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Abstract

Sampling is a widely used technique to increase ef-
ficiency in database and data mining applications op-
erating on large dataset. In this paper we present a
scalable sampling implementation that supports efficient,
multi-dimensional spatio-temporal sample generation on
dynamic, large scale datasets stored on a storage clus-
ter. The proposed algorithm leverages Hilbert space-filling
curves in order to provide an approximate linear order of
multidimensional data while maintaining spatial locality.
This new implementation is then bootstrapped on top of our
previous implementation, which efficiently samples large
datasets along a single dimension (e.g., time), thereby re-
alizing a service for spatio-temporal sampling. We evalu-
ate the performance of our approach comparing it to the
popular R-tree based technique. The experimental results
show that our approach achieves up to an order of magni-
tude higher efficiency and scalability.

1 Introduction

Large-scale, multidimensional, dynamically growing
datasets have become a major consumer of resources in
many scientific applications, thanks to the development of
new technologies such as advanced sensors that can rapidly
capture data at high-resolutions and Grid technologies that
enable simulation of complex numerical models. Low-cost,
large scale, disk-based storage clusters can be used to host
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vast volumes of dynamic datasets. However, given disk ac-
cess and network overheads, managing and retrieving this
data efficiently is a challenging task.

This work is particularly motivated by emerging data-
driven scientific analysis applications in which large, multi-
dimensional, dynamic datasets that are generated by ad-
vanced equipments and sensors, need to be mined and an-
alyzed. Data analysis, or mining, processes tend to be it-
erative, exploratory, and interactive in nature. They may
require multiple passes over the data, which may be pro-
hibitively expensive for large datasets. These problems are
exacerbated when data is streaming in at a high rate and
needs to be processed and mined in close to real time. Con-
sequently, there is an immediate need for a scalable frame-
work for efficient storage and processing of dynamic, mul-
tidimensional data.

Consider the LEAD [18] application as an example.
LEAD is a large-scale infrastructure for atmospheric sci-
ence research. It allows researchers to dynamically and
adaptively respond to weather changes in order to gener-
ate real time predictions of tornadoes and other potentially
devastating weather events. When the system is fully func-
tional, the datasets will be collected by small scale regional
Doppler radars that can be mounted on cell phone towers.
These small scale radars have a 30 km radius and can col-
lect data at high resolution and frequency. The raw data
captured by the sensors on these radars will be periodically
sent to data processing and archiving centers for storage and
analysis.

A sample query against these datasets could be stated as:
Retrieve a multidimensional sample from the CAPS radar,
ACARS, and NEXRAD Doppler level II data and limit the
results to data obtained or relevant to an 80 mile radius
around New Orleans (spatial) and limit results to those ob-
tained over the past two hours (temporal). Such ad-hoc
sampling queries that project the data set along a multidi-
mensional bounding box (MBR) can be used to effectively
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summarize data for tasks such as scientific visualization and
weather prediction. Given the sheer size of the data gath-
ered continuously and real-time analysis requirements, it
may be too time consuming to retrieve the entire dataset
and process it, even on a parallel machine, especially if a
disastrous weather pattern is being observed and must be
acted upon.

Successful deployment of efficient support for data
querying and retrieval in such an application would require
efficient strategies to sample large, multi-dimensional, dy-
namic datasets. The key intuition is when you operate on
less data, data analysis can be carried out more quickly,
allowing one to react changing weather patterns rapidly .
The focus of our work is to develop support that will enable
efficient execution of sampling queries and that will take
advantage of parallel processing and high-performance net-
working platforms. The multidimensional nature of many
scientific datasets complicates the data retrieval and sam-
ple generation process on both single node machines and
distributed platforms. There has been extensive literature
on index structures for multidimensional data access. How-
ever, not much work has been done on how to efficiently
generate multidimensional samples from dynamic and out-
of-core datasets on a parallel machine. I/O cost is one of
the primary bottlenecks in the sample generation process. A
possible approach to reduce I/O costs is to use parallel ma-
chines and distribute the work associated with data main-
tenance and sample retrieval across multiple nodes. This
paper proposes a parallel multidimensional sampling algo-
rithm and evaluate its efficiency and scalability.

