
Improving Cooperation in Peer-to-Peer Systems Using Social Networks

Wenyu Wang1 Li Zhao2 Ruixi Yuan3

Center For Intelligent and Networked Systems
Tsinghua University, Beijing, China, 100084

{1wangwengyu, 2zhaoli04}@mails.tsinghua.edu.cn
 3ryuan@tsinghua.edu.cn

 Abstract

Rational and selfish nodes in P2P systems usually
lack effective incentives to cooperate, contributing to the
increase of free-riders, and degrading the system
performance. Various attacks such as whitewashing,
collusion, and software cracking pose great challenges
on distributed reputation management. To tackle these
problems, we propose to build a social network on P2P
system, and use the strength of social connections to
facilitate transactions in P2P system. The’ small world’
character of social networks makes it feasible for nodes
to locate resources and conduct transactions while
maintain limited local memory history. Such distributed
memory combined by relationship between peers
constructs a powerful reputation management network,
which could have better performance than shared history
system and is more robust under various attacks. Our
simulation and analysis show that the social network
model can greatly incent cooperation in P2P networks
and enormously reduce the memory cost.

1. Introduction

The peer-to-peer model may facilitate more efficient
resource sharing in the networks. Applications based on
such model include file-sharing system (such as
Gnutella[1],Kazaa[2] and BitTorrent[3]), discussion
boards[4] and overlay routing[5] etc. The key problems
that confront all these systems come from the
disincentives of peers to cooperate. Cooperation
consumes peers’ resource and degrades their
performance. Since rational and self-interested peers [6]
always try to maximize their own interest, most of them
would refuse to supply service to others without
incentives (either direct or indirect). This behavior may
benefit themselves in the short term, but the “tragedy of
commons” [7] appears when most of peers in the network
choose to avoid cooperation, which leads to the collapse
of the whole system.

Incentive mechanism in P2P networks have been
intensively discussed in recent researches [3][8][9]; both
centralized and distributed mechanisms have been
proposed to incent cooperation between peers. The free-
riding [10] in P2P network is the main cause of “tragedy
of commons”, and it could avoid punishment with the aid
of other misbehaviors such as whitewashing and
collusion. Difficulties of discovering these “bad guys”
have been summarized in [8], including: large population
and high turnover; asymmetry of interest and zero-cost
identity.

The memory/resource limitation of individual nodes
further aggravates the problems, so the direct causes of
these misbehaviors should also include:

• Lack of history: Since the population of peers in P2P
network is usually very large [11], and transactions
between peers are so frequent and dynamic, it is not
feasible for peers to remember all those who have had
transactions with them in the history.

Unawareness of others: Peers in the network have no
idea of transactions of others. So “bad guys” could
succeed in exploiting resource from different “good
guys”.

Though some previous works [3][8][9][12][13] have
proposed promising solutions to these problems, they
have to rely on some information such as globally shared
history [8] or centralized trust mechanism[12][13].
Shared history requires that each peer keeps records about
all of the interactions that occur in the system, no matter
whether it involves or not. It successfully solves the
problems brought by the lack of history and unawareness
of others. However, it would be difficult to have each
node notified of all the transaction it is not involved with,
and the maintenance cost of such information with large
population can be very high. Centralized trust mechanism
costs as high as that of shared history, and reduces the
robustness of the whole system as well.

 Interaction in peer-to-peer networks, in some aspect,
is similar to interaction in real world communities, where
people could make friends with those who have the same
interest or helping each other with common good. The
“six degree between two Americans” effect [14] indicates

This work is partially sponsored by Tsinghua
University through Grant No. 052301001

1-4244-0054-6/06/$20.00 ©2006 IEEE

that such social network is advantageous for information
spread and relationship maintenance. Therefore we
propose an incentive mechanism based on social network,
using the “small world” character to tackle the problems
encountered in P2P networks. This approach allows peers
to establish their own circles of friends and make use of
these friends to share resources. Social networks have
been shown to perform well in resource searching in P2P
networks [15], and here we use it to incent cooperation
between friends. When most pairs of friends are willing
to cooperate, the “small world” character [17][18] will
lead to a favorable environment for resource sharing. This
distributed history stored in each node costs little space
and we will show that the whole system is robust even
when the memory stored locally get lost or being
modified. The social network approach provides a
promising solution to the defects of unstructured P2P
networks. Some of the beneficial properties of this
approach include:

Consignable requests: When one peer has a request, it
will ask its friends first, if the resource is available (at
least one of its friends has the resource and is willing to
serve), it will get the resource from the server; if not, the
requesting node will consign the requests to its friends
who will look for the resource in their coteries. Though
transactions between fixed peers still rarely repeat, the
consignable requests between two fixed friends
frequently happen.

