
High-Performance Computing in Remotely Sensed Hyperspectral Imaging:

The Pixel Purity Index Algorithm as a Case Study

Antonio Plaza, David Valencia and Javier Plaza

Computer Architecture and Technology Section
Computer Science Department, University of Extremadura

Avda. de la Universidad s/n, E-10071 Caceres, SPAIN
Phone: +34 (927) 257195; Fax: +34 (927) 257203

E-mail: aplaza@unex.es

Abstract

The incorporation of last-generation sensors to
airborne and satellite platforms is currently producing a
nearly continual stream of high-dimensional data, and this
explosion in the amount of collected information has
rapidly created new processing challenges. For instance,
hyperspectral imaging is a new technique in remote
sensing that generates hundreds of spectral bands at
different wavelength channels for the same area on the
surface of the Earth. The price paid for such a wealth of
spectral information available from latest-generation
sensors is the enormous amounts of data that they
generate. In recent years, several efforts have been
directed towards the incorporation of high-performance
computing (HPC) models in remote sensing missions. This
paper explores three HPC-based paradigms for efficient
information extraction from remote sensing data using the
Pixel Purity Index (PPI) algorithm (available from the
popular Kodak’s Research Systems ENVI software) as a
case study for algorithm optimization. The three
considered approaches are: 1) Commodity cluster-based
parallel computing; 2) Distributed computing using
heterogeneous networks of workstations; and 3) FPGA-
based hardware implementations. Combined, these parts
deliver an excellent snapshot of the state-of-the-art in
those areas, and offer a thoughtful perspective on the
potential and emerging challenges of adapting HPC
models to remote sensing problems.

1. Introduction

Hyperspectral imaging (also known as imaging
spectroscopy) is a new technique that has gained
tremendous popularity in many research areas, most
notably, in remotely sensed satellite imaging and aerial
reconnaissance [1]. Recent advances in sensor technology
have led to the development of so-called hyperspectral
instruments, which are capable of collecting hundreds of

images corresponding to different wavelength channels for
the same area on the surface of the Earth (see Fig. 1). In
particular, NASA is continuously gathering imagery data
with hyperspectral Earth-observing sensors such as Jet
Propulsion Laboratory’s Airborne Visible-Infrared
Imaging Spectrometer (AVIRIS) [2], or the Hyperion
imager aboard Earth Observing-1 (EO-1) spacecraft. The
incorporation of hyperspectral sensors on airborne/satellite
platforms is currently producing a nearly continual stream
of high-dimensional data (it is estimated that NASA
collects and sends to Earth more than 850 Gb of
hyperspectral data every day).

Figure 1. The concept of hyperspectral imaging

The development of computationally efficient
techniques for transforming the massive amount of
hyperspectral data collected on a daily basis into scientific
understanding is critical for space-based Earth science and
planetary exploration. In particular, the wealth of spatial
and spectral information provided by last-generation
hyperspectral instruments has opened ground-breaking
perspectives in many applications, including
environmental modeling and assessment, target detection
for military and defense/security purposes, urban planning
and management studies, risk/hazard prevention and

1-4244-0054-6/06/$20.00 ©2006 IEEE

response including wild land fire tracking, biological
threat detection, monitoring of oil spills and other types of
chemical contamination, etc. Most of the above-cited
applications require analysis algorithms able to provide a
response in real- or near real-time.

In recent years, several efforts have been directed
towards the incorporation of high-performance computing
(HPC) models in remote sensing applications [3-5].
Despite the growing interest in the development of HPC
techniques for hyperspectral imaging, only a few research
efforts devoted to the design of parallel implementations
currently exist in the open literature [6,7]. It should be
noted that several existing parallel techniques are subject
to non-disclosure restrictions, mainly due to their use in
military and defense applications. However, with the
recent explosion in the amount of hyperspectral imagery,
parallel processing is expected to become a requirement in
virtually every remote sensing application. As a result, this
paper takes a necessary first step toward the comparison of
different HPC techniques and strategies for parallel
hyperspectral image analysis.

