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Abstract 

The incorporation of last-generation sensors to 
airborne and satellite platforms is currently producing a 
nearly continual stream of high-dimensional data, and this 
explosion in the amount of collected information has 
rapidly created new processing challenges. For instance, 
hyperspectral imaging is a new technique in remote 
sensing that generates hundreds of spectral bands at 
different wavelength channels for the same area on the 
surface of the Earth. The price paid for such a wealth of 
spectral information available from latest-generation 
sensors is the enormous amounts of data that they 
generate. In recent years, several efforts have been 
directed towards the incorporation of high-performance 
computing (HPC) models in remote sensing missions. This 
paper explores three HPC-based paradigms for efficient 
information extraction from remote sensing data using the 
Pixel Purity Index (PPI) algorithm (available from the 
popular Kodak’s Research Systems ENVI software) as a 
case study for algorithm optimization. The three 
considered approaches are: 1) Commodity cluster-based 
parallel computing; 2) Distributed computing using 
heterogeneous networks of workstations; and 3) FPGA-
based hardware implementations. Combined, these parts 
deliver an excellent snapshot of the state-of-the-art in 
those areas, and offer a thoughtful perspective on the 
potential and emerging challenges of adapting HPC 
models to remote sensing problems. 

1. Introduction 

Hyperspectral imaging (also known as imaging 
spectroscopy) is a new technique that has gained 
tremendous popularity in many research areas, most 
notably, in remotely sensed satellite imaging and aerial 
reconnaissance [1]. Recent advances in sensor technology 
have led to the development of so-called hyperspectral 
instruments, which are capable of collecting hundreds of 

images corresponding to different wavelength channels for 
the same area on the surface of the Earth (see Fig. 1). In 
particular, NASA is continuously gathering imagery data 
with hyperspectral Earth-observing sensors such as Jet 
Propulsion Laboratory’s Airborne Visible-Infrared 
Imaging Spectrometer (AVIRIS) [2], or the Hyperion 
imager aboard Earth Observing-1 (EO-1) spacecraft. The 
incorporation of hyperspectral sensors on airborne/satellite 
platforms is currently producing a nearly continual stream 
of high-dimensional data (it is estimated that NASA 
collects and sends to Earth more than 850 Gb of 
hyperspectral data every day). 

Figure 1. The concept of hyperspectral imaging 

The development of computationally efficient 
techniques for transforming the massive amount of 
hyperspectral data collected on a daily basis into scientific 
understanding is critical for space-based Earth science and 
planetary exploration. In particular, the wealth of spatial 
and spectral information provided by last-generation 
hyperspectral instruments has opened ground-breaking 
perspectives in many applications, including 
environmental modeling and assessment, target detection 
for military and defense/security purposes, urban planning 
and management studies, risk/hazard prevention and 

1-4244-0054-6/06/$20.00  ©2006 IEEE



response including wild land fire tracking, biological 
threat detection, monitoring of oil spills and other types of 
chemical contamination, etc. Most of the above-cited 
applications require analysis algorithms able to provide a 
response in real- or near real-time.  

In recent years, several efforts have been directed 
towards the incorporation of high-performance computing 
(HPC) models in remote sensing applications [3-5]. 
Despite the growing interest in the development of HPC 
techniques for hyperspectral imaging, only a few research 
efforts devoted to the design of parallel implementations 
currently exist in the open literature [6,7]. It should be 
noted that several existing parallel techniques are subject 
to non-disclosure restrictions, mainly due to their use in 
military and defense applications. However, with the 
recent explosion in the amount of hyperspectral imagery, 
parallel processing is expected to become a requirement in 
virtually every remote sensing application. As a result, this 
paper takes a necessary first step toward the comparison of 
different HPC techniques and strategies for parallel 
hyperspectral image analysis. 