Transferable interest: When a successful resource
sharing transaction is completed, all the peers that
participates the transfer will know the contribution of
each other. In this case, the effect of asymmetric interest
is limited.

Friendship rebuilding cost: It is costly to build a coterie
for a new-comer. An effective coterie calls for much
effort, so the cost for whitewashers who always change
their identities will be very high, hence discouraging such
misbehavior.

Distributed/Local historical memory: Though the
global memory of history is not available in our design
system, each peer in the network has remembered the
transactions between him and his friends. Since the
requests and service of the peers mostly happen inside the
coterie in our algorithm, peers could use the history for
reference. The problem “unawareness of others” could
also be alleviated.

The rest of this paper is organized as follows. We
describe our model in Section 2. Then we discuss the
evolution of social networks in Section 3. Possible attacks
and preventions are proposed in Section 4. Simulation
experiments are used to validate our mechanism in
Section 5.

2. Social network model

2.1 Assumptions

First, we assume that each peer in P2P networks is
rational but has no complete information: It also has no
idea of the topology of the whole network. All the peers
will act rationally to maximize their own interest
according to the information it has. The whole network is
dynamic, which allows existing nodes to exit and new
nodes to join. Once a node chooses to exit, its ID is
destroyed and won’t be used again. All the new comers
have no friends at the beginning; new connections could
be established during the transactions. Once two nodes
become friends, the peers can properly authenticate each
other. We do not need any centralized authority to
manage the identity and trust among peers. Hence it is
also possible for the data on a node to be unreliable
(either due to software cracking, or misbehaving).

2.2 Model

Our model is built upon graph theory, which is widely
used in modeling social networks [14]. Let

{1,2... }N= be the set of peers in the P2P system, which
is also the nodes in a graph. We use directed graph to
characterize the whole system. The friendship between
two peers is represented by the arcs (links) between the
two nodes. As shown in Figure 1, each node in the
directed graph assigns two directed links to each of its
friends, called Credit Degree and Payment Degree. Let

ij
C denote the Credit Degree (the credit i has obtained

from j, which is equivalent to the total service performed
by j for i) which node i assigns to its friend node j, and

ijP denote the Payment Degree (the payment made by i to

j, which is equivalent to the service performed by i for j)
from node i to node j.

Figure 1. The relationship between nodes, represented

by the Credit Degree and the Payment Degree.

2.3 Incentive mechanism

When one node in the graph has requests, it will ask
its friends for help. Whether it could be satisfied or not
depends on how effective its coterie is. Two main steps
are proposed to incent and maintain cooperation between
peers.

1) Consignable request
Similar to the “expanding ring” concept introduced in

[19] in Gnutella, when a node in the network has a
request, it will first send it to its friends. These friend
nodes check if they own the requested resource and wish

to serve. They will notify the requesting node if so and
the transaction will occur. If none of the friends could
serve the requests (no one have the resource or the
owners refuse to cooperate), consignable requests occur.

The node will consign the requests to its friends, and
set a count parameter (denoted as TTL) equal to 2, which
allows the search within two-hop range. The friends who
accept the consignation will search the resource in their
own coteries. If the resource is available, the friend will
route the data between the initial requesting node and the
server. If none could serve the requests, the initial
requesting node will increase the TTL to 3, and then the
requests are iteratively consigned. The value of TTL will
increase until the demanded service is available or the
TTL reaches a maximum value which has been set
beforehand. Since long distance iterative consignation is
not robust and it may bring heavy burden to the overall
performance of the whole network, the maximum value
of TTL is used to limit the largest length of transaction
path. When the TTL has reached the maximum value and
the resource is not available, the initial requesting node
has to turn to the index servers or so to locate the
resource. The increase of TTL guarantees the shortest
path for transaction, and when more than one path have
the same TTL; the requesting node has to decide which
one to use. We propose the following server selection
strategy:

We define strength of friendship from node i to node j

Fij = Cij + Pij (1)

Then the balance of friendship from node i to node j is

Bij = (Pij - Cij)/(Pij + Cij) (2)

The strategy makes node i to select the node j with the
highest

ijB score to serve the request. High
ijB score

means that node j owes much to node i, so choosing the
node j with high

ijB will give node j a chance to pay back,

and increase the strength of the friendship. At the same
time, a high value of

ijF is favorable because of a

stronger relationship.

A case of Consignable request is showed in Figure 2

Node 1 has a request and Node 9 could serve. First,
Node 1 asks its friend Node 3, and Node 3 has no such
resource. So Node 1 consigns the request to Node 3 and
set the TTL equal to 2. If Node 3 accepts the consignment,
it will ask its friends including Node 2, Node 4 and Node
5. Since none of them have such resource, Node 3 has to
again consign the requests to Node 2, Node 4 and Node 5.
In our case, Node 2 and Node 4 refuse to accept the
consignable requests, and Node 5 accepts it. As a result,
TTL is set to 3, and Node 6 and Node 7 are asked about
the requests by Node 5. If the maximum TTL is equal to
3, the consignable requests fail because Node 6 and Node
7 have no such resource, and Node 1 has to turn to other
strangers for help. If the maximum TTL is larger than 4,
Node 5 will then consign the requests to Node 6 and
Node 7. Suppose both of them accept the consignment,
Node 6 and Node 7 will visit Node 9 where the requested

resource is available. If Node 9 agrees to serve for both
nodes, two feasible shortest paths have been found.

Path_1 = {1,3,5,6,9}, Path_2 = {1,3,5,7,9}

It is up to Node 5 to decide which path to take
ultimately, if the Credit Degree and Payment Degree are
C56 = 30, C57 = 25; P56 = 25, P57 = 30, our strategy will
choose Path_2, for F65 = F67 and B57>B56

Figure 2. A typical process of consignable request.

2) Transferable interest
When a shortest path has been found, all the nodes on

this path have to route the data. Though a direct data
transfer from the serving node to the requester seems
more effective from the aspect of bandwidth, the Credit
and Payment Degree between nodes is hard to handle in
our algorithm if they do not participate the transfer. We
will further discuss the performance problem in Section 6.
Consignable requests make the interest between the initial
requesting node and the server visible to all the nodes on
the path, and the interest becomes transferable in this
case. For instance, in Figure 2 we choose _ 2Path to
transfer the data, and the Node 3, Node 5 and Node 7 will
route the data for this transaction. In this case, Node 1
will acknowledge Node 3 for routing the data, and the
same kind of acknowledgement happens from Node 3 to
Node 5, Node 5 to Node 7 and Node 7 to Node 9. As a
result, the interest between Node 1 and Node 9 has been
transferred to interest between each pair of nodes along
the path. So the effect of asymmetry of interest is turned
around to strengthen the friendship along the path. Once a
transaction is finished, all of the nodes on the path will
update their own Credit Degrees and Payment Degrees.
The amount of increase depends mainly on the size of
data (it will be discussed in Section 3).

3) Decision function
Peers decide whether to provide resource or accept

consignable requests according to the output of decision
function when requests happen. A balanced relationship
between node i and node j means that Bij = (Pij - Cij)/(Pij +
Cij) is close to 0.

We define a decision function for each peer, and the
output of the function is a probability deciding whether
node i should supply service to node j if it could. For a
rationale node, this function needs to have two properties:
the probability lies within [0,1]; and the probability is a
decreasing function of Bij, as it tries to repay the service
provided by others. We choose a decision function as
follows:

1
(1 sin)

2 2
ij

ij

B
D

π
= − ; [1,1]ijB ∈ − , so [0,1]ijD ∈

Dij is a decreasing function of Bij. In addition, Bij = 0
which means a complete balance between two nodes,
results in a probability of 0.5 to serve. Our decision
function proves to be effective in the simulation result
outlined in section 4.