As a case study, this paper focuses on the pixel purity
index (PPI) algorithm, one of the most widely used
standard algorithms in the hyperspectral imaging
community. The algorithm was originally developed by
Boardman et al. [8], and was soon incorporated into
Kodak’s Research Systems ENVI [9], a world-class
commercial software package for remote sensing. Due to
the algorithm’s propriety and limited published results, its
detailed implementation has never been made available in
the public domain. This paper presents our experience
with the PPI algorithm and investigates several strategies
for its implementation in parallel. The description of
several techniques and strategies for parallelization of the
PPI algorithm provides an excellent snapshot of the state-
of-the-art of the application of HPC models in remote
sensing applications, and an in-depth study of a well-
known commercial algorithm that will appeal to both
practitioners and developers alike, thus providing a
thoughtful perspective on the potential of applying HPC
paradigms in remote sensing missions.

The paper is structured as follows. Section 2 reviews
the PPI and discusses several issues encountered in its
implementation. Section 3 develops several high-
performance implementations, including: 1) a commodity
cluster-based parallel implementation; 2) a distributed
implementation on heterogeneous networks of
workstations; and 3) a hardware-based implementation
using FPGAs. Section 4 provides an experimental
comparison of the proposed parallel implementations.
Here, we use a massively parallel Beowulf cluster at
NASA’s Goddard Space Flight Center, a heterogeneous
network of workstations at University of Maryland, and a
Xilinx Virtex-II FPGA device. Finally, section 5
concludes with some remarks and future research lines.

2. Pixel Purity Index Algorithm

The underlying assumption under the PPI algorithm is
that the spectral signature associated to each pixel vector
(see Fig. 1) measures the response of multiple underlying
materials at each site. For instance, it is very likely that the
pixel vector shown in Fig. 1 would actually contain a
mixture of different substances (e.g., different minerals,
different types of soils, etc.). This situation, often referred
to as the “mixture problem” in hyperspectral analysis
terminology [10], is one of the most crucial and
distinguishing properties of spectroscopic analysis. To
deal with this problem, spectral unmixing techniques have
been proposed as a procedure in which the measured
spectrum of a mixed pixel is decomposed into a collection
of spectrally pure constituent spectra, called endmembers
in the literature [11], and a set of correspondent fractions,
or abundances, that indicate the proportion of each
endmember present in the mixed pixel.

The PPI algorithm falls into the category of endmember
extraction algorithm [8]. It was designed to search for a set
of vertices of a convex hull in a given data set that are
supposed to represent the purest signatures present in the
data. The algorithm proceeds by generating a large
number of random, N-dimensional (N-D) unit vectors
called “skewers” through the dataset. Every data point is
projected onto each skewer, and the data points that
correspond to extrema in the direction of a skewer are
identified and placed on a list. As more skewers are
generated, the list grows, and the number of times a given
pixel is placed on this list is also tallied. The pixels with
the highest tallies are considered the final endmembers,
where the number of endmembers to be extracted by the
algorithm, p, is set in advance by the user. Two additional
parameters are input to the algorithm: k, the number of
random skewers to be generated during the process, and t,
a cut-off threshold value that is used to select as final
endmembers only those pixels that have been selected as
extreme pixels at least t times throughout the PPI process.
Although the algorithmic description of the PPI algorithm
has never been made fully disclosed in the open literature,
we provide below an outline of the algorithm which is
based on limited published results and our own
interpretation. All steps in the algorithm below have been
verified via experiments using the PPI available in
Research Systems ENVI version 4.0 and our own
implementation, where both versions produced exactly the
same results. The inputs to the algorithm are an N-D data
cube, F , the number of endmembers to be extracted, p,
the number of skewers to be generated throughout the
process, k, and a cut-off threshold value t. The output of

the algorithm is a set of final endmembers, { }p

ii 1=e . Below,

we provide a step-by-step description of the classic PPI
algorithm:

1. Skewer generation. Produce a set of k randomly

generated unit vectors called “skewers”, { }k

jj 1=skewer .

2. Extreme projections. For each jskewer , all the data

sample vectors in F are projected onto jskewer via

dot products of jskewerf ⋅ to find sample vectors at

its extreme (maximum and minimum) projections, to
form an extrema set for the skewer jskewer denoted

by ()jextremaS skewer . Despite the fact that a different

lskewer generates a different extrema set

()lextremaS skewer , it is very likely that some sample

vectors may appear in more than one extrema set.
Define an indicator function of a set S, IS(f) by:

⎩
⎨
⎧

∉
∈

=
S

S
I S

f

f
f

if;0

if;1
)(and ∑= j SPPI jextrema

IN)()()(ff skewer ,

where ()fPPIN denotes the PPI score associated to the

sample pixel vector f of the input image F .
3. Endmember selection. Find the pixel vectors with

scores of ()fPPIN above t, and form a unique set of

endmembers { }p

ii 1=e by calculating the spectral angle

distance (SAD) [1] for all possible pixel vector pairs,
where the SAD is given by

[] []'',cos',SAD 1
ffffff ⋅= − .