In an earlier work [22], we developed support for cre-
ating samples from an array of data elements. We have
shown that the algorithm is very efficient and scales well.
However, our previous work assumed either the dataset was
single dimensional or the sampling request is limited to
a pre-determined dimension of the dataset (e.g., time di-
mension). Our approach in this paper is to produce a lin-
ear ordering and a mapping to a one dimensional space
from the multi-dimensional space of the data using Hilbert
space filling curves. We distribute the ordered data elements
across multiple storage nodes to achieve parallel I/O when
retrieving samples. Mapping to single dimensional space
also makes it possible to leverage the infrastructure devel-
oped in the previous work [22]. One advantage of using
a Hilbert curve based mapping is that it maintains multi-
dimensional locality. That is, points close to each other in
the multi-dimensional space are mapped to close indices on
the Hilbert curve. Our algorithm then builds a multi-level
index structure around this ordering. This index structure
facilitates fast retrieval of multi-dimensional samples that
encompass constraints over time and space. We develop a
query execution scheme that builds on the recursive nature
of the Hilbert space filling curve in order to efficiently exe-

cute range sampling queries. We demonstrate that such an
approach significantly outperforms the popular R-tree based
approach up to an order of magnitude and has good scaling
properties on data storage clusters.

2 Related Work

Until recently there has been little work done on how
to improve the performance of generating a sample from
out-of-core datasets. Researchers have looked at generating
samples over in-memory databases [15]. The assumption
is that the data set is static and samples are assumed to fit
in main memory. Reservoir sampling [21] was proposed to
maintain a true fixed size random sample of a data stream at
any given instant. From the perspective of data analysis ap-
plications, the drawback here is that the algorithm assumes
that the sample fits in main memory, and the sample request
has a fixed size. The sample time range is also always fixed
– from the beginning of the stream to the current point in
time. A sampling scheme to maintain large samples on disk
has been proposed by Chris Jermaine et al. [9]. However,
using this approach one cannot generate a variable sized
sample over a variable time range. Also, this strategy cannot
be trivially extended to parallel machines. Previous work on
sampling from spatial database [16] assumes the dataset is
static and already indexed, moreover, the paper focuses on
sample selection criteria instead of sample generation effi-
ciency.

There has been a lot of work on the use of sampling for
data analysis applications. Sampling has been successfully
used for association rule mining [20], clustering [3] and sev-
eral other machine learning algorithms. These algorithms
do not know the desired sample size a priori. Progressive
sampling [17, 19] has been proposed for these algorithms
so they can efficiently converge to the desired sample size.
The idea is to evaluate model accuracy over progressively
larger samples until gain in accuracy between consecutive
samples falls below a certain threshold.

Data declustering is the process of distributing data
blocks among multiple disks (or files). On a parallel ma-
chine, data declustering can have a major impact on I/O per-
formance for query evaluation [2]. Numerous declustering
methods have been proposed in the literature. Grid-based
methods [1, 4, 5] have been developed to decluster Carte-
sian product files, while graph-based methods [6, 12, 13]
are aimed at declustering more general multi-dimensional
datasets. These methods assume a static data set and are
designed to improve I/O performance for data access pat-
terns generated by multi-dimensional range queries. A
range query specifies the requested subset of a dataset via
a bounding box in the multi-dimensional attribute space of
the dataset. All the data elements whose attribute coordi-
nates fall into the bounding box are retrieved from disk. The



approach proposed in this paper is targeted at dynamic data
sets and queries that specify the desired data subset by a
range query and a user-defined sampling amount.

3 Problem Definition and Architecture
Overview

Our objective is to support sampling range queries of the
following form:

SELECT SAMPLE x%
FROM Dataset �
WHERE Tuple � in [ � � � � � � � � � � � � � � � � � � � � � � � � ]
AT TIME � � (or BETWEEN TIME[ � � � � � ])

Here, the dataset � is a multi-dimensional dataset. The
list of tuples that can be used to answer the query is spec-
ified by a bounding box in the multi-dimensional space
underlying the dataset ([ � � � � � � � � � � � � � � � � � � � � � � � � ] in the
WHERE statement in the query). Each element in � is
associated with a tuple � � � � � � � � � � � � � $ as the coordinate
vector, where each attribute corresponds to a different di-
mension of the dataset. This n-dimensional attribute vector
is also interpreted as the coordinates of the element in the
multi-dimensional space. We consider the coordinate space
to be a discrete space. This limitation of our data model,
however, can be mitigated by converting continuous space
into discrete space with normalization and discretization. In
this work, we will primarily use uniform sampling which
basically assign each point equal probability of selection.
Other type of sampling such as stratified sampling and bi-
ased sampling can be obtained as well by post-processing
uniform samples. Our framework also supports progressive
sampling that requests a series of increasing percentage of
samples.