3. Evolution of social networks

As people in society, each peer in P2P system has no
fixed coterie. They will strengthen the relationship with
those who are effective in providing resource, and
weaken the ties with those who rarely supply service. In
this way, “good” nodes will receive a good reputation
through the transactions and extend their coterie; while
“bad” nodes will be discredited by their friends (if any)
for their bad behavior. The main evolution of social
networks comes from two aspects: creating new
connections and severing old connections.

3.1 Creation of new connections

Since each individual node could not know all the
peers in the networks and have no idea of the topology of
the system as a whole, the creation of new connections is
not arbitrary, but mainly depends on who they meet. We
propose two ways to discover new friends: create new
connection through successful transaction and through
strangers.

1) Through successful transaction
Successful transaction between two peers is a main

way to create new connections. It is favorable compared
with creating new connections with strangers. The
reasons are as follows:

Low risk of accepting free-riders. Successful
transaction serves as an evidence of generosity. For the
requesting node, it believes that the server node is
generous because of the service; for the server node, the
consignable requests carried by its friends prove a good
reputation of the initial requesting node (if the initial
requesting node is a free-rider, consignable requests will
hardly be accepted according to the decision function). As
a result, the risk of accepting a free-rider is greatly
reduced after a successful transaction for both sides.

Shortcut of transactions Long path in the transaction
brings about vulnerability, because any failure of
cooperation between two nodes on the path could result in
the failure of the transaction. For instance, in Figure 2, if
any cooperation between Node 1 and Node 3, Node 3 and
Node 5, Node 5 and Node 7 or Node 7 and Node 9 fails,
the transaction could not succeed. If Node 1 and Node 9
could establish a tie after the transaction, the length of
path will be reduced to 1 when transactions happen again
between Node 1 and Node 9, and what is more, the
distance between Node 1 and Node 7 is also reduced to 2
(through Node 9) from 3 (through Node 3 and Node 5).

This shortcut will also facilitate further transactions
through this path.

Though it is advantageous to establish new
connections after successful transaction, they are not
always profitable. New connections cost resource to
maintain and are relatively weak at the beginning. At the
same time, each node could have a limitation of the
maximum number of friends it could maintain. We
suggest a probability function to decide whether the new
connection could be built or not. This function is:

0.5 (() 1)
() min(1 ,1)

max max
iji

ij

i

h gcurF
u g

F Hop

× −
= − + � (3)

()iju g denotes the probability of building a new

connection between Node i and Node j; max
i

F denotes

the maximum number of friends node i could
maintain;

i
curF denotes the current number of friends

node i has; ()ijh g denotes the distance between Node i

and Node j. max Hop denotes the maximum number of

TTL allowed in Consignable requests
As we know, there are two factors which could affect

the probability of building new friendship. The length of
transaction path decides to what degree the new
friendship is valuable and benefit to the whole system.
The new friendship contributes more when the
transaction path is long. The current number of friends
decides the willingness of nodes to build new friendship.
When the friends of node i are few, it is eager to make
new friends to enhance the efficiency for resource
sharing. But when the number of friends nearly reaches
the maximum number, it may have a disincentive to
make more friends. Our heuristic proposal considers both
of the two parameters: ()iju g is a decreasing function of

i
curF , and an increasing function of ()ijh g . In order to

make the probability function proper, we limit the output
to values between [0,1] . While we recognize such

formulation is relatively simple, it works surprising well
in our simulation.

2) Through stranger policy
Punishing strangers has been proven necessary to

constrain white-washers [16]. However, sometimes
strangers are unnecessarily punished heavily. Hence, we
adopt an adaptive policy to strangers using the
information from the coterie. Each node has a list of new
connections established recently with strangers, recording
the number of services and requests of these new friends.
When a node receives a request of new connection from a
stranger, it will ask its old friends for reference. Each of
these old friends will send a value of stranger contribution
to it, and the node calculates a mean contribution of
strangers according to the formula as follows:

1 1

1 1
[() /()]