In order to set parameter values for the PPI, the authors
recommend using as many random skewers as possible in
order to obtain optimal results. As a result, the PPI can
only guarantee to produce optimal results asymptotically
and its computational complexity is very high. According
to our experiments with the hyperspectral data set in Fig.
1, which comprises 614x512 pixels and 224 spectral

bands, the algorithm required 410=k skewers to find all

spectral endmembers present in the scene, and the whole
process took more than 50 minutes to project every data
sample vector of the input data into the 104 skewers in a
PC with AMD Athlon 2.6 GHz processor and 512 MB of
RAM [12]. This response time is unacceptable in most
remote sensing applications.

3. High-Performance Implementations

This section develops three HPC-based parallel
implementations for the PPI algorithm. The first one is a
massively parallel implementation designed for data
mining and information extraction from large data
archives, such as the AVIRIS data repository at NASA’s
Jet Propulsion Laboratory which contains of several
Terabytes of hyperspectral data. This implementation
assumes homogeneity in the parallel computing platform.
Quite opposite, the second implementation was
specifically designed for distributed environments

characterized by their heterogeneity, both in the
processing elements and communication links. Finally, we
also develop an FPGA-based implementation which is
intended for onboard, real-time data processing.

3.1. Cluster-Based Parallel Implementation

In this subsection, we describe a master-slave parallel
implementation of the PPI algorithm. To reduce code
redundancy and enhance reusability, our goal was to reuse
much of the code for the sequential algorithm in the
parallel implementation. For that purpose, we adopted a
spatial-domain decomposition approach that subdivides
the image cube into multiple blocks made up of entire
pixel vectors, and assigns one or more blocks to each
processing element. It should be noted that the PPI
algorithm described in Section 2 is mainly based on
projecting pixel vectors which are always treated as a
whole spectral signature. Therefore, a spectral-domain
partitioning scheme (which subdivides the whole multi-
band data into blocks made up of contiguous spectral
bands or sub-volumes, and assigns one or more sub-
volumes to each processing element) does not seem
appropriate in our application. This is because the latter
approach breaks the spectral identity of the data because
each pixel vector is split amongst several processing
element. A further reason that justifies the above decision
is that, in spectral-domain partitioning, the calculations
made for each hyperspectral pixel need to originate from
several processing elements, and thus require intensive
inter-processor communication [13]. Therefore, in our
proposed implementation, a master-worker spatial
domain-based decomposition paradigm is adopted, where
the master processor sends partial data to the workers and
coordinates their actions. Then, the master gathers the
partial results provided by the workers and produces a
final result. A description of the homogeneous cluster-
based implementation of PPI is given below:
1. Data partitioning. Produce a set of L spatial-domain

homogeneous partitions of F and scatter all partitions
by indicating all partial data structure elements which
are to be accessed and sent to each of the workers.

2. Skewer generation. Generate a set of k randomly

generated unit vectors called “skewers”, { }k

jj 1=skewer ,

and broadcast the entire set of skewers to the workers.
3. Extreme projections. For each jskewer , project all the

data sample vectors at each local partition l onto

jskewer to find sample vectors at its extreme

projections, and form an extrema set for jskewer

denoted by)(
)(

j
lS skewer . Calculate

∑=
j

l
l

ll
PPI jSI

N)()()(
)(

)()(

)(
f

skewer
f for each)(lf at the

local partition using equation (1). Select those pixels

with tN ll
PPI

>)()()(f and send them to the master node.

4. Endmember selection. The master gathers all the
endmember sets provided by the workers and forms a

unique set { }p

ii 1=e by calculating the SAD for all

possible pixel vector pairs in parallel.
It should be noted that the proposed parallel algorithm

has been implemented in the C++ programming language,
using calls to message passing interface (MPI). We
emphasize that, in order to implement step one of the
parallel algorithm, we resorted to MPI derived datatypes
to directly scatter hyperspectral data structures, which may
be stored non-contiguously in memory, in a single
communication step. As a result, we avoid creating all
partial data structures on the root node (thus making a
better use of memory resources and compute power).