As a case study, this paper focuses on the pixel purity 
index (PPI) algorithm, one of the most widely used 
standard algorithms in the hyperspectral imaging 
community. The algorithm was originally developed by 
Boardman et al. [8], and was soon incorporated into 
Kodak’s Research Systems ENVI [9], a world-class 
commercial software package for remote sensing. Due to 
the algorithm’s propriety and limited published results, its 
detailed implementation has never been made available in 
the public domain. This paper presents our experience 
with the PPI algorithm and investigates several strategies 
for its implementation in parallel. The description of 
several techniques and strategies for parallelization of the 
PPI algorithm provides an excellent snapshot of the state-
of-the-art of the application of HPC models in remote 
sensing applications, and an in-depth study of a well-
known commercial algorithm that will appeal to both 
practitioners and developers alike, thus providing a 
thoughtful perspective on the potential of applying HPC 
paradigms in remote sensing missions. 

The paper is structured as follows. Section 2 reviews 
the PPI and discusses several issues encountered in its 
implementation. Section 3 develops several high-
performance implementations, including: 1) a commodity 
cluster-based parallel implementation; 2) a distributed 
implementation on heterogeneous networks of 
workstations; and 3) a hardware-based implementation 
using FPGAs. Section 4 provides an experimental 
comparison of the proposed parallel implementations. 
Here, we use a massively parallel Beowulf cluster at 
NASA’s Goddard Space Flight Center, a heterogeneous 
network of workstations at University of Maryland, and a 
Xilinx Virtex-II FPGA device. Finally, section 5 
concludes with some remarks and future research lines. 

2. Pixel Purity Index Algorithm 

The underlying assumption under the PPI algorithm is 
that the spectral signature associated to each pixel vector 
(see Fig. 1) measures the response of multiple underlying 
materials at each site. For instance, it is very likely that the 
pixel vector shown in Fig. 1 would actually contain a 
mixture of different substances (e.g., different minerals, 
different types of soils, etc.). This situation, often referred 
to as the “mixture problem” in hyperspectral analysis 
terminology [10], is one of the most crucial and 
distinguishing properties of spectroscopic analysis. To 
deal with this problem, spectral unmixing techniques have 
been proposed as a procedure in which the measured 
spectrum of a mixed pixel is decomposed into a collection 
of spectrally pure constituent spectra, called endmembers 
in the literature [11], and a set of correspondent fractions, 
or abundances, that indicate the proportion of each 
endmember present in the mixed pixel. 

The PPI algorithm falls into the category of endmember 
extraction algorithm [8]. It was designed to search for a set 
of vertices of a convex hull in a given data set that are 
supposed to represent the purest signatures present in the 
data. The algorithm proceeds by generating a large 
number of random, N-dimensional (N-D) unit vectors 
called “skewers” through the dataset. Every data point is 
projected onto each skewer, and the data points that 
correspond to extrema in the direction of a skewer are 
identified and placed on a list. As more skewers are 
generated, the list grows, and the number of times a given 
pixel is placed on this list is also tallied. The pixels with 
the highest tallies are considered the final endmembers, 
where the number of endmembers to be extracted by the 
algorithm, p, is set in advance by the user. Two additional 
parameters are input to the algorithm: k, the number of 
random skewers to be generated during the process, and t,
a cut-off threshold value that is used to select as final 
endmembers only those pixels that have been selected as 
extreme pixels at least t times throughout the PPI process. 
Although the algorithmic description of the PPI algorithm 
has never been made fully disclosed in the open literature, 
we provide below an outline of the algorithm which is 
based on limited published results and our own 
interpretation. All steps in the algorithm below have been 
verified via experiments using the PPI available in 
Research Systems ENVI version 4.0 and our own 
implementation, where both versions produced exactly the 
same results. The inputs to the algorithm are an N-D data 
cube, F , the number of endmembers to be extracted, p,
the number of skewers to be generated throughout the 
process, k, and a cut-off threshold value t. The output of 

the algorithm is a set of final endmembers, { }p

ii 1=e . Below, 

we provide a step-by-step description of the classic PPI 
algorithm:



1. Skewer generation. Produce a set of k randomly 

generated unit vectors called “skewers”, { }k

jj 1=skewer .

