
ReConfigME: A Detailed Implementation of an

Operating System for Reconfigurable Computing

Grant Wigley, David Kearney and Mark Jasiunas 1

Reconfigurable Computing Laboratory (RCL)
Advanced Computing Research Centre

University of South Australia
Mawson Lakes SA 5092 Australia

Grant.Wigley@unisa.edu.au David.Kearney@unisa.edu.au Mark.Jasiunas@unisa.edu.au

1 All the authors contributed equally to the work in this paper

Abstract
Reconfigurable computing applications have

traditionally had the exclusive use of the field
programmable gate array, primarily because the logic
densities of the available devices have been relatively
similar in size compared to the application. But with
the modern FPGA expanding beyond 10 million system
gates, and through the use of dynamic reconfiguration,
it has become feasible for several applications to share
a single high density device. However, developing
applications that share a device is difficult as the
current design flow assumes the exclusive use of the
FPGA resources. As a consequence, the designer must
ensure that resources have been allocated for all
possible combinations of loaded applications at design
time. If the sequence of application loading and
unloading is not known in advance, all resource
allocation cannot be performed at design time because
the availability of resources changes dynamically. In
this paper we present an implementation of an
operating system that has the ability to share its FPGA
resources dynamically among multiple executing
applications.

1. Introduction
With the development of reconfigurable computers
containing FPGAs with in excess of 6 million system-
gates, such as the RC2000 [1] and Bioler 3 [2], it is
now feasible to consider the possibility of sharing the
FPGA between multiple concurrently executing
applications. This could potentially increase the
resource usage of the expensive FPGA logic and
decrease response times so users will not have to wait
for the FPGA to be completely available. The multiple
use of an FPGA depends on some form of runtime
reconfiguration.

Surprisingly in view of the number of reconfigurable
computer (RC) platforms and architectures proposed
and built, very few of these projects have included a

detailed investigation into run time support. Everybody
who ever built a platform has seen the need for a single
user loader, often in the guise of interface software
between the RC platform and the host system. Some
researchers have seen the need for a run time
environment such as Brebner [3], Shiraz [4], Caspi [5]
and Walder [6]. However as far as we are aware, no-
one has actually built an operating system for
reconfigurable computing; if the definition of operating
system is to extend to allocation of area resources and
not just to be a loader of applications. In paper, we
present the implementation details of the previously
described concept of ReConfigME, an operating
system for reconfigurable computing.

The ReConfigME implementation is structured into
three tiers consisting of user, platform and operating
system which are connected via a standard TCP/IP
network (shown in Figure 1). Users connect to
ReConfigME through a custom built client interface
which enables them to load applications, transfer
application data and configuration information, and
monitor the reconfigurable computing platform status.
ReConfigME enforces a strict FPGA application
architecture consisting of a data flow graph structure,
memory based I/O, EDIF application file format, and
the associated software only components. It supports
multiple applications through the use of FPGA
hardware resource allocation, application logic
partitioning, runtime bitstream generation, and runtime
reconfiguration. For easier implementation and due to
technology limitations, ReConfigME has a limit on the
number of concurrent applications and uses static
application memory allocation. The current FPGAs
and their design tools do not support dynamic runtime
reconfiguration of arbitrary sized applications, thus
ReConfigME simulates dynamic runtime
reconfiguration. When ReConfigME wants to allocate
a new application to the FPGA, all running
applications are check pointed, the FPGA clock is

1-4244-0054-6/06/$20.00 ©2006 IEEE

stopped, and a new bitstream including the new and all
the existing applications is downloaded. The existing
and new applications are then started or restarted.

This paper is structured as follows. The reconfigurable
computing platform used and the factors affecting its
selection is described first. In the next section, the
restrictions placed on the application’s design are
outlined as an application architecture. The primitive
architecture used to support the inter-process
communication abstraction is then detailed. In section

5, ReConfigME’s software implementation structure is
described which includes the use of a three-tier
networked communication architecture. A detailed
listing of the procedure involved in executing an
application under ReConfigME is then described
through the use of a sample application. The
applications that were implemented to test the correct
functionality of ReConfigME are then detailed. The
paper is then finalised with a summary of outcomes in
the conclusion.