3.2. Implementation on Heterogeneous Networks

Before introducing our implementation, we first
formulate a general optimization problem in the context of
fully heterogeneous systems (composed of different-speed
processors that communicate through links at different
capacities). Such a computing platform can be modeled as
a complete graph G , where each node models a

computing resource ip weighted by its relative cycle-time

iw . Each edge models a communication link weighted by

its relative capacity, where ijc denotes the maximum

capacity of the slowest link in the path of physical

communication links from ip to jp . We also assume that

the system has symmetric costs: jiij cc = , and denote by

W the workload to be performed by the PPI algorithm.

Processor ip will accomplish a share of Wi ⋅ of the

workload, where 0≥i for Li ≤≤1 and ∑ = =L

i i1
1. With

the above assumptions in mind, an abstract view of our
problem can be simply stated in the form of a master-
worker architecture, much like the homogeneous
implementation described in the previous subsection.
However, in order for such parallel algorithm to be also
effective in fully heterogeneous systems, the master
program must be modified to produce a set of L spatial-
domain heterogeneous partitions of F in step 1. Below,
we provide a description of such step in the
implementation for heterogeneous platforms:
1. Generate necessary system information, i.e., number

of available processors L, each processor’s { }L
iip

1=

identification number, and their cycle-times { }L
iiw

1= .

2. Set
()

()⎥
⎥

⎦

⎥

⎢
⎢

⎣

⎢
=

∑ =
L

i i

i
i

w

wL

1
1

 for all { }Li ,,1 ⋅⋅⋅∈ .

3. For ∑ == L

i im
1

 to W , find { }Lk ,,1 ⋅⋅⋅∈ such that

() (){ }L
iiikk ww

1
1min1 =+⋅=+⋅ and set 1+= kk .

4. 4. Use { }L
ii 1= to obtain a set of L spatial-domain

heterogeneous partitions of F , so that the spectral
channels corresponding to the same pixel vector are
never stored in different partitions.

A homogeneous version of the algorithm above can be
simply obtained by replacing step 3 with ii wL= for all

{ }Li ,,...1∈ , where iw is a constant cycle-time for all

processors in the homogeneous system. This version was
used to produce the set of L spatial-domain homogeneous
partitions of F used by the standard parallel
implementation of the PPI described in the previous
subsection.

3.3. FPGA Implementation

Our hardware-based strategy is aimed at enhancing
replicability and reusability of slices in FPGA devices
through the utilization of systolic array design [14]. One of
the main advantages of systolic array-based
implementations is that they are able to provide a
systematic procedure for system design that allows for the
derivation of a well defined processing element-based
structure and an interconnection pattern which can then be
easily ported to real hardware configurations. Using this
procedure, we can also calculate the data dependences
prior to the design, and in a very straightforward manner.
We intend to maximize computational power of the
hardware and minimize the cost of communications. These
goals are particularly relevant in our specific application,
where hundreds of data values will be handled for each
intermediate result, a fact that may introduce problems
related with limited resource availability and inefficiencies
in hardware replication and reusability. After several
empirical experiments using real data sets, we have opted
for the configuration illustrated in Fig. 2.

In our proposed design, local results remain static at
each processing element, while pixel vectors are input to
the systolic array from top to bottom and skewer vectors
are fed to the systolic array from left to right. The
processing nodes labeled as “dot” in Fig. 2 perform the
individual products for the skewer projections, while the
nodes labeled as “max” and “min” respectively compute
the maxima and minima projections after the dot products
have been completed (asterisks represent delays). In Fig.

2, ()i
js denotes the reflectance value of the j-th band of the

i-th skewer, with { }ki ,,...1∈ and { }bj ,,...1∈ , where b is the

number of bands. Similarly, ()m
jf denotes the reflectance

value of the j-th band of the m-th pixel, with { }pm ,,...1∈ ,

where p is the number of pixels.

The synthesis was performed using Handel-C, a design
and prototyping language that allows using a pseudo-C
programming style [15]. The implementation was
compiled and transformed into an EDIF specification
automatically by using the DK3.1 software package [16].
We also used other tools such as Xilinx ISE 6.1i to carry
out automatic place and route (PAR), and to adapt the
final steps of the hardware implementation to the Virtex-II
XC2V6000-6 FPGA used in experiments.

()1

1s()1

2s
()1

bs ...