2. Extreme projections. For each jskewer , all the data 

sample vectors in F  are projected onto jskewer  via 

dot products of jskewerf ⋅  to find sample vectors at 

its extreme (maximum and minimum) projections, to 
form an extrema set for the skewer jskewer  denoted 

by ( )jextremaS skewer . Despite the fact that a different 

lskewer  generates a different extrema set 

( )lextremaS skewer , it is very likely that some sample 

vectors may appear in more than one extrema set. 
Define an indicator function of a set S, IS(f) by: 
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where ( )fPPIN  denotes the PPI score associated to the 

sample pixel vector f of the input image F .
3. Endmember selection. Find the pixel vectors with 

scores of ( )fPPIN  above t, and form a unique set of 

endmembers { }p

ii 1=e  by calculating the spectral angle 

distance (SAD) [1] for all possible pixel vector pairs, 
where the SAD is given by 

[ ] [ ]'',cos',SAD 1
ffffff ⋅= − .

In order to set parameter values for the PPI, the authors 
recommend using as many random skewers  as possible in 
order to obtain optimal results. As a result, the PPI can 
only guarantee to produce optimal results asymptotically 
and its computational complexity is very high. According 
to our experiments with the hyperspectral data set in Fig. 
1, which comprises 614x512 pixels and 224 spectral 

bands, the algorithm required 410=k  skewers to find all 

spectral endmembers present in the scene, and the whole 
process took more than 50 minutes to project every data 
sample vector of the input data into the 104 skewers in a 
PC with AMD Athlon 2.6 GHz processor and 512 MB of 
RAM [12]. This response time is unacceptable in most 
remote sensing applications. 

3. High-Performance Implementations 

This section develops three HPC-based parallel 
implementations for the PPI algorithm. The first one is a 
massively parallel implementation designed for data 
mining and information extraction from large data 
archives, such as the AVIRIS data repository at NASA’s 
Jet Propulsion Laboratory which contains of several 
Terabytes of hyperspectral data. This implementation 
assumes homogeneity in the parallel computing platform. 
Quite opposite, the second implementation was 
specifically designed for distributed environments 

characterized by their heterogeneity, both in the 
processing elements and communication links. Finally, we 
also develop an FPGA-based implementation which is 
intended for onboard, real-time data processing. 

3.1. Cluster-Based Parallel Implementation 

In this subsection, we describe a master-slave parallel 
implementation of the PPI algorithm. To reduce code 
redundancy and enhance reusability, our goal was to reuse 
much of the code for the sequential algorithm in the 
parallel implementation. For that purpose, we adopted a 
spatial-domain decomposition approach that subdivides 
the image cube into multiple blocks made up of entire 
pixel vectors, and assigns one or more blocks to each 
processing element. It should be noted that the PPI 
algorithm described in Section 2 is mainly based on 
projecting pixel vectors which are always treated as a 
whole spectral signature. Therefore, a spectral-domain 
partitioning scheme (which subdivides the whole multi-
band data into blocks made up of contiguous spectral 
bands or sub-volumes, and assigns one or more sub-
volumes to each processing element) does not seem 
appropriate in our application. This is because the latter 
approach breaks the spectral identity of the data because 
each pixel vector is split amongst several processing 
element. A further reason that justifies the above decision 
is that, in spectral-domain partitioning, the calculations 
made for each hyperspectral pixel need to originate from 
several processing elements, and thus require intensive 
inter-processor communication [13]. Therefore, in our 
proposed implementation, a master-worker spatial 
domain-based decomposition paradigm is adopted, where 
the master processor sends partial data to the workers and 
coordinates their actions. Then, the master gathers the 
partial results provided by the workers and produces a 
final result. A description of the homogeneous cluster-
based implementation of PPI is given below: 
1. Data partitioning. Produce a set of L spatial-domain 

homogeneous partitions of F  and scatter all partitions 
by indicating all partial data structure elements which 
are to be accessed and sent to each of the workers. 