We target dynamically updated datasets. New data ele-
ments are added to the dataset overtime. Thus, each data
element is also associated with a time stamp � % . To facili-
tate temporal range queries (AT TIME or BETWEEN TIME
in the query form), we regard the time stamp for each tuple
as one of the coordinate elements.

Our previous work [22] developed an architecture, which
consists of three main layers, to support pre-processing,
management, and querying of large scale dynamic datasets.
We implement the proposed framework within that archi-
tecture. Here, we briefly describe the components of that
architecture.

The data preprocessing layer implements methods and
runtime support for pre-processing incoming data elements
so that they can be efficiently stored and queried. The pre-
processing of data updates is done in groups of tuples, re-
ferred to as a stream window. A window � % contains tuples
that have arrived in a time interval of � ' %( * + , * � ' %- � / $ . The

tuples in a stream window are partitioned into a user-defined
number of bins and reorganized within each bin. Bins are
the unit of storage on disk and data retrieval from disk.

The storage management layer is responsible for effi-
cient management of storage space and placement of bins
on disks in the system. If there are multiple nodes and mul-
tiple disks, the storage management layer employs data dis-
tribution strategies for assigning bins to nodes and disks. It
also manages indexing structures so that the data of interest,
defined by a range query, can be searched for quickly.

The query processing layer implements the support for
receiving queries from clients, scheduling multiple queries
for execution, and executing each query on the underly-
ing hardware infrastructure, and returning the results to the
client.

4 Multidimensional Sampling Service
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Since data selections in our target queries are specified
on ranges or points on some attributes, it is desirable that
data points that are close together in the multidimensional
attribute space be clustered close in the destination one-
dimensional space. Such a mapping would reduce the num-
ber of disk blocks accessed and the number of seek opera-
tions. We propose a multidimensional sampling algorithm
based on linear clustering of multidimensional dataset by
Hilbert space filling curve. Several publications [14, 8] have
shown that Hilbert space filling curve based linear cluster-
ing achieves good locality. Hilbert space filling curve is
a one-dimensional curve which visits every point within
a n-dimensional space in a specific order [11]. Figure 1
shows two examples of Hilbert space filling curve for 2-
dimensional space (coordinates in each dimension are rep-
resented using 1 bit in Figure 1(a) and 2 bits in Figure 1(b)).
In general, for a n-dimension attribute space where each di-
mension is represented by U bits, there will be V � W points
in the curve. The useful property of the Hilbert space filling
curve is that points that are close in the multi-dimensional
space are mapped to indices which are close in the one di-
mensional space.

We should note that mapping from multidimensional at-
tribute space into a linear attribute space is different from
the common dimensionality reduction approaches such as
principal component analysis (PCA) [10]. PCA usually
identifies dominant sub-dimensions and transform the data
points into these dimensions. Linear mapping approach
does not discriminate against any dimension, and in prac-
tice, it could be applied to data points postprocessed by di-
mensionality reduction methods.

In our implementation, when a stream window is re-
ceived, the data preprocessing layer maps the elements in
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Figure 1. Two Examples of Hilbert Space Fill-
ing Curve

Figure 2. Partitioning Linearizing Dataset into
Bins

this stream window into a linear array. The basic concept
is to organize this linear array into a set of contiguous bins.
Figure 2 shows one example where the bin capacity is 4 data
elements.