*
()2

1s
()2

2s...()2

bs

**
()3

1s
()3

2s...()3

bs

()k

s1

()k
s2...()k

bs

()p

1f
()p

2f...()p

bf
**

()3

1f
()3

2f...()3fb*
()2

1f()2

2f...()2fb

()1

1f()1

2f
()1fb
...

dot dot dot

dot dot dot

dot dot dot

dot

dot

dot

dot dot dot dot

min

min

min

min

max max max max

∞

0

()1

1s
()1

2s
()1

bs ... ()1

1s
()1

2s
()1

bs ...

*
()2

1s
()2

2s...()2

bs *
()2

1s
()2

2s...()2

bs

**
()3

1s
()3

2s...()3

bs
**

()3

1s
()3

2s...()3

bs

()k

s1

()k
s2...()k

bs

()k
s1

()k
s2...()k

bs

()p

1f
()p

2f...()p

bf

()p

1f
()p

2f...()p

bf
**

()3

1f
()3

2f...()3fb **
()3

1f
()3

2f...()3fb*
()2

1f()2

2f...()2fb *
()2

1f()2

2f...()2fb

()1

1f()1

2f
()1fb
... ()1

1f()1

2f
()1fb
...

dot dot dot

dot dot dot

dot dot dot

dot

dot

dot

dot dot dot dot

min

min

min

min

max max max max

∞

0

Figure 2. Systolic array design for the proposed FPGA
implementation of the PPI algorithm.

4. Experimental Results

This section provides an assessment of the
effectiveness of the parallel algorithms described in
section 3. Before describing our study on performance
analysis, we first describe the HPC computing
architectures used in this work. Then, a detailed survey on
algorithm performance in a real application is provided,
along with a discussion on the advantages and
disadvantages of each particular approach.

4.1. Parallel Computing Architectures

The first HPC system considered in experiments is
Thunderhead, a 512-processor homogeneous Beowulf
cluster located at NASA’s Goddard Space Flight Center
(GSFC) in Maryland [17]. It is composed of 256 dual 2.4
GHz Intel Xeon nodes, each with 1 GB of memory and 80
GB of main memory. The total peak performance of the
system is 2457.6 GFlops. Along with the 512-processor
computer core, Thunderhead has several nodes attached to
the core with 2 Ghz optical fibre Myrinet. The operating
system used at the time of experiments was Linux RedHat
8.0, and MPICH was the message-passing library used.

Despite the computational power offered by massively
parallel systems such as Thunderhead, a current design
trend at GSFC and other NASA centers is to exploit low-
cost heterogeneous networks of workstations made up of
commodity components, able to operate in distributed
environments. To explore the performance of the proposed
parallel algorithms in heterogeneous networks, we have
considered two networks of workstations in this work. The
first one is a small-scale, distributed heterogeneous
network of 16 different SGI, Solaris and Linux
workstations, and four communication segments at
University of Maryland. Table 1 shows the cycle-times of

the heterogeneous processors, where processors { }4
1=iip

are attached to communication segment 1s , processors

{ }8
5=iip communicate through 2s , processors { }10

9=iip are

interconnected via 3s , and processors { }16
11=iip share the

communication segment labelled as 4s . For illustrative

purposes, Table 2 also shows the capacity of all point-to-
point communications, expressed as the time in
milliseconds to transfer a one-megabit message between
each processor pair ()ji pp , in the heterogeneous system.

The communication network of the heterogeneous
platform consists of four relatively fast homogeneous
communication segments interconnected by three slower

communication links with capacities () 05.291,2 =c ,
() 31.482,3 =c , () 14.583,4 =c in milliseconds, respectively.

To evaluate the performance of parallel algorithms in
the heterogeneous network above, we resort to a recently
proposed framework [18] based on the utilization of a
homogeneous network equivalent to the heterogeneous
one under the following principles: 1) both environments
have the same number of processors; 2) the speed of each
processor in the homogeneous environment is equal to the
average speed of processors in the heterogeneous
environment; and 3) the aggregate communication
characteristics of the homogeneous environment are the
same as those of the heterogeneous environment. In this
work, we have considered a homogeneous network
(equivalent to the heterogeneous one) composed of 16
identical Linux workstations with processor cycle-time of

0131.0=w seconds per megaflop, interconnected via a

homogeneous network with capacity 90.77=c

milliseconds.
Finally, our proposed hardware-based systolic array

design was implemented on a Virtex-II XC2V6000-6
FPGA of the Celoxica’s ADMXRC2 board. It contains
33,792 slices, 144 Select RAM Blocks and 144 multipliers
(of 18-bit x 18-bit). Concerning the timing performances,
we decided to pack the input/output registers of our
implementation into the input/output blocks (IOB) in order
to try and reach the achievable performance.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