2. Skewer generation. Generate a set of k randomly 

generated unit vectors called “skewers”, { }k

jj 1=skewer ,

and broadcast the entire set of skewers to the workers. 
3. Extreme projections. For each jskewer , project all the 

data sample vectors at each local partition l onto 

jskewer  to find sample vectors at its extreme 

projections, and form an extrema set for jskewer

denoted by )(
)(

j
lS skewer . Calculate  

∑=
j

l
l

ll
PPI jSI

N )()( )(
)(

)()(

)(
f

skewer
f  for each )(lf  at the 



local partition using equation (1). Select those pixels 

with tN ll
PPI

>)( )()( f  and send them to the master node. 

4. Endmember selection. The master gathers all the 
endmember sets provided by the workers and forms a 

unique set { }p

ii 1=e  by calculating the SAD for all 

possible pixel vector pairs in parallel. 
It should be noted that the proposed parallel algorithm 

has been implemented in the C++ programming language, 
using calls to message passing interface (MPI). We 
emphasize that, in order to implement step one of the 
parallel algorithm, we resorted to MPI derived datatypes 
to directly scatter hyperspectral data structures, which may 
be stored non-contiguously in memory, in a single 
communication step. As a result, we avoid creating all 
partial data structures on the root node (thus making a 
better use of memory resources and compute power). 

3.2. Implementation on Heterogeneous Networks 

Before introducing our implementation, we first 
formulate a general optimization problem in the context of 
fully heterogeneous systems (composed of different-speed 
processors that communicate through links at different 
capacities). Such a computing platform can be modeled as 
a complete graph G , where each node models a 

computing resource ip  weighted by its relative cycle-time 

iw . Each edge models a communication link weighted by 

its relative capacity, where ijc  denotes the maximum 

capacity of the slowest link in the path of physical 

communication links from ip  to jp . We also assume that 

the system has symmetric costs: jiij cc = , and denote by 

W  the workload to be performed by the PPI algorithm. 

Processor ip  will accomplish a share of Wi ⋅  of the 

workload, where 0≥i  for Li ≤≤1  and ∑ = =L

i i1
1. With 

the above assumptions in mind, an abstract view of our 
problem can be simply stated in the form of a master-
worker architecture, much like the homogeneous 
implementation described in the previous subsection. 
However, in order for such parallel algorithm to be also 
effective in fully heterogeneous systems, the master 
program must be modified to produce a set of L spatial-
domain heterogeneous partitions of F  in step 1. Below, 
we provide a description of such step in the 
implementation for heterogeneous platforms:  
1. Generate necessary system information, i.e., number 

of available processors L, each processor’s { }L
iip

1=

identification number, and their cycle-times { }L
iiw

1= .

2. Set 
( )

( )⎥
⎥

⎦

⎥

⎢
⎢

⎣

⎢
=

∑ =
L

i i

i
i

w

wL

1
1
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3. For ∑ == L
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1

 to W , find { }Lk ,,1 ⋅⋅⋅∈  such that 

( ) ( ){ }L
iiikk ww

1
1min1 =+⋅=+⋅  and set 1+= kk .

4. 4.  Use { }L
ii 1=  to obtain a set of L spatial-domain 

heterogeneous partitions of F , so that the spectral 
channels corresponding to the same pixel vector are 
never stored in different partitions. 

A homogeneous version of the algorithm above can be 
simply obtained by replacing step 3 with ii wL=  for all 

{ }Li ,,...1∈ , where iw  is a constant cycle-time for all 

processors in the homogeneous system. This version was 
used to produce the set of L spatial-domain homogeneous 
partitions of F  used by the standard parallel 
implementation of the PPI described in the previous 
subsection. 