Figure 1: ReConfigME implementation architecture

2. Hardware Platform
The prototype of ReConfigME was developed on a
standard PC with a Celoxica RC1000pp development
board, in a typical co-processor configuration. The
RC1000pp is a standard PCI bus card equipped with a
Xilinx Virtex XCV1000 part with 1 million system
gates. It has 8Mb of SRAM directly connected to the
FPGA in four 32-bit wide memory banks. The memory
is dual ported to the host CPU across the PCI bus
accessible by DMA transfer or as a virtual address.

This platform was selected for the operating system
prototype for several reasons. Firstly, the platform
consists of a medium grained FPGA, loosely coupled
to a modern high performance microprocessor via a
standard PCI bus. The medium grained FPGA has
ample resources to be shared amongst multiple
concurrent applications and the PCI bus has sufficient
I/O bandwidth to support the streaming of data into the
applications. Secondly, the platform has four banks of

high capacity dual port memory. As was described in
the inter-process communication abstraction, processes
will communicate with each other and the external
microprocessor via the platform’s on-board memory.
External I/O data will be loaded into a memory bank
via the PCI bus and then passed into the process via the
FPGA pins and memory controller. This type of I/O
transfer requires dual-port memory as the host and
FPGA can communicate directly with the memory
bank. Finally, the platform supports runtime
reconfiguration via SelectMAP over PCI.

3. Application Architecture
The applications used in conjunction with
ReConfigME need to be designed with the following
four characteristics. Firstly, the applications should be
structured according to the data flow graph model
shown in Figure 2. This enables the Partitioner to
divide the application into several partitions that better
match the geometric dimensions of the vacant FPGA

area. However, applications that are not structured as a
data flow graph model can still be used with
ReConfigME but no attempt to partition them will be
made. This may result in an extended application
response time, as not being able to partition the
application will increase the chance of it being blocked
if the particular size of vacant area needed is not
available.

Figure 2: Application Architecture

Secondly, data source and sink nodes are inserted into
the applications at points where input or output data is
required. As all inter-process communication is
conducted via on-board memory, these nodes provide
the interface between the application and the on-chip
memory controller. The applications in the prototype
have access to 1Mb of memory each starting at a
virtual address of 0x00. The memory controller will
then convert this virtual address to a real address based
on the static allocation of external memory. The on-
chip memory controller in conjunction with the
ReConfigME server is then responsible for reading and
writing the data to and from the applications and the
appropriate memory location. This interface allows
applications to be programmed in both VHDL and
Handel-C.

Thirdly, each of the nodes of the data flow graph must
be relocatable on the FPGA as ReConfigME will
determine where to allocate the nodes at runtime. Since
the current tools do not support runtime routing of pre-
placed and pre-routed applications, this prevents them
from being arbitrary relocated. So each of the nodes of
an application is synthesised into an intermediate file
format at compile time, but not placed and routed to a
bitstream. The intermediate file format chosen in
ReConfigME is EDIF. This file format has advantages
over many of the others because almost all design
entry methods can generate it, it’s not commercially
specific to an FPGA or company, it has an open source
specification, and multiple EDIFs can easily be merged
together to result in a single FPGA bitstream. EDIF’s
are combined by the operating system with an area
constraint file that specifies the location of each node
and the complete FPGA is then place and routed.

Finally, each of the nodes in the data flow graph model
and the entire model itself must have an estimate of the
geometric dimensions of the FPGA area they will
require when passed into ReConfigME (see Figure 2).
Thus it is necessarily at design time to execute the
place and route tools over each of the nodes to gain a
size estimate. It can be expected that this will not be an
entirely accurate area estimate especially if the aspect
ratio has to be change and as such a margin for error is
added to the area estimate used in ReConfigME.

4. Primitive Architecture
The primitive architecture of ReConfigME is that part
of the hardware that is configured onto the FPGA
before any user applications and remains there. The
primitive architecture is used to support the previously
defined inter-process communication abstraction. It
consists of a memory controller and network
terminators. The memory controller is responsible for
granting access to the memory when requested by an
application, and managing the transfer of the I/O to the
particular application. As the RC1000 consists of four
2Mb memory banks, accessible either via the host
computer or FPGA, the memory controller has to
negotiate with the platform memory arbitrator to
ensure both the host and FPGA applications do not
write to the same memory bank simultaneously. For
ease of implementation, the memory controller
logically divides the memory into fixed sized blocks
each of which are then allocated to a single process
requiring I/O. Although this limits the total number of
processes resident on the FPGA, it will not impact on
the results gained from the set of experiments that will
be conducted on the prototype.