0.0072 0.0102 0.0206 0.0072 0.0102 0.0058 0.0072 0.0102 0.0072 0.0451 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131

Table 1. Processor cycle-times (in seconds per megaflop) for the heterogeneous cluster.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

p1
 19.26 19.26 19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

p2
19.26 19.26 19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

p3
19.26 19.26 19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

p4
19.26 19.26 19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

p5
48.31 48.31 48.31 48.31 17.65 17.65 17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

p6
48.31 48.31 48.31 48.31 17.65 17.65 17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

p7
48.31 48.31 48.31 48.31 17.65 17.65 17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

p8
48.31 48.31 48.31 48.31 17.65 17.65 17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

p9
96.62 96.62 96.62 96.62 48.31 48.31 48.31 48.31 16.38 58.14 58.14 58.14 58.14 58.14 58.14

p10
96.62 96.62 96.62 96.62 48.31 48.31 48.31 48.31 16.38 58.14 58.14 58.14 58.14 58.14 58.14

p11
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05

p12
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05

p13
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05

p14
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05

p15
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05

p16
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05

Table 2. Capacity of links (measured in the time in miliseconds to transfer a one-megabit message) for the heterogeneous network.

4.2. Performance Evaluation

The parallel implementations in section 3 were applied
to a real hyperspectral scene collected by an AVIRIS
flight over the Cuprite mining district in Nevada, and
consists of 614x512 pixels and 224 bands. The site is well
understood mineralogically, and has several exposed
minerals of interest. Since the data are available online
from http://aviris.jpl.nasa.gov/html/aviris.freedata.html,
people interested in the proposed parallel algorithms can
reproduce our results. An experiment-based cross-
examination of endmember extraction accuracy was first
conducted to assess the spectral similarity scores obtained
after comparing five ground-truth library spectra collected
on the field with the corresponding endmembers extracted
by the three parallel implementations of the PPI algorithm.
This experiment revealed that all the considered parallel
implementations produced exactly the same results as the
original PPI implemented in Kodak’s Research Systems
ENVI 4.0, with spectral similarity scores to ground-truth
which were very satisfactory in all cases. It is worth noting
that the PPI produced the same final set of experiments
when the number of randomly generated skewers was set

to k = 104 or above (values of k = 103, 105 and 106 were

also tested). Based on the above simple experiments, we
empirically set the cutoff threshold parameter t to the
mean of NPPI scores obtained after k = 1000 iterations.

These values are in agreement with those used before [11].

0

32

64

96

128

160

192

224

256

0 32 64 96 128 160 192 224 256

Number of CPUs

S
p
e
e
d
u
p

Homogeneous PPI

Heterogeneous PPI

Linear

Figure 3. Scalability of the homogeneous and
heterogeneous PPI implementation on Thunderhead.

To investigate the parallel properties of the parallel
algorithms described in sections 3.1 and 3.2, we first
tested the performance of the heterogeneous PPI algorithm
in section 3.2 and that of its homogeneous version (see
section 3.1) on NASA’s GSFC Thunderhead Beowulf
cluster. Fig. 3 plots the speedups achieved by multi-
processor runs of the homogeneous and heterogeneous
parallel version of the PPI algorithm over the
corresponding single-processor runs of each considered
algorithm on Thunderhead. As Fig. 3 shows, the
scalability of the heterogeneous algorithm was esentially

the same as that evidenced by its homogeneous version.
For illustrative purposes, Table 3 also reports the
measured execution times by the tested algorithms on
Thunderhead, using different numbers of processors.
Results reveal that the heterogeneous implementation of
PPI can effectively adapt to a massively parallel
homogeneous environment and to produce a response in a
few seconds using a moderate number of processors.

Number of CPUs Homogeneous PPI Heterogeneous PPI

1 2745 2745
4 1012 1072

16 228 273
36 94 106
64 49 53
100 30 32
144 21 22
196 16 17
256 12 13

Table 3. Execution times (seconds) for the homogeneous
and heterogeneous PPI implementations on Thunderhead.