3.3. FPGA Implementation 

Our hardware-based strategy is aimed at enhancing 
replicability and reusability of slices in FPGA devices 
through the utilization of systolic array design [14]. One of 
the main advantages of systolic array-based 
implementations is that they are able to provide a 
systematic procedure for system design that allows for the 
derivation of a well defined processing element-based 
structure and an interconnection pattern which can then be 
easily ported to real hardware configurations. Using this 
procedure, we can also calculate the data dependences 
prior to the design, and in a very straightforward manner. 
We intend to maximize computational power of the 
hardware and minimize the cost of communications. These 
goals are particularly relevant in our specific application, 
where hundreds of data values will be handled for each 
intermediate result, a fact that may introduce problems 
related with limited resource availability and inefficiencies 
in hardware replication and reusability. After several 
empirical experiments using real data sets, we have opted 
for the configuration illustrated in Fig. 2.  

In our proposed design, local results remain static at 
each processing element, while pixel vectors are input to 
the systolic array from top to bottom and skewer vectors 
are fed to the systolic array from left to right. The 
processing nodes labeled as “dot” in Fig. 2 perform the 
individual products for the skewer projections, while the 
nodes labeled as “max” and “min” respectively compute 
the maxima and minima projections after the dot products 
have been completed (asterisks represent delays). In Fig. 

2, ( )i
js  denotes the reflectance value of the j-th band of the 

i-th skewer, with { }ki ,,...1∈  and { }bj ,,...1∈ , where b is the 

number of bands. Similarly, ( )m
jf  denotes the reflectance 

value of the j-th band of the m-th pixel, with { }pm ,,...1∈ ,

where p is the number of pixels. 



The synthesis was performed using Handel-C, a design 
and prototyping language that allows using a pseudo-C 
programming style [15]. The implementation was 
compiled and transformed into an EDIF specification 
automatically by using the DK3.1 software package [16]. 
We also used other tools such as Xilinx ISE 6.1i to carry 
out automatic place and route (PAR), and to adapt the 
final steps of the hardware implementation to the Virtex-II 
XC2V6000-6 FPGA used in experiments. 
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Figure 2. Systolic array design for the proposed FPGA 
implementation of the PPI algorithm. 

4. Experimental Results 

This section provides an assessment of the 
effectiveness of the parallel algorithms described in 
section 3. Before describing our study on performance 
analysis, we first describe the HPC computing 
architectures used in this work. Then, a detailed survey on 
algorithm performance in a real application is provided, 
along with a discussion on the advantages and 
disadvantages of each particular approach. 

4.1. Parallel Computing Architectures 

The first HPC system considered in experiments is 
Thunderhead, a 512-processor homogeneous Beowulf 
cluster located at NASA’s Goddard Space Flight Center 
(GSFC) in Maryland [17]. It is composed of 256 dual 2.4 
GHz Intel Xeon nodes, each with 1 GB of memory and 80 
GB of main memory. The total peak performance of the 
system is 2457.6 GFlops. Along with the 512-processor 
computer core, Thunderhead has several nodes attached to 
the core with 2 Ghz optical fibre Myrinet. The operating 
system used at the time of experiments was Linux RedHat 
8.0, and MPICH was the message-passing library used. 

Despite the computational power offered by massively 
parallel systems such as Thunderhead, a current design 
trend at GSFC and other NASA centers is to exploit low-
cost heterogeneous networks of workstations made up of 
commodity components, able to operate in distributed 
environments. To explore the performance of the proposed 
parallel algorithms in heterogeneous networks, we have 
considered two networks of workstations in this work. The 
first one is a small-scale, distributed heterogeneous 
network of 16 different SGI, Solaris and Linux 
workstations, and four communication segments at 
University of Maryland. Table 1 shows the cycle-times of 

the heterogeneous processors, where processors { }4
1=iip

are attached to communication segment 1s , processors 

{ }8
5=iip  communicate through 2s , processors { }10

9=iip  are 

interconnected via 3s , and processors { }16
11=iip  share the 

communication segment labelled as 4s . For illustrative 

purposes, Table 2 also shows the capacity of all point-to-
point communications, expressed as the time in 
milliseconds to transfer a one-megabit message between 
each processor pair ( )ji pp ,  in the heterogeneous system. 