As I/O arrives at the memory controller from a process,
it negotiates with the memory arbitrator to ensure it has
exclusive access to the particular memory bank. Once
access has been granted, it then has to convert the local
addressing scheme that each process is using into the
global addressing scheme to ensure the data is loaded
into the correct location in memory. The memory
controller then either reads or writes the data into the
calculated memory position.

Each of the processes is connected to the memory
controller via a single network terminator. The network
terminators simply provides the matching interface for
the data source and sink nodes so processes can easily
connect to it. This currently consists of a custom bus of
21 address lines, 32 data lines, 4 single bit control
lines, and a single bit clock line. Processes can then
either read or write to anywhere within the range up to
1 Mb which is allocated to it.

5. ReConfigME Implementation
The overall architecture of the operating system is
component based with each operation separated into

small independent components which communicate via
a simple message based mechanism. As there are many
issues relating to reconfigurable computing operating
systems that have not been fully researched, this type
of architecture was chosen over the more traditional
monolithic operating system architecture. As the
requirements of a modern traditional operating system
have been well defined, the implementation of a
monolithic architecture is relatively straightforward.
However in a reconfigurable computing operating
system the requirements are still unclear and as such
the construction of a monolithic architecture had to be
avoided because they are difficult to maintain as the
detailed requirements emerge.

A simple multi-client server arrangement to structure
the inter-component communication was chosen to be
used with the prototype. This involved one client
server connection between the user and bitstream
generation components, and another between the
bitstream generation components and the
reconfigurable computing platform. This allows the
user to be remotely located from the majority of the
operating system components, possibly via a remote
web front end, and the reconfigurable computer to be
remotely located from the bitstream generation tools.
Another benefit of this design is that ReConfigME can
manage multiple FPGA cards which can be physically
located within the same machine or in separate
machines making it easily scalable. Such an
arrangement allows maximum flexibility with respect
to location of the user, platform and ReConfigME’s
bitstream generation components.

The inter-component communication structure has
ReConfigME divided into three tiers; user, operating
system, and platform. Although there is no general
agreement about what contributes as a tier [7], a
machine separated by network communication is
considered a tier in this prototype. The client tier
primarily performs the interaction between the
operating system tier and the user by providing a shell
as an interface. The operating system tier contains the
operating system architecture that consists of the
resource allocation, application partitioning and
bitstream generation. The platform tier consists of the
reconfigurable computing platform and the
components needed to access it. ReConfigME’s
components were then separated into these three tiers
and can be seen in Figure 1. The curved cornered
rectangles indicate the component was constructed
specifically for the prototype. Rectangular components
represent off the shelf products. This figure is very
similar to a protocol stack; data enters the tier via the
bottom component which is connected to the others via
a physical network. Data progresses through the tier
until it reaches the destination component. Likewise

data that needs to be transferred to another tier will
progress down through the tier until it reaches the
physical network. Each of the components and tiers
will now be discussed in more detail.

5.1. Platform Tier
The platform tier consists of seven components and is
primarily responsible for the communications to and
from the reconfigurable computing platform. All of the
components except the reconfigurable computer and
network are all resident in software on a PC that hosts
the reconfigurable computing platform. The top level
component is the hardware abstraction layer (HAL)
server and is responsible for hiding the platform
specific API. It is a simple API written in Java that can
be used with various platforms to offer access and
control over the hardware. It provides methods for
reading and writing bitstreams to the FPGA, reading
and writing to the on-board memory, and clock
management. As the RC1000 used in ReConfigME is
shipped with C++ libraries, Java native method calls
were used to connect the hardware abstraction layer
API to the corresponding RC1000 library method. The
advantage of the hardware abstraction layer is the same
API can be used to communicate to any number of
different target platforms.

The hardware abstraction layer also supports a
client/server paradigm so the reconfigurable computing
platform can be remotely located. Connections are
made to the HAL server via standard TCP/IP sockets
from the HAL client, located in the operating system
tier. Bitstream files, input and output data, and clock
configurations are then passed back and forth between
the client and server.

