectures mentioned above
is that they are commodity components. In particular,
most users have already access to PCs with modern
graphics cards. For these users this direction provides
a zero-cost solution. Even if a graphics card has to be
bought, the installation of such a card is trivial (plug
and play). Writing the software for such a card does
still require specialist knowledge, but new high level
languages such as Cg [21] offer a simplified program-
ming environment.

4. GPU Architecture
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Figure 3. Illustration of the GPU graphics
pipeline.

Computation on a GPU follows a fixed order of pro-
cessing stages, called the graphics pipeline (see Figure
3). The pipeline consists of three stages: vertex pro-
cessing, rasterization and fragment processing. The



vertex processing stage transforms three-dimensional
vertex world coordinates into two-dimensional vertex
screen coordinates. The rasterizer then converts the
geometric vertex representation into an image fragment
representation. Finally, the fragment processor forms
a color for each pixel by reading texels (texture pix-
els) from the texture memory. Modern GPUs support
programmability of the vertex and fragment processor.
Fragment programs for instance can be used to imple-
ment any mathematical operation on one or more input
vectors (textures or fragments) to compute the color of
a pixel.

In order to meet the ever increasing performance re-
quirements set by the gaming industry, modern GPUs
use two types of parallelism. Firstly, multiple proces-
sors work on the vertex and fragment processing stage,
i.e. they operate on different vertices and fragments
in parallel. For example, a typical mid-range graphics
card such as the nVidia GeForce 6800 GT has 6 vertex
processors and 16 fragment processors. Secondly, op-
erations on 4-dimensional vectors (the four channels
Red/Green/Blue/Alpha (RGBA)) are natively sup-
ported without performance loss.

Input
stream

Output
stream

Filter 1 Filter n

Kernels

Figure 4. Streaming model that applies ker-
nels to an input stream and writes to an out-
put stream.

Several authors have described modern GPUs as
streaming processors, e.g [20]. Streaming processors
read an input stream, apply kernels (filters) to the
stream and write the results into an output stream. In
case of several kernels, the output stream of the leading
kernel is the input stream for the following kernel (see
Figure 4). The vast majority of general-purpose GPU
applications use only fragment programs for their com-
putation. In this case textures are considered as input
streams and the texture buffers are output streams.
Because fragment processors are SIMD architectures,
only one program can be loaded at a time. Applying
several kernels thus means to do several passes.

A typical GPGPU program is structured as follows
[14, 7].

1. Data-parallel sections of the application are iden-
tified by the programmer. Each such section can
be considered a kernel and is implemented as a
fragment program. The input and output of each

kernel is one or more data arrays, which are stored
in textures in GPU memory.

2. To invoke a kernel, the range of the computation
(or the size of the output stream) must be spec-
ified. The programmer does this by passing ver-
tices to the GPU. A typical GPGPU invocation
is a quadrilateral (quad) oriented parallel to the
image plane, sized to cover a rectangular region
of pixels matching the desired size of the output
array.

3. The rasterizer generates a fragment for every pixel
location in the quad, producing thousands to mil-
lions of fragments.

4. Each of the generated fragments is then processed
by the active kernel fragment program. The frag-
ment program can read from arbitrary texture
memory locations but can only write to memory
locations corresponding to the location of the frag-
ment in the frame buffer.

5. The output of the fragment program is a value (or
vector of values) per fragment. This output may
be the final result of the application, or it may be
stored as a texture and then used in subsequent
passes. This feedback loop is realized by using the
output buffer of a completed pass as input texture
for the following one (known as render-to-texture
(RTT)).

5. Mapping Onto the GPU Architecture

In this section we describe how the Smith-Waterman
algorithm can be efficiently mapped onto a GPU. We
take advantage of the fact that all elements in the same
anti-diagonal of the DP matrix can be computed inde-
pendent of each other in parallel (see Figure 5). Thus,
the basic idea is to compute the DP matrix in anti-
diagonal order. The anti-diagonals are stored as tex-
tures in the texture memory. Fragment programs are
then used to implement the arithmetic operations spec-
ified by the recurrence relation.