2 2

J J

i i ij j ij

j j

V w C w C
= =

= + ∑ ∑ � (4)

iV denotes the mean contribution of recently

encountered strangers;
jw denotes the mean contribution

of strangers sent to Node i by its friend Node j. So the
first item on the right of the formula means the
contribution of strangers calculated by node i itself
according to the stranger list it keeps. The second item
means a weighted mean value of contribution sent from
its coterie. The weighted mean strategy makes generous
nodes’ suggestions more convincing, while free-riders’
suggestions always have little impact. In this way,
collusion could be effectively confined. Each

jw is

calculated as follows in Node j:

1

1
[/()]

n

j jk jk jk

k

w C C P
n =

= +∑ (5)

Where n is the total number of strangers the node j has
interacted within a period of time recently, and

jw is the

mean contribution of these n nodes. Clearly,

(0,1)jw ∈ .This method of using the weighted mean

contribution of strangers to evaluate the current
requesting stranger helps the node to decide whether to
accept the strangers’ requests or not. When the number of
free-riders is large in the system, most of friends may
report a low value of stranger contribution, so the Vi will
decrease to a low value too, suggesting that refusal is a
wiser choice.

A threshold
TV is set beforehand, if

iV is greater

than
TV , the request of new connection is accepted and if

iV is small, the request will be turned down.

3.2 Severance of old connection

The need to sever old connections comes from many
aspects. We propose a method using both history record
and short-term transactions to address this problem. Each
time a node i initiates a request, it will update the Credit
Degree for its friends according to the formula as follows:

1

2

ij

ij

ij

C C j S
C

C S j S

− ∆ ∈⎧
= ⎨ + ∆ ∈⎩

 (6)

1S denotes the set of nodes which do not supply

service to node i .
2S denotes the set of nodes which

supply service to node i, and it is empty if no one serves.
C∆ denotes the decrease of Credit Degree for these

nodes which have not supplied service , and it is called
“leak rate of Credit Degree”. S∆ denotes the increase of
Credit Degree for the node which has supplied service.
We have S C∆ > ∆ to make a relative stable friendship in
a short term. The value of S∆ could depend on the size of
resource node j has supplied to node i or set to a constant
value just as we did in this paper.

The Payment Degree has similar “leak” mechanism as
Credit Degree. Each time node i serves its friend node k,
it will update the Payment Degree as follows:

ij

ij

ij

P P j k
P

P S j k

− ∆ ≠⎧
= ⎨ + ∆ =⎩

 (7)

P∆ denotes the decrease of Payment Degree for these
nodes which do not request, and it is called “leak rate of
Payment Degree”. S∆ denotes the increase of Payment
Degree for the node which have received service. A
threshold

TC is set to monitor the friendship between

nodes, when the Credit Degree
ijC falls below

T
C , that

is
ij TC C< , node i will sever the connection ij and remove

node j from its friend list. We note that it is possible for a
node j to consider i as its friend, but i may not consider j
as its friend.

4. Robustness against attacks

Our incentive mechanism is robust against wide range
of attacks including free-riding, whitewashing, collusion,
self-boasting etc. It is a distributed reputation
management scheme using social networks model.

Disincentive of free-rider and whitewasher

It is difficult for free-riders and whitewasher to create
friendship links under our system. In the unlikely event a
connection is made, it will quickly be severed because the
credit of free-rider or whitewasher will be exhausted
under our “leak” mechanism.

Prevention of self-boosting

Self-boosting is first reported in [11]. This problem is
serious and difficult to detect. However, in our system, it
is useless to do so. Self-boosting can not change any
values of Credit Degree and Payment Degree, so has no
effect on our system.

Prevention of collusion

The most popular collusion is the case that several
“bad guys” claim to receive service from each other. This
kind of collusion is simple, but very difficult to prevent in
most P2P systems. The social networks we built can
effectively prevent the collusion. See the example in
Figure 3. The gray nodes are “bad guys” and the white
nodes are common ones. Collusion makes the link
between “bad guys” strong, but it cannot strengthen the
link between the normal nodes and the “bad guys”. For
example, in Figure 3, C12, C74, C84 are all very small with
our mechanism. As a result, the normal nodes will not
supply resource to these colluded “bad guys”, and the
latter are isolated as a whole finally. In some cases, there
can be a mole node [8] that serves as a link between the
normal nodes and the group of colluders. Suppose Node 2
in dark gray is a mole node, and vouches for the good
reputation of Node 3, Node 5 and Node 6. In this case,
Node 3, Node 5 and Node 6 could exploit the resource of
Node 1 through Node 2(the mole). However, the
exploitation is based on the increase of

12P , and Node 1

will soon refuse to further supply resource when

12P becomes large while
12C remains the same. lates the

colluders quickly.