The communication network of the heterogeneous 
platform consists of four relatively fast homogeneous 
communication segments interconnected by three slower 

communication links with capacities ( ) 05.291,2 =c ,
( ) 31.482,3 =c , ( ) 14.583,4 =c  in milliseconds, respectively. 

To evaluate the performance of parallel algorithms in 
the heterogeneous network above, we resort to a recently 
proposed framework [18] based on the utilization of a 
homogeneous network equivalent to the heterogeneous 
one under the following principles: 1) both environments 
have the same number of processors; 2) the speed of each 
processor in the homogeneous environment is equal to the 
average speed of processors in the heterogeneous 
environment; and 3) the aggregate communication 
characteristics of the homogeneous environment are the 
same as those of the heterogeneous environment. In this 
work, we have considered a homogeneous network 
(equivalent to the heterogeneous one) composed of 16 
identical Linux workstations with processor cycle-time of 

0131.0=w  seconds per megaflop, interconnected via a 

homogeneous network with capacity 90.77=c

milliseconds. 
Finally, our proposed hardware-based systolic array 

design was implemented on a Virtex-II XC2V6000-6 
FPGA of the Celoxica’s ADMXRC2 board. It contains 
33,792 slices, 144 Select RAM Blocks and 144 multipliers 
(of 18-bit x 18-bit). Concerning the timing performances, 
we decided to pack the input/output registers of our 
implementation into the input/output blocks (IOB) in order 
to try and reach the achievable performance. 



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

0.0072 0.0102 0.0206 0.0072 0.0102 0.0058 0.0072 0.0102 0.0072 0.0451 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 

Table 1. Processor cycle-times (in seconds per megaflop) for the heterogeneous cluster. 

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

p1
 19.26 19.26 19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

p2
19.26  19.26 19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

p3
19.26 19.26  19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

p4
19.26 19.26 19.26  48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

p5
48.31 48.31 48.31 48.31  17.65 17.65 17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

p6
48.31 48.31 48.31 48.31 17.65  17.65 17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

p7
48.31 48.31 48.31 48.31 17.65 17.65  17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

p8
48.31 48.31 48.31 48.31 17.65 17.65 17.65  48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

p9
96.62 96.62 96.62 96.62 48.31 48.31 48.31 48.31  16.38 58.14 58.14 58.14 58.14 58.14 58.14 

p10
96.62 96.62 96.62 96.62 48.31 48.31 48.31 48.31 16.38  58.14 58.14 58.14 58.14 58.14 58.14 

p11
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14  14.05 14.05 14.05 14.05 14.05 

p12
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05  14.05 14.05 14.05 14.05 

p13
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05  14.05 14.05 14.05 

p14
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05  14.05 14.05 

p15
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05  14.05 

p16
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05 

Table 2. Capacity of links (measured in the time in miliseconds to transfer a one-megabit message) for the heterogeneous network. 

4.2. Performance Evaluation 

The parallel implementations in section 3 were applied 
to a real hyperspectral scene collected by an AVIRIS 
flight over the Cuprite mining district in Nevada, and 
consists of 614x512 pixels and 224 bands. The site is well 
understood mineralogically, and has several exposed 
minerals of interest. Since the data are available online 
from http://aviris.jpl.nasa.gov/html/aviris.freedata.html, 
people interested in the proposed parallel algorithms can 
reproduce our results. An experiment-based cross-
examination of endmember extraction accuracy was first 
conducted to assess the spectral similarity scores obtained 
after comparing five ground-truth library spectra collected 
on the field with the corresponding endmembers extracted 
by the three parallel implementations of the PPI algorithm. 
This experiment revealed that all the considered parallel 
implementations produced exactly the same results as the 
original PPI implemented in Kodak’s Research Systems 
ENVI 4.0, with spectral similarity scores to ground-truth 
which were very satisfactory in all cases. It is worth noting 
that the PPI produced the same final set of experiments 
when the number of randomly generated skewers was set 

to k = 104 or above (values of k = 103, 105 and 106 were 

also tested). Based on the above simple experiments, we 
empirically set the cutoff threshold parameter t to the 
mean of NPPI scores obtained after k = 1000 iterations. 