Assuming, we are aligning two sequences of length
M and K with affine gap penalties on a GPU. As a
preprocessing step both sequences and the substitu-
tion matrix are loaded into the texture memory. We
are then computing the DP matrix in M + K − 1 ren-
dering passes. In rendering pass k, 1 ≤ k ≤ M +K−1,
the values H(i, j), E(i, j), and F (i, j) for all i, j with
1 ≤ i ≤ M , 1 ≤ j ≤ K and k = i + j − 1 are computed
by the fragment processors. The new anti-diagonal is
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Figure 5. Data dependency relationship in the
Smith-Waterman DP matrix: each cell (i, j)
depends on its left neighbor (i, j − 1), up-
per neighbor (i−1, j) and upper left neighbor
(i − 1, j − 1). Therefore all cells along anti-
diagonal k can be computed in parallel from
the anti-diagonals k − 1 and k − 2.

stored in the texture memory as a texture. The subse-
quent rendering pass then reads the two previous anti-
diagonals from this memory.
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Figure 6. Cyclic change of the functions of
buffers A, B, and C for computation of anti-
diagonals in the DP matrix.

Since diagonal k depends on the diagonals k − 1
and k − 2, we store these three diagonals as separate
buffers. We are using a cyclic method to change the
buffer function as follows: Diagonals k − 1 and k − 2
are in the form of texture input and diagonal k is the
framebuffer. In the subsequent iteration, k becomes
k − 1, k − 1 becomes k − 2, and k − 2 becomes k. This
is further illustrated in Figure 6. An arrow pointing
towards the fragment program means that the buffer is
used as texture. An arrow pointing from the fragment
program to a buffer means that the buffer is used as
framebuffer.

Another concern is the way to map each diagonal in

the DP matrix into a quad. From Figure 7 we can see
that drawing a diagonal quad that covers the diagonal
in the buffer does not yield the desired result. This
is because all pixels touched by the quad are rendered
instead of rendering only the cells on the diagonal.

)

Cells on the diagonal we
want to render (in gray color)

Unwanted cells (in red
color) are rendered

Figure 7. Drawing a quad over the anti-
diagonal results in rendering too many pix-
els.

In our implementation, the cells of each diagonal are
brought into columns by shifting each row of the matrix
to the right by its row number i (see Figure 8).
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With this method, a 1×L(k) quad can be rendered
in each iteration, where L(k) denotes the length of di-
agonal k. Furthermore, it is possible to perform N
pairwise comparisons at the same time by using two-
dimensional buffers instead of one-dimensional buffers.
This is shown in Figure 9 in which the buffer is filled
from bottom up. Each buffer contains N diagonals of
length L(k), where L(k) denotes the length of diagonal
k. The computation is invoked by drawing an N×L(k)
quad in each iteration.
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Figure 9. Buffers at iteration step k=8 after
rendering N diagonals of length 8 each in par-
allel (in different fragment processors).
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Figure 10. Our GPU implementation for
the Smith-Waterman algorithm with multiple
passes.

Figure 10 gives an overview of our GPU implementa-
tion. Before entering the loop that handles the passes
which need to be rendered, the fragment program is
activated. The following loop is executed for each di-
agonal. First, the quad and its texture coordinates are
determined and the two buffers representing the diago-
nals Dk−1 and Dk−2 are bound as textures. The render
target is set to the buffer that represents diagonal Dk in
this pass. Subsequently, all necessary uniform variables
are set, the quad is drawn, and its texture mappings
are set. When the rendering has finished, the buffers

are released from their texture bindings and the loop
restarts. This is done until all diagonals are completed.
After exiting the loop, the fragment program is deac-
tivated and the result is read from the framebuffer.
Furthermore, the results are stored and statistical in-
formation is generated.

Note that the purpose of our Smith-Waterman
GPU implementation is the acceleration of sequence
database scanning. This application requires the align-
ment of a query sequences to all subject sequences of
a given database. All subject sequences are ranked by
the maximum score in the DP matrix. Reconstruc-
tion of the actual alignment (the traceback) is merely
performed for the highest ranked sequences. There-
fore, only the highest score of each pairwise alignment
is computed on the GPU. Ranking the compared se-
quences and reconstructing the alignments are carried
out by the front end PC. Because this last operation
is only performed for very few subject sequences, its
computation time is negligible.

6. Performance Evaluation

We have implemented the proposed algorithm us-
ing the high-level GPU programming language GLSL
(OpenGL Shading Language) [9] and evaluated it on
the following graphics cards:

- nVidia GeForce 6800 GTO : 414 MHz engine clock
speed, 1.10 GHz memory clock speed, 5 vertex pro-
cessors, 16 fragment processors, 256 MB memory.