Figure 3. Nodes with different characters in a network.

All nodes in gray are free-riders who collude.

Robustness against software crack

Some distributed P2P system meet difficulty in
reputation management when crack occurs [20]. When
the data used for reputation management is modified by
the users, it fails to keep effective. The reputation of peers
in our system are not kept locally, but kept by the
coteries. So the modification of local data could bring no
interest. For instance, in Figure 3, if Node 2 crack the
software and modify local data

21 21,C P , the decision of

Node 1 that whether to serve Node 2 will not be affected
because this decision function is only rely on

12 12,C P ,

stored in Node 1 and could not be modified by Node 2.

5. Evaluation and result

5.1 Experiment framework and parameters

All the peers in the simulation have three kinds of
strategies: 100% cooperate, 100% defectand using
decision function (described in Section 2.3)). Similar to
the learning behavior described in [8], we assume that a
node can find whether its strategy is yielding profitable
results and will switch its strategy probabilistically based
on the comparison. Default values of parameters in
simulation are presented in Table 1, and part of
parameters will be set to special values in different kinds
of attacks. We implement the model described in Section
2 and Section 3 in simulation, and evaluate the
performance of our algorithm in different scenarios of
attacks. We set the initial friend list of each node empty at
the beginning for the worst case in simulation.

Table 1. Default values of parameters in simulation
Parameter Default Section

Population size 100 --

Run Time (rounds) 1000 --

Initial ratio of “100%
cooperate”

1/3 5.1

Initial ratio of “100% defect” 1/3 5.1

Initial ratio using decision
function

1/3 5.1

Learning Probability 0.05 5.1

Turnover Probability 0.0001 5.1

Credit Degree for new
friendship

30 3.1

Payment Degree for new
friendship

30 3.1

Leak rate of Credit Degree 2 3.2

Leak rate of Payment Degree 2 3.2

Increase of C or P (delta C and
delta P)

40 3.2

Maximum number of friends 10 3.1

Maximum TTL allowed 5 2.3

Severance threshold 10 3.2

5.2 System Evolution and Performance

1) Population using different strategies
While initially setting the population using different

strategies (cooperate, defect and decision function) as
equal, the learning behavior changes the user’s strategy
overtime. Figure 4 shows the population evolution of
users using different strategies. Though the random
selection of learning behavior causes the population size
to oscillate in the first 200 rounds, the strategy with
decision function will dominate at last.

To illustrate the efficiency of our mechanism in
isolating the free-riders, we let the peers use fixed
strategy without learning behavior in Figure 5. We set 10
nodes with 100% defect strategy and 90 nodes with
decision function strategy. The result after 1000 rounds of
simulation is shown in Figure 5. Clearly the free-riders
are isolated after several hundreds rounds.

0 200 400 600 800 1000
0

20

40

60

80

100

round

st
ra

te
gy

 p
op

ul
at

io
n

population of different strategies

Defector
Decision Function
Cooperator

Figure 4. The strategy with decision function

dominates after 300 rounds, and the population of

100% defector and 100% cooperator fall to zero. The

evolution of population with different strategies may

vary at beginning in repeated simulations, but the

decision function always dominates at last.

0 200 400 600 800 1000
0

2

4

6

8

10

round

nu
m

b
er

 o
f

fr
ie

nd
s

Friends of Different Strategies

Defector
Decision Function

Figure 5. The mean number of friends grows up at

similar rate for both defector and decision function

strategy when most peers have little information of

others at the very beginning. The defectors will

quickly be isolated when most good peers have

formed their own coteries.