In order to see how the homogeneous and
heterogeneous implementations perform on a fully
heterogeneous network of workstations, we also tested
their performance by timing the parallel programs using
the heterogeneous network of workstations and its
equivalent distributed homogeneous network. Table 4
shows the execution time of the parallel algorithms on the
homogeneous and heterogeneous networks. For the sake
of comparison, the table also shows the speedup of the
heterogeneous algorithm over its respective homogeneous
version on the same heterogeneous platform, where the
speedup was simply calculated as the execution time of
the homogeneous algorithm divided by the execution time
of the heterogeneous algorithm [18]. Similarly, Table 4
shows the speedup of the homogeneous algorithm over its
respective heterogeneous version on the same
homogeneous platform, with the speedup calculated as the
execution time of the heterogeneous algorithm divided by
the execution time of the homogeneous one.

Heterogeneous Homogeneous

Algorithm Time Speedup Time Speedup

Heterogeneous PPI 295 6.66 288 -
Homogeneous PPI 1967 - 271 1.07

Table 4. Execution times (seconds) and speedups for the
parallel implementations in the heterogeneous and
homogeneous network.

 As expected, the heterogeneous algorithm was able to
adapt much better to the heterogeneous environment than
the homogeneous algorithm. Table 4 also reveals that the
performance of the heterogeneous algorithm was almost
the same as that evidenced by the homogeneous one when
they were run in the same, homogeneous environment.

This confirms an introspection which was already
observed in experiments using the Beowulf cluster: that
the heterogeneous PPI was able to adapt efficiently to both
homogeneous and heterogeneous environments.
 In order to measure load balance, Table 5 shows the
imbalance scores achieved by the considered algorithms
on both the heterogeneous and homogeneous network. The
imbalance is defined as minmax RRD /= , where maxR and

minR are the maxima and minima processor run times,

respectively. Therefore, perfect balance is achieved when
1=D . In the table, we display the imbalance considering

all processors, AllD , and also considering all processors

but the root, MinusD . In all cases, load balance was better

when the root processor was not included, which is mainly
due to sequential computations at the root node (e.g., the
final endmember selection step). However, it is clear from
Table 5 that the homogeneous algorithm executed on the
heterogeneous network provided the highest values of

AllD and MinusD (and hence the highest imbalance), while

the heterogeneous algorithm always resulted in values of

AllD (and, in particular, of MinusD) which were close to 1,

regardless of the platform where it was run.

Heterogeneous Homogeneous

Algorithm AllD MinusD AllD MinusD

Heterogeneous PPI 1.12 1.03 1.15 1.05
Homogeneous PPI 1.86 1.27 1.13 1.02

Table 5. Load-balancing rates in the heterogeneous and
homogeneous network.

Although the idea of mounting clusters and networks of
processing elements aboard airborne and satellite
hyperspectral imaging facilities has been explored in the
past, the number of processing elements in such
experiments has been very limited thus far, due to payload
requirements in most remote sensing missions. For
instance, a low-cost, portable Myrinet cluster of 16
processors (with similar specifications as those of our
homogeneous network of workstations above) was
recently developed at NASA’s GSFC with cost of 3000$.
Unfortunately, it could still not facilitate real-time
performance. The cost of a Xilinx Virtex-II XC2V6000-6
FPGA used for experiments in this work is currently only
slightly higher than that of the portable Myrinet cluster
mentioned above.

In order to calibrate the usefulness of our hardware-
based implementation, Table 6 shows a summary of
resource utilization by our systolic array-based
implementation of the PPI algorithm on the considered
Xilinx FPGA, which was able to provide a response in
eight seconds. Since the FPGA used in experiments has a
total of 33,792 slices available, the results addressed in
Table 6 indicate that there is still room in the FPGA for

implementation of additional algorithms. Further
experiments are still required, however, in order to
optimize our FPGA-based design to be able to process full
AVIRIS data sets in near real-time.

Number

of gates

Number of

slices

Percentage of

slices used

Maximum operation

frequency (MHz)

526944 12418 36% 18.032

Table 6. Summary of resource utilization for the FPGA
implementation of the PPI algorithm.