To enable efficient sample generation, we apply a geo-
metric binning scheme developed in [22] instead of equal-
size bins. This scheme generates � bins, whose sizes fol-
low a geometric progression ( � /2, � /4, � /8, � � � ), where
� is the number of elements in the linear array and � is a
user-defined value. The elements in the linear array are as-
signed to bins using a random function. Each data element
is assigned to one of the � bins randomly with a proba-
bility that is proportional to the size of the bin. Elements
within a bin are ordered according to the linear ordering ob-
tained by the Hilbert space filling curve so that the spatial
locality is preserved. The randomization ensures that each
bin can be viewed as containing mutually exclusive sam-
ples. An example of the geometric bin partition is shown
in Figure 3. The key advantage of using geometric binning
scheme is that it will minimize the data we have to retrieve
from disk [22]. For example, if we have four bins, and if
the sample size requested within a query is between � � �
and � � � 
 � �  � , then the query will be answered using

N Tuples

Original Page

Partitioning into Geometric
Bins

N/2 N/4 N/8 N/8

Bin 0 Bin 1 Bin2 Bin3

Figure 3. Geometric Bin

the bins containing � � � and � �  � elements, respectively.
On the other hand, if the sample size requested is between

� � � 
 � �  � and � � � , then the sample is generated using
the bin containing � � � elements.

� � � � � �  " # � & ( * + , - * , +  

Each bin has a one-dimensional bounding box, corre-
sponding to the minimum and maximum values of the
Hilbert curve indexes of the data elements stored in that bin.
The indexing scheme is based on a binary search mecha-
nism on top of a dynamic array structure. The entries of the
array contain 0 2 3 56 7 9 : 7 = 3 5> ? @ A = C 5? = E G G H I 6 7 9 : 7 = E G G H I > ? @ J .
The first element of the tuple is the time interval for the
bin. The second element is the bin number identifier. The
third and fourth elements define the linear coordinate range
(obtained by the Hilbert space filling curve mapping) of the
bin. Finding the set of bins that contains the data points in-
tersecting with a range query is essentially a binary search
on the range information stored in the dynamic array.

� � K L N * N L # S * + # U , * # X � N � � ] _ N -  a  � *

When we have multiple disks we adopt the following
round robin placement strategy. Assume we have c par-
allel disks and the streaming window instance d 5 contains

� bins. Bin distribution is an mapping e from the bin set
2 f =  = � � � = � j  A to the parallel disk set 2 f =  = � � � = c j  A as
follows.

e 0 k J m k n c = f q k q �
� � � u N � &  w ,  + z | "  - , * # X � � _ & X + # * � a

The recursive nature of the Hilbert curve construction
process [11] can be utilized to develop an efficient query
execution algorithm.



Suppose we have a 2-dimensional attribute space with 3
bits in each dimension. For a point � with attribute [110,
011], the linear coordinate will be a 6-bit number. The lin-
ear coordinate is initially unknown and is represented by
“??????” in this example. The recursive property of the
Hilbert curve assures that the first two bits of the linear coor-
dinate will only be determined by the first bit of two coordi-
nates. In this case they are “11”, therefore the linear coordi-
nate would be “11????”. This property can be extended into
n-dimensional attribute space. Based on this property, for a
range query (e.g., [101..111, 001..011]), after parsing the
query range, we know the first bit of the first dimension is
“1” and that of the second dimension is “0”. Therefore, the
point which intersects with the query range must have the
first two bit as “11”, and we convert the 2-d range into a lin-
ear range as [110000..111111]. However, this linear range
would contain a set of these sequential points and we need
to filter those extra data points. In practice, this process
will continue recursively from the most significant bit to the
least significant bit and generate a set of non-overlapping
linear ranges. Whenever we find there is a bit shift in one of
the dimensions, we effectively split the range in that dimen-
sion into two ranges with the same bit. This split process is
essentially a partition along the middle of each dimension.
If we have a range with the remaining � � � bits in the form
of [ � � � � �  � � � � � .. � � � � �  � � � � � ] in every dimension, we re-
gard this is as a full subregion and the resulting linear range
will be exactly the query result set and no further filtering is
required. The algorithm is detailed in Figure 4.

After receiving the range queue � � (Figure 4), the al-
gorithm loads the indexing scheme presented in previous
section and performs an index lookup to locate the corre-
sponding bins. Since each bin has already been sorted on
the linear coordinate, we can efficiently perform another bi-
nary search on each in-memory bin and retrieve all of the
data points intersecting the query. The algorithm is shown
in Figure 5. Both algorithms are easily parallelizable by
placing bins into different disks and building localized in-
dexes. As the linear coordinate in each node will be non-
intersecting, each query can be executed on each node in
parallel.