The other components in the platform tier are used to
support the HAL server. Java was chosen as the
implementation language because of its ease of
internetworking, its object orientated semantics, and its
portability across different hosts, operating systems,
and hardware. The PC operating system component, in
this case Windows XP, is needed to manage the
hardware resources of the host computer and the
TCP/IP and network components are required to
provide the connectivity between the HAL server and
the HAL client.

5.2. Operating System Tier
The operating system tier consists of seven
components and is responsible for allocating and
partitioning applications, the generation of the FPGA
bitstreams, and the transfer of application data and
configuration information between the platform and
user tiers. The top level component of the operating
system tier is dubbed “Colonel” (analogous to a
software operating system but is spelt differently to
avoid confusion). The Colonel does everything except

the transfer of data between the other tiers. It consists
of three sub-components and the bitstream generation
tools.

As a user connects to ReConfigME, their application
and configuration information is passed into the
Colonel via the user server. The application and its pre-
compiled geometric dimensions are then passed onto
the Allocator and in conjunction with the Partitioner,
will determine whether the application can configured
onto the FPGA or is blocked and put into a queue
because of the lack of vacant area. The Allocator
consists of the Minkowski Sum with bottom left fit
algorithm that was described in section [8] and the
Partitioner consists of the modified temporal
partitioning algorithm that was described in [9].

Once all the locations of the application’s partitions
have been determined, the Allocator will create a file
which ensures the application’s absolute placement
details calculated by the Allocator are followed once
the FPGA bitstream is generated. In ReConfigME, the
constraints file is in the standard vendor format. The
main control loop will then create and call a script that
executes the place and route tools. This will generate
an FPGA bitstream that includes all of the loaded
applications in their correct locations. It is then passed
onto the HAL client who is responsible for connecting
to the platform and configuring the new bitstream onto
the FPGA.

The Colonel also manages the transfer of application
data involving capturing the input data from the user
loading it into the on-board memory, and reading the
output data from the on-board memory and passing it
back to the user. This task primarily consists of an
address translation. The local addressing scheme is
translated into the platform’s global addressing scheme
to ensure the correct location in the platform’s memory
is accessed for either reading or writing. The Colonel
also passes specific clock and platform information
between the HAL client and user server.

The second level component of the operating system
tier is the HAL client and user client. The HAL client
component is responsible for creating a connection to
the desired platform and passing all of the I/O,
bitstreams and configuration information between the
two. It allows the platform to be remotely located from
the Colonel. The advantage in this is ReConfigME can
target numerous different platforms without having to
have them all located in the same machine as the
Colonel.

The user server handles all the communications
between the user client in the user tier and the Colonel.
This includes input and output of application data,
incoming applications, and platform configuration
information such as clock settings. The user server

accepts connections via standard TCP/IP sockets from
numerous remotely located clients located in the user
tier. Once a connection has been established, it is
responsible for passing the data to the Colonel and then
responding to the client with the associated response.
The advantage of having the communication
component separate from the Colonel is if the network
protocol or client/server API is altered, only those
components need to be modified, not the complex
Colonel itself.

5.3. User tier
The user tier contains five components and is primarily
responsible for providing a user interface and
connection to the operating system tier. The top level
component is the user interface and consists of a
combination of a simple command line interface for
user input and a graphical user interface for displaying
the geometrically layout of currently executing
application on the reconfigurable computing platform.
Via the command line interface, users are able to load
applications, stream I/O data to the platform’s on-
board memory and configure particular platform
settings such as clock values. The graphical user
interface displays the results of the allocation and
partitioning of applications as they are loaded into
ReConfigME.

The user client is the second level component in the
user tier and provides an interface to the Colonel via
the user server. It communicates via standard TCP/IP
sockets to the user server located in the operating
system tier and simply converts user requests from the
command line interface into the API defined for use
between the user client and server components. The
advantage in using the user client and server is other
user interfaces can easily be added with little or no
change to the Colonel.

6. Sample application execution
There are two types of files that are needed to be
created for an application to be loaded onto the
reconfigurable computer via ReConfigME: the
application itself with an EDIF file for each data flow
graph node, and a Java class file that defines how each
of these EDIF files are connected together in data flow
graph model. The first stage in developing an
application for use with ReConfigME is the generation
of the series of EDIF files that describes the behaviour
of the application. This procedure initially involves the
designer determining how the application will be
structured.

Each of these nodes will then result in a single EDIF
file. Almost any design entry method can be used to
create these nodes but in this example the hardware
description language developed by Celoxica known as
Handel-C was used. Shown in

Figure 3 is a code listing of the first node in a sample
application.