These values are in agreement with those used before [11]. 
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Figure 3. Scalability of the homogeneous and 
heterogeneous PPI implementation on Thunderhead. 

To investigate the parallel properties of the parallel 
algorithms described in sections 3.1 and 3.2, we first 
tested the performance of the heterogeneous PPI algorithm 
in section 3.2 and that of its homogeneous version (see 
section 3.1) on NASA’s GSFC Thunderhead Beowulf 
cluster. Fig. 3 plots the speedups achieved by multi-
processor runs of the homogeneous and heterogeneous 
parallel version of the PPI algorithm over the 
corresponding single-processor runs of each considered 
algorithm on Thunderhead. As Fig. 3 shows, the 
scalability of the heterogeneous algorithm was esentially 



the same as that evidenced by its homogeneous version. 
For illustrative purposes, Table 3 also reports the 
measured execution times by the tested algorithms on 
Thunderhead, using different numbers of processors. 
Results reveal that the heterogeneous implementation of 
PPI can effectively adapt to a massively parallel 
homogeneous environment and to produce a response in a 
few seconds using a moderate number of processors. 

Number of CPUs Homogeneous PPI Heterogeneous PPI 

1 2745 2745 
4 1012 1072 

16 228 273 
36 94 106 
64 49 53 
100 30 32 
144 21 22 
196 16 17 
256 12 13 

Table 3. Execution times (seconds) for the homogeneous 
and heterogeneous PPI implementations on Thunderhead. 

In order to see how the homogeneous and 
heterogeneous implementations perform on a fully 
heterogeneous network of workstations, we also tested 
their performance by timing the parallel programs using 
the heterogeneous network of workstations and its 
equivalent distributed homogeneous network. Table 4 
shows the execution time of the parallel algorithms on the 
homogeneous and heterogeneous networks. For the sake 
of comparison, the table also shows the speedup of the 
heterogeneous algorithm over its respective homogeneous 
version on the same heterogeneous platform, where the 
speedup was simply calculated as the execution time of 
the homogeneous algorithm divided by the execution time 
of the heterogeneous algorithm [18]. Similarly, Table 4 
shows the speedup of the homogeneous algorithm over its 
respective heterogeneous version on the same 
homogeneous platform, with the speedup calculated as the 
execution time of the heterogeneous algorithm divided by 
the execution time of the homogeneous one.  

Heterogeneous  Homogeneous  

Algorithm Time Speedup Time Speedup 

Heterogeneous PPI 295 6.66 288 - 
Homogeneous PPI 1967 - 271 1.07 

Table 4. Execution times (seconds) and speedups for the 
parallel implementations in the heterogeneous and 
homogeneous network. 

 As expected, the heterogeneous algorithm was able to 
adapt much better to the heterogeneous environment than 
the homogeneous algorithm. Table 4 also reveals that the 
performance of the heterogeneous algorithm was almost 
the same as that evidenced by the homogeneous one when 
they were run in the same, homogeneous environment. 

This confirms an introspection which was already 
observed in experiments using the Beowulf cluster: that 
the heterogeneous PPI was able to adapt efficiently to both 
homogeneous and heterogeneous environments.  
 In order to measure load balance, Table 5 shows the 
imbalance scores achieved by the considered algorithms 
on both the heterogeneous and homogeneous network. The 
imbalance is defined as minmax RRD /= , where maxR  and 

minR  are the maxima and minima processor run times, 

respectively. Therefore, perfect balance is achieved when 
1=D . In the table, we display the imbalance considering 

all processors, AllD , and also considering all processors 

but the root, MinusD . In all cases, load balance was better 

when the root processor was not included, which is mainly 
due to sequential computations at the root node (e.g., the 
final endmember selection step). However, it is clear from 
Table 5 that the homogeneous algorithm executed on the 
heterogeneous network provided the highest values of 

AllD  and MinusD  (and hence the highest imbalance), while 

the heterogeneous algorithm always resulted in values of 

AllD  (and, in particular, of MinusD ) which were close to 1, 

regardless of the platform where it was run. 