5. Conclusions and Future Work
This paper has examined different HPC-based

strategies for remotely sensed hyperspectral imaging.
Through the detailed analysis of the PPI, a well-known
hyperspectral analysis method available in commercial
software, we have explored different techniques to
increase computational performance of the algorithm
(which can take up to several hours of computation to
complete its calculations in last-generation desktop
computers). Two of the considered strategies, i.e.,
commodity cluster-based computing and distributed
computing in heterogeneous networks of workstations,
seem particularly appropriate for information extraction
from very large hyperspectral data archives. The
scalability, code reusability and load balance achieved by
the proposed implementations in such low-cost systems
offers an unprecedented opportunity to explore
methodologies in other fields (e.g., data mining) that
previously looked to be too computationally intensive for
practical applications. To address the (near) real-time
computational needs introduced by many remote sensing
applications, we have also developed a systolic array-
based FPGA implementation of the PPI. Experimental
results demonstrate that our hardware version of the PPI
makes an appropriate use of computing resources in the
FPGA, and further provides a response in near real-time
which is believed to be acceptable in most remote sensing
applications. Further, the reconfigurability of FPGA
systems opens many innovative perspectives from an
application point of view, including the appealing
possibility of being able to adaptively select one out of a
pool of available hyperspectral data processing algorithms
(which could be applied on the fly aboard the
airborne/satellite platform, or even from a control station
on Earth). Although the experimental results presented in
this paper are very encouraging, further work is still
needed to arrive to optimal parallel design and
implementations for the PPI and other algorithms.

References

[1] C.-I Chang, Hyperspectral imaging: Techniques for
spectral detection and classification, Kluwer: NY, 2003.

[2] R. O. Green et al., “Imaging spectroscopy and the
airborne visible/infrared imaging spectrometer AVIRIS,”
Remote Sens. Environment, vol. 65, pp. 227–248, 1998.

[3] L. Chen, I. Fujishiro, K. Nakajima, “Optimizing parallel
performance of unstructured volume rendering for the
Earth Simulator,” Parallel Computing, vol. 29, pp. 355–
371, 2003.

[4] G. Aloisio and M. Cafaro, “A dynamic earth observation
system,” Parallel Computing, vol. 29, pp. 1357–1362,
2003.

[5] P. Wang, K. Y. Liu, T. Cwik and R.O. Green,
“MODTRAN on supercomputers and parallel
computers,” Parallel Computing, vol. 28, pp. 53–64,
2002.

[6] T. Achalakul and S. Taylor, “A distributed spectral-
screening PCT algorithm,” Journal of Parallel and
Distributed Computing, vol. 63, pp. 373-384, 2003.

[7] A. Plaza, D. Valencia, J. Plaza and P. Martínez,
“Commodity cluster-based parallel processing of
hyperspectral imagery,” Journal of Parallel and
Distributed Computing, to appear in 2006.

[8] J.W. Boardman, F.A. Kruse and R.O. Green, “Mapping
target signatures via partial unmixing of AVIRIS data,”
in: JPL Earth Science Workshop, Pasadena, CA, 1995.

[9] Research Systems, Inc., ENVI User’s Guide. Boulder,
CO: Research Systems, Inc., 2001.

[10] N. Keshava and J.F. Mustard, “Spectral unmixing,”
IEEE Signal Processing Magazine, vol. 19, pp. 44–57,
2002.

[11] A. Plaza, P. Martínez, R. Pérez and J. Plaza, “A
quantitative and comparative analysis of endmember
extraction algorithms from hyperspectral data,” IEEE

Trans. Geosci. Remote Sensing, vol. 42, pp. 650–663,
2004.

[12] A. Plaza, P. Martinez, R.M. Perez and J. Plaza,
“Spatial/spectral endmember extraction by
multidimensional morphology,” IEEE Trans. Geosci.
Remote Sensing,, vol. 40, pp. 2025–2041, 2002.

[13] D. Valencia, A. Plaza, P. Martínez and J. Plaza, “On the
use of cluster computing architectures for
implementation of hyperspectral analysis algorithms,”
in: Proceedings of 10

th
 IEEE Symp. Computers and

Communications, Cartagena, Spain, pp. 995–1000, 2005.
[14] M. Valero-García, J. J. Navarro, J. Llabería, M. Valero

and T. Lang, “A method for implementation of one-
dimensional systolic algorithms with data contraflow
using pipelined functional units,” Journal of VLSI Signal
Processing, vol. 4, pp. 7-25, 1992.

[15] Celoxica Ltd., Handel-C Reference Manual, 2003.
[16] Celoxica Ltd., DK Design Suite User Manual, 2003.
[17] J. Dorband, J. Palencia and U. Ranawake, “Commodity

computing clusters at Goddard Space Flight Center,”
Journal of Space Communication, vol. 1, 2003.

[18] A. Lastovetsky and R. Reddy, “On performance analysis
of heterogeneous parallel algorithms,” Parallel
Computing, vol. 30, pp. 1195–1216, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