It simply reads a 32 bit number from the first location
in memory, adds one to the number, and then writes
the result back into the second location in memory. As
can be seen from the code, the data is loaded into the
memory from the host via the readMem() and
writeMem() methods.

Figure 3: Handel-C code listing for add one
data graph flow node

These methods insert the data source and sink nodes
into the application so it can be connected to the
memory controller. The Handel-C source code for the
other nodes in the data flow graph look very similar
except instead of adding one to the number, the second
node performs a logical XOR against a set mask and
the third node performs a logical AND against another
set mask. All the Handel-C source files are then
compiled and an EDIF file is generated for each node.
As is shown in the code in Figure 4, three new cores
and their dimensions which represent each node in the
graph are added into the instance tg.

Figure 4: Java class file defining data flow
graph structure

The code initially involves creating an instance of the
class TaskGraph which represents a data flow graph,
and initialising the parameters defining its geometric

dimensions, name and whether it should be partitioned.
An application can be prevented from being partitioned
by ReConfigME if the designer believes it has strict
performance constraints. Each of the EDIF filenames
and the area they will consume are then added into the
structure of the data flow graph as nodes by simply
adding a new Vertex into an array within the instance.
In this sample execution, the data flow graph consist of
three nodes or EDIF files; add_one_core, XOR_core,
and AND_core. The edges which represent the
communication links between the nodes in the data
flow graph are created in the instance by calling the
method addEdge and passing the core numbers of the
communicating nodes. In the sample application, the
add_one_core connects to the XOR_Core, which
connects to the AND_core.

The next part in the Java class file is to define the
connection to the ReConfigME server and pass the
TaskGraph object containing all the data flow graph
details. This is simply performed by creating an
instance of the class RC1000 with the parameters of
the TaskGraph, IP address and port number of the
server. This results in the instance of the data flow
graph and all associated EDIF files being loaded into
ReConfigME so the generation of the bitstream can
begin. Once the bitstream has been generated and
dynamically configured onto the FPGA, the necessary
read and writes to and from the memory are performed.

The final stage in the sample application execution is
to read and write the I/O data with the output data
being stored in a local file. The status of these actions
is reported via the client interface. Once the client
disconnects from the ReConfigME server, the
application is removed from the FPGA and the new
bitstream is generated and configured onto the FPGA.

7. Applications for ReConfigME
There were two main applications implemented to
verify the correct functionality of ReConfigME. Two
applications were implemented to show that
ReConfigME can be used with real applications that
require large amounts of I/O to be transferred between
the hardware circuit and software part of the
application. These two applications are described here.

7.1. Blob tracking
Blob tracking is a term used in the vision tracking
research community which is the process of finding the
location of a known object in a series of images. In the
application described here, the object of interest is an
orange coloured ball and a series of images were taken
as the ball was randomly moved. The first step in blob
tracking algorithm implemented for ReConfigME was
to separate the orange coloured ball from the rest of
image. This is achieved by performing a threshold
operating on the image, based on a colour value that

matched the orange ball. Each pixel in the image was
examined to determine if it matched the colour of
interest. If the pixel matched the colour, in the output
image it was set to white whereas if it did not match, it
was set to black. This procedure was repeated for every
pixel in a frame. Once the known colour had been
separated from the image, the centre of these pixels
had to be calculated. This was achieved by simply
calculating the mean location of all the pixels that
matched the threshold colour of interest. This point
was then indicated by the use of red crosshairs.

Figure 5: Blob tracking executing on OS

The application consists of two parts: the hardware
circuit containing the blob tracking algorithm which
performs the threshold and calculation of the centre
location written in Handel-C, and the software
application responsible for transferring the I/O to
ReConfigME, capturing the video in real time via a
camera, and displaying the threshold image and
location of the crosshairs. The hardware circuit of the
blob tracking application consumes approximately 400
CLBs or 7% of the target FPGA, has pre-defined
dimensions calculated to be 20 CLBs by 20 CLBs and
is 70 lines of non-commented Handel-C.

Edge enhancement is another well-known image
processing algorithm and involves identifying the
edges of objects in an image. This algorithm is often
the first stage in template matching or target
recognition. The algorithm firstly involves performing
a threshold of the intensity change across a window of
pixels. If the intensity change exceeds the selected
threshold, the pixel is marked as an edge. The window
is moved across the entire image in both a horizontal
and a vertical direction. The output from the edge
enhancement application is shown in Figure 6.