Heterogeneous  Homogeneous  

Algorithm AllD MinusD AllD MinusD

Heterogeneous PPI 1.12 1.03 1.15 1.05 
Homogeneous PPI 1.86 1.27 1.13 1.02 

Table 5. Load-balancing rates in the heterogeneous and 
homogeneous network. 

Although the idea of mounting clusters and networks of 
processing elements aboard airborne and satellite 
hyperspectral imaging facilities has been explored in the 
past, the number of processing elements in such 
experiments has been very limited thus far, due to payload 
requirements in most remote sensing missions. For 
instance, a low-cost, portable Myrinet cluster of 16 
processors (with similar specifications as those of our 
homogeneous network of workstations above) was 
recently developed at NASA’s GSFC with cost of 3000$. 
Unfortunately, it could still not facilitate real-time 
performance. The cost of a Xilinx Virtex-II XC2V6000-6 
FPGA used for experiments in this work is currently only 
slightly higher than that of the portable Myrinet cluster 
mentioned above. 

In order to calibrate the usefulness of our hardware-
based implementation, Table 6 shows a summary of 
resource utilization by our systolic array-based 
implementation of the PPI algorithm on the considered 
Xilinx FPGA, which was able to provide a response in 
eight seconds. Since the FPGA used in experiments has a 
total of 33,792 slices available, the results addressed in 
Table 6 indicate that there is still room in the FPGA for 



implementation of additional algorithms. Further 
experiments are still required, however, in order to 
optimize our FPGA-based design to be able to process full 
AVIRIS data sets in near real-time. 

Number 

of gates 

Number of 

slices 

Percentage of 

slices used 

Maximum operation 

frequency (MHz) 

526944 12418 36% 18.032 

Table 6. Summary of resource utilization for the FPGA 
implementation of the PPI algorithm. 

5. Conclusions and Future Work 
This paper has examined different HPC-based 

strategies for remotely sensed hyperspectral imaging. 
Through the detailed analysis of the PPI, a well-known 
hyperspectral analysis method available in commercial 
software, we have explored different techniques to 
increase computational performance of the algorithm 
(which can take up to several hours of computation to 
complete its calculations in last-generation desktop 
computers). Two of the considered strategies, i.e., 
commodity cluster-based computing and distributed 
computing in heterogeneous networks of workstations, 
seem particularly appropriate for information extraction 
from very large hyperspectral data archives. The 
scalability, code reusability and load balance achieved by 
the proposed implementations in such low-cost systems 
offers an unprecedented opportunity to explore 
methodologies in other fields (e.g., data mining) that 
previously looked to be too computationally intensive for 
practical applications. To address the (near) real-time 
computational needs introduced by many remote sensing 
applications, we have also developed a systolic array-
based FPGA implementation of the PPI. Experimental 
results demonstrate that our hardware version of the PPI 
makes an appropriate use of computing resources in the 
FPGA, and further provides a response in near real-time 
which is believed to be acceptable in most remote sensing 
applications. Further, the reconfigurability of FPGA 
systems opens many innovative perspectives from an 
application point of view, including the appealing 
possibility of being able to adaptively select one out of a 
pool of available hyperspectral data processing algorithms 
(which could be applied on the fly aboard the 
airborne/satellite platform, or even from a control station 
on Earth). Although the experimental results presented in 
this paper are very encouraging, further work is still 
needed to arrive to optimal parallel design and 
implementations for the PPI and other algorithms. 
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