� � � � ! " $ & ( ) * , - ( ) * 0 2 3 4 6 6 -

R-tree [7] is a spatial data structure analogous to a9 ;
tree used for storing multi-dimensional data points and

polygons. The data points and polygons are represented in
the tree by their minimal bounding rectangles. The root
of the R-tree is the minimal bounding rectangle which en-
closes all objects in the database. Each node in the tree
corresponds to the minimal bounding rectangle for all of
the objects in its subtree. R-tree is a popular data structure
that has been used in a wide variety of areas including com-

Input: Query region R.
Output: Range queue � � , whose elements are linear
ranges.
Set dimension = = , bits per dimension = > .

� � : Query queue for current level, each element corre-
sponding to query region.

�  : Query queue for next level.
Insert R into � � .
Set level = > , maxsize = user determined value.
while ( � � .size ?@ 0 && � � .size A maxsize) do

Range r;
while ((r = � � .pop) ?@ NULL) do

Intersect r with the center of each attribute at the
level bit and generate a set of subregions C .
for (each range > in S) do

if ( > is full subregion) then
convert > into a linear range D and designate
it as full range
Add D to � �

else
Add > to � 

� � = � 
level E E ;

if ( � � .size ?@ 0) then
Convert each remaining region > in � � into linear
range D and insert D into � � ;

Return � � ;

Figure 4. Range Query Algorithm.

mercial databases and scientific applications. Here we will
use the R-tree as the alternative data structure to compare
against our proposed approach. The sampling procedure on
an R-tree file is based on the query-first algorithm proposed
in[16]. The input is a multi-dimensional query region and a
sampling ratio. The R-tree index returns a queue that con-
sists of points that fall inside the query region. For each
point in the queue, we dynamically determine whether to
select it or not according to the sampling rate.

5 Experimental Evaluation

In this section, we examine the performance of our pro-
posed algorithm. The issues we evaluate here include: pre-
processing cost, query retrieval performance, the benefits of
binning, and scalability. We detail the experimental setup
next.

� � G � 6 3 , $ J

The experiments were conducted on following clusters
to measure performance across different interconnects.



Input: Range queue, � � , and Index, Id.
Output: Data elements queue, � �
Load Id into memory
Range r;
while ((r = � � .pop) �� NULL) do

Perform a range lookup on the Id and obtain corre-
sponding bins set �
for (every bin � 	 in � ) do

Load � 	 in memory, perform binary search
If the range is not a full range, filter out every non-
intersecting data point
Add the data point � to � �

Return � �

Figure 5. Index Lookup Algorithm

� C1-FastEthernet: This cluster consists of 16 Intel Pen-
tium III 900MHz single-CPU nodes. Each node in
this cluster has 512 MB memory and one 100GB disk.
We measure the application level I/O bandwidth to be
around 25MBytes/s from each disk. The nodes in this
cluster are connected using a 100Mbps switch.

� C2-Infiniband: This cluster consists of 16 compute
nodes with two 2.4GHz Intel Pentium 4 Xeon proces-
sors, 4 GB of memory, and 62 GB of local scratch
space. Unless specified otherwise, this cluster is used
for all the experiments. We measure the application
level I/O bandwidth to be 23MBytes/s from each disk.
The nodes in this cluster are connected using an 8Gbps
Infiniband interface.

Our implementation is written in C, and MPI is used for
message passing. The experiments were performed using
synthetic datasets. We conduct the experiments for sequen-
tial and parallel environments. In the experiments, we set
the size of each tuple to be 1024 bytes. Each coordinate
of a data element is represented by an integer, and thus is
4 bytes. The size of each stream window is  � � � � �

elements and the number of bins is � � � . With this set-
ting, the smallest bin has � data points (i.e., the size of the
smallest bin is � � � ). Although the experimental results
are obtained using synthetic datasets, the results will hold
for real datasets, as our sampling strategies do not depend
on the values of a data element.