- nVidia GeForce 7800 GTX : 622 MHz engine clock
speed, 1.83 GHz memory clock speed, 8 vertex pro-
cessors, 24 fragment processors, 512 MB memory.

Tests have been conducted with these cards installed
in a PC with an Intel Pentium4 3.0 GHz, 1GB RAM
running Windows XP.

A performance measure commonly used in compu-
tational biology is cell updates per second (CUPS ). A
CUPS represents the time for a complete computation
of one entry of the matrix H, including all comparisons,
additions and maxima computations. We have scanned
the Swiss-Prot protein databank (release 46.3, which
contains 176,469 sequences with an average length of
361) for query sequences of various lengths using our
implementation on a GeForce 6800 GTO and a GeForce
7800 GTX. They allow handling query sequences up to
a length of 4096. This restriction is imposed by the
maximum texture buffer size of these graphics cards.
However, this limitation is not severe since 99.8% of
the sequences in the Swiss-Prot database are of length
<4096. Furthermore, it is expected that the texture



Table 1. Runtime comparison for scanning the Swiss-Prot database (release 46.3, March 2005).
The query sequences have accession numbers O29181, P03630, P53765, Q8ZGB4, P58229, P39985,
Q96HP0 and P36022 in the Swiss-Prot.

Query Sequence Length OSEARCH SSEARCH GeForce 6800 GTO GeForce 7800 GTX
(sec) (sec) (sec) (sec)

63 90.9 48.6 32.4 19.5
127 184.1 99.7 44.4 25
255 375.1 198.2 68.8 36.3
361 532.7 295.8 89.1 45.8
511 731.9 391.9 117.2 59.2
1023 1472.5 848.7 213.6 105.1
2047 2985.7 1741.7 407.2 197.9
4095 5925.2 3610.8 793.2 383.1

buffer sizes will increase in next-generation graphics
hardware.

We have also compared the performance between
our GPU implementation and a widely used CPU pro-
gram for database scanning - FASTA [16]. FASTA
stands for FAST-All, reflecting the fact that it can
be used for a fast protein comparison or a fast nu-
cleotide comparison between a query sequence and
a large database of known sequences. OSEARCH
and SSEARCH [15] are two Smith-Waterman im-
plementations in FASTA programs. OSEARCH is
a straightforward Smith-Waterman implementation.
SSEARCH [15] is an optimized implementation of
Smith-Waterman algorithm. However, OSEARCH
is more sensitive and accurate. We have run OS-
EARCH34 and SSEARCH34 on an Pentium4 3.0 GHz
CPU running Red Hat Linux 7.3.

Table 1 reports the runtime of our GPU implemen-
tation, OSEARCH, and SSEARCH for different query
sequence lengths. Figure 11 compares the correspond-
ing MCUPS performance values. As can be seen, our
GPU implementation achieve speedups of almost 16
compared to OSEARCH and 8 compared to SSEARCH
while produce the same accuracy as OSEARCH, which
has higher quality than SSEARCH.

7. Conclusions and Future Work

In this paper we have demonstrated that the stream-
ing architecture of GPUs can be efficiently used for bi-
ological sequence database scanning. To derive an effi-
cient mapping onto this type of architecture, we have
reformulated the Smith-Waterman algorithm in terms
of computer graphics primitives. The evaluation of our
implementation on a high-end graphics card shows a
speedup of almost sixteen compared to a Pentium IV
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Figure 11. Performance comparison (in
MCUPS) for scanning the Swiss-Prot
database (release 46.3, March 2005). The
query sequences have accession num-
bers O29181, P03630, P53765, Q8ZGB4,
P58229, P39985, Q96HP0 and P36022 in the
Swiss-Prot.

3.0GHz. To our knowledge this is the first reported
implementation of the Smith-Waterman algorithm on
graphics hardware.

The very rapid growth of genomic databases de-
mands even more powerful parallel solutions in the fu-
ture. Because comparison and alignment algorithms
that are favored by biologists are not fixed, pro-
grammable parallel solutions are required to speed up
these tasks. As an alternative to inflexible special-



purpose systems, hard-to-upgrade SIMD systems, and
expensive supercomputers, we advocate the use of
graphics hardware platforms. The main advantage of
graphics hardware compared to previously used archi-
tectures for biological sequence analysis is that they
are commodity components. This facilitates easy up-
grading to next-generation GPUs at a very reasonable
price.
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