Figure 6: edge enhance executing on OS

As was the case in the blob tracking application, the
edge enhancement application consists of two parts:
the hardware circuit that executes the edge detection
algorithm, and the software part that transfers the I/O
to ReConfigME and displays the resultant edge
detection. The hardware circuit consumes 480 CLBs,
has pre-calculated dimensions of 40 CLBs wide by 12
CLBs high and is 111 lines of non-commented Handel-
C code.

7.2. Multiple concurrent applications with

ReConfigME
Shown in Figure 7 is the allocation status when both
the blob tracking and edge enhancement applications
were allocated onto the FPGA at the same time from
the Xilinx Floor-planner. The blob tracking application
is shown in yellow, the edge enhancement in green and
the memory controller in light grey. This figure reflects
the allocation constraints placed onto the applications
by ReConfigME.

Figure 7: Xilinx Floorplanner

With both the applications allocated onto the FPGA
and the clock set to 25MHz, both applications executed
correctly and there was no noticeable difference in the
frame rate of both applications as compared to running
them separately. The output from both applications
was identical when compared to the output generated
when each application had exclusive use of the FPGA.

The edge enhancement application was removed by the
operating system, the network terminator was re-
allocated, and the blob tracking application continued
to execute correctly. Finally, the blob tracking
application was removed from ReConfigME and the
FPGA was re-configured with no applications.

8. Conclusion
In this paper a prototype operating system known as
ReConfigME which is based on the architecture
previously described in [10] was presented. This
included details on the selected platform and the
detailed implementation. It was discussed how the
applications are created so they are structured
according to the data flow graph model, the primitive
architecture that is used to support inter-process
communication, the networked tier architecture used to
implement the prototype itself, and sample application
execution listing. Two applications that were written to
demonstrate the OS were also presented.

9. Acknowledgements
The authors would like to acknowledge the financial
support from the Sir Ross and Keith Smith Trust Fund.
They would also like to acknowledge contributions
from both Martyn George and Maria Dahlquist.

10. References
[1] Celoxica, "RC2000 Hardware Reference

Manual," 2003.
[2] Bioler 3 Reconfigurable Computing Platform

Datasheet 04.
[3] G. Brebner, "A Virtual Hardware Operating

System for the Xilinx XC6200," presented at
6th International Workshop on Field-
Programmable Logic and Applications
(FPL'96), Darmstadt, Germany, 1996.

[4] N. Shirazi, W. Luk, and P. Cheung, "Run-
time Management of Dynamically
Reconfigurable Designs," presented at

International Workshop on Field-
Programmable Logic and Applications
(FPL'98), Tallinn, Estonia, 1998.

[5] E. Caspi, M. Chu, R. Huang, J. Yeh, Y.
Markovskiy, A. DeHon, and J. Wawrzynek,
"Stream Computations Organized for
Reconfigurable Execution (SCORE):
Introduction and Tutorial," presented at 10th
International Workshop on Field-
Programmable Logic and Applications
(FPL'00), Austria, 2000.

[6] H. Walder and M. Platzner, "Non-preemptive
Multitasking on FPGAs: Task Placement and
Footprint Transform," presented at
Engineering of Reconfigurable Systems and
Algorithms, NV, USA, 2002.

[7] U. Amjad, Application (Re)Engineering.
Upper Saddle River, New Jersey: Prentice
Hall, 1997.

[8] G. Wigley and D. Kearney, "The
Management of Applications for
Reconfigurable Computing using an
Operating System," presented at 7th Asia-
Pacific Computer Systems Architecture
Conference, Australia, 2002.

[9] G. Wigley and D. Kearney, "Research Issues
in Operating Systems for Reconfigurable
Computing," presented at Engineering of
Reconfigurable Systems and Algorithms
(ERSA02), Las Vegas, USA, 2002.

[10] G. Wigley, D. Kearney, and D. Warren,
"Introducing ReConfigME: An Operating
System for Reconfigurable Computing,"
presented at Field-Programmable Logic and
Applications, Reconfigurable Computing Is
Going Mainstream, 12th International
Conference, FPL 2002, Montpellier, France,
2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