2) Collusion and false report
M. Feldman et. al.[8] uses MaxFlow to prevent

collusion, and propose a proximate algorithm to reduce its
running time. Our algorithm, in fact, has completed this
goal when searching the service and no more calculation
is needed. Collusion could not work in our system
because of the friendship bottleneck between the common
peer group and the free-rider group. We consider a worst
case in which each free-rider node claim that other free-
rider nodes are generous ones. At the same time, they do
not supply any service to common nodes. Still, we set 10
nodes with 100% defect strategy and 90 nodes with
decision function strategy, and request all nodes perform
fixed strategy. We illustrate the total friends of these
collusive defectors and the number of defectors in these
friends in Figure 6.

In the case of collusion, we discover that the mean
number of friends of these collusive defectors becomes
large, but nearly all of the friendship is among collusive
defectors. Hence the link between common nodes and
defectors is very weak, making collusion unsuccessful.
Clearly, the enhancement of friendship among defectors
only could not change their payoff received.

0 200 400 600 800 1000
0

2

4

6

8

10

round

n
um

b
er

 o
f f

rie
nd

s

Total friends
Defector friends

Figure 6. The mean number of friends of these

collusive defectors could reach 8, but nearly all of

these friends are collusive defectors as well.

3) Comparison with previous works
Algorithm using shared history and private history are

compared with our algorithm here. We mainly focus on
the performance of our algorithm in a P2P network with
high turnover rate and large population. We use the mean
rate of satisfied request (MRSR) as the indicator to reflect
the overall cooperation. The mean rate of satisfied request
is calculated as:

Number of satisfied request
MRSR

Number of total request

 =

 (8)

MRSR is the mean rate of satisfied request. MRSR
reflects overall cooperation. We compare the MRSR as

the population grows between different incentive
mechanisms in Figure 7:

The private history fails to incent cooperation when
the population grows to more than 200, and it is resulted
from the asymmetric interest. Shared history and social
network approach both perform well even when the
population becomes large.

High rate of turnover is a serious problem in P2P
networks. We compare the performance of different
algorithms when the turnover rate becomes large.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

population

ra
te

 o
f s

at
is

fie
d

re
qu

es
t

Social Network
Shared History
Private History

Figure 7. The MRSR with private history suffers a

sudden drop when the population grows more than

200. MRSR with shared history or social network

performs well when the network extends.

0.0001 0.001 0.01 0.1
0

0.2

0.4

0.6

0.8

1

turnover rate

ra
te

 o
f s

at
is

fie
d

re
qu

es
t

Social Network
Shared History
Private History

Figure 8. The private history could tolerate a very low

turnover rate. Shared history and social network

could keep a high MRSR with high turnover rate.

Figure 8 shows that private history could only tolerate
a turnover rate lower than 0.001 and the shared history is
much better than the private history when the turnover
rate is <10%, but suffers a sharp drop-off afterwards. Our
algorithm suffers a similar decrease when the turnover
rate grows to more than 20%. It may be a little surprising
that shared history which has global information performs
not as well as our algorithm. In fact, the problem comes
from the algorithm based on shared history instead of the
shared history itself. Most algorithms based on shared
history set the probability to serve strangers artificially
low, so the newcomer would meet great frustration in
joining the system. Our algorithm based on social
networks alleviates these problems. First, the probability

to accept strangers is also low in our algorithm, but once
the newcomer has been accepted, the sequent requests
will have a relative high probability to be met if the
newcomer acts like a “good guy” with the help of
consignable requests. Second, not only the nodes serving
resource will get acknowledgement, but also those nodes
that route the data. In this way, the newcomer can quickly
join the system as long as it is willing to help route the
data.

6. Conclusion and Discussion

In this paper, we propose to build a social network in
peer-to-peer system to incent cooperation between peers.
To our knowledge, this is among the first work to
incorporate the concept of social network into the P2P
system for incentive mechanism design. The proposed
algorithm proves to be robust in a large population and
relative high turnover rate with simulation analysis. The
local storage memory in our algorithm is greatly reduced
compared with shared history in many previous works,
and is a truly distributed memory.