� � � � 	 �  	 � � � � � � � � � � � �

This set of experiments compares the preprocessing cost
of our proposed linear clustering based index creation and
R-tree based creation both on sequential and parallel set-
ting. For both tests, we use a stream window with 1 Million
(1M) data elements. Figure 6 shows that in both sequen-
tial and parallel setting, the preprocessing cost of the R-tree

based scheme is 8-10 times higher than that of the proposed
Hilbert curve based scheme. For our targeted application
scenario, where there is constant influx of data, preprocess-
ing efficiency should be considered as an important factor
when choosing the appropriate middleware system to man-
age these datasets. The R-tree data structure is optimized
for ad-hoc insertions and updates, whereas our scheme is
designed for batch insertions. The high preprocessing cost
with the R-tree implementation also is a result of large num-
ber of page splits. The Hilbert curve based scheme uses in-
memory sorting to preorder the data points and avoid the
costly I/O operations. Consequently, one drawback of our
current implementation is its higher memory space require-
ment.

� �  ! # � 	 % & � � 	 � � * , . � � 	 2 � 	 4 , � � �

These experiments compare the query retrieval perfor-
mance of our proposed scheme and the R-tree based scheme
in both sequential and parallel setting. We use a stream
window with 1 Million (1M) data elements. Each coordi-
nate of a data element is randomly drawn from a range of
[ � 8 8 8 � � � : ] units and is represented in 10 bits. The multi-
dimensional query in this experiment is created randomly
and has a range of ; � � units in each dimension. In the ex-
periments, we vary the number of dimensions of the query
and of the dataset. Figure 7(a) shows the query response
time and Figure 7(b) shows the effective disk bandwidth
for a single node. The results show that our proposed
scheme achieves 3-5 times better performance than R-tree
based index and scales well with increasing dimensionality.
Figure 8 shows the response time and effective bandwidth
when we fix the number of dimensions to be � and vary
the size of multidimensional range query (i.e., the range
in number of units). The results show that both indexing
schemes suffer from very low effective bandwidth when the
query region is small. The main reason for the inefficiency
is the software system overhead. However, for the proposed
scheme, the sample retrieval performance increases signifi-
cantly, as the query size increases, and reaches close to < � =
of the raw disk bandwidth when the query size is around

; � � units per dimension.
Figure 9 shows the speedup as we vary the number of

nodes on the two clusters with different network configu-
rations. We used both low-dimensional (number of dimen-
sions = 4) and moderately high-dimensional (number of di-
mensions = 16) datasets. On the C1-FastEthernet cluster, as
the size of the query box increases, the speed up decreases.
The reason is that performance is limited by the bandwidth
of the inter-processor network. In our experimental set-
ting, the maximum network bandwidth was measured to
be around 11.6MB/sec, which is much lower than the disk
bandwidth achieved by a single node when the query size is
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Figure 6. Preprocessing Cost for the R-tree based and the Hilbert Curve based Schemes.
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Figure 7. Query Response Time and Effective Bandwidth with Varying Dimensionality

large. On the other hand, with a faster network such as In-
finiband, where the maximum network bandwidth is much
higher, the results show that the proposed architecture is
scalable, especially for high dimensional datasets. Our re-
sults show that the proposed algorithm can take advantage
of high-performance communication networks.

� � � � ! # ! & ( * , . � 1 # # 1 # 2 . , 6 7 9 ; = > ! A ! # ! 6 E
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The next set of experiments compares the performance
of sample generation of our proposed binning strategy with
the non-binning strategy and the R-tree based strategy.
When using the non-binning strategy, we still order the el-
ements within a stream window using a Hilbert curve map-
ping, but no bins are generated. That is, the entire stream
window is stored on one of the nodes in the system. In our
implementation we assign the stream windows to nodes in
round robin fashion. When a sampling query is executed,
the algorithm tests each element for sample membership.
Rather than reading one element at a time during the inclu-
sion test, we read a block of the data into a dedicated buffer
and test for inclusion in this buffer using the range query

execution strategy described in Section 4.4. As is seen in
Figure 10, our binning strategy achieves more than an or-
der of magnitude speedup over the non-binning and R-tree
based sampling strategies for small sample sizes. This is at-
tributed to the fact that the number of disk blocks that need
to be touched in the former is proportional to the size of
the sample. For larger sample requests the binning strategy
marginally outperforms the non-binning and R-tree based
strategies as our approach touches a fractionally smaller
number of disk blocks compared to the other strategies.

� � � 7 J 9 > 9 L 1 > 1 ( O Q 1 ( S U 9 ( 9 * ! ( 7 1 W !

The final set of experiments study the scalability of our
proposed algorithm with a larger dataset. In these