One potential problem for this incentive mechanism
lies on the repeated transfer of data along the transaction
path, as it may impose extra burden on system
performance and network bandwidth if the mean length
of path is long. To evaluate the influence, we measured
the mean length of path in the simulation experiment. For
totally random resource request and service distribution,
the average length of path is about 2.5 due to the
limitation of maximum TTL (section 2). This is also
indicative of the small characteristic length of random
networks. Furthermore, if we consider the small world
property of social network, where the cluster coefficient
is large compared with that of the random networks, we
can expect further reduction to the average path length.
Hence lessen the penalty for repeated transfer path. An
obvious short-cut solution is to allow the serving node
and the requester to perform direct file transfer. However,
this will alter the credit and payment calculations and
make the reciprocity hard to perform. Its overall effects
on the formation of social networks and the incentive
mechanisms can be further investigated.

7. Future work

Quantitative comparison of the maintenance cost in
social network approach with other mechanisms may
promise to yield more impressed results in future work.
At the same time, the advantages of social network
approach in both incentive mechanism design and
resource search algorithm should be combined together to
achieve higher performance.

REFERENCES

[1] Gnutella, http://www.gnutella.com.
[2] KaZaa, http://www.kazaa.com.
[3] The official BitTorrent home page,

http://www.bittorrent.com
[4] Gu. B, and Jarvenpaa. S, “Are Contributions to P2P

Technical Forums Private or Public Goods? – An
Empirical Investigation,” In 1st Workshop on Economics
of Peer-to-Peer Systems, 2003.

[5] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and DS
Wallach, “Security for Structured Peer-to-Peer Overlay
Networks.” In Proceedings of Multimedia Computing and
Networking, 2002

[6] Jeffrey Shneidman, D. C. P, "Rationality and Self-Interest
in Peer to Peer Networks," In Proc.2nd Int. Workshop on
Peer-to-Peer Systems (IPTPS'03), 2003.

[7] Hardin, G. “The Tragedy of the Commons.” Science
162:1243-7, 1968.

[8] Michal Feldman, Kevin Lai, Ion Stoica, John Chuang.
"Robust Incentive Techniques for Peer-to-Peer Networks."
ACM E-Commerce Conference (EC'04), 2004.

[9] J. Crowcroft, R. Gibbens, F. Kelly and S. Östring
Modeling Incentives for Collaboration in Mobile Ad Hoc
Networks.” In Modeling and Optimization in Mobile, Ad
Hoc and Wireless Networks, 2003.

[10] E. Adar and B. A. Huberman, “Free riding on gnutella.”
2002.

[11] Mao Yang, H. C., Ben Y. Zhao, Yafei Dai, and Zheng
Zhang. "Deployment of a Large-scale Peer-to-Peer Social
Network." First Workshop on Real Large Distributed
Systems (WORLDS 2004), 2004.

[12] J. R Douceur, “The Sybil Attack.” In Electronic
Proceedings of the International Workshop on Peer-to-
Peer Systems, 2002.

[13] Sepandar D. Kamvar, Mario T. Schlosser and Hector
Garcia-Molina, “The EigenTrust Algorithm for Reputation
Management in P2P Networks. ” In Proceedings of the
Twelfth International World Wide Web Conference, 2003.

[14] D. J. Watts. ”Small Worlds, The Dynamics of Networks
between Order and Randomness.” Princeton University
Press, Princeton, NJ,1999.

[15] Yamini Upadrashta, J. V., Winfried Grassmann. "Social
Networks in Peer-to-Peer Systems." Proceedings of the
38th Hawaii International Conference on System Sciences,
2005.

[16] Friedman, E. and P. Resnick, “The Social Cost of Cheap
Pseudonyms. ”Journal of Economics and Management
Strategy, 2001.

[17] Milgram E, “The Small World Problem”, Psychology
Today, 60-67

[18] Newman, M. E. J, “Models of the Small World: A
Review”, Journal of Statistical Physics, 101, 819-841,
2000.

[19] Lv, Q., Cao, P., Cohen, E., Li, K., and Shenker, S,"Search
and replication in unstructured peer-to-peer networks",
Proceedings of the 16th international conference on
Supercomputing, New York, USA, 84 95, 2002.

[20] Leander Kahney. Cheaters Bow to Peer Pressure,
http://www.wired.com/news/technology/0,1282,41838,00.
html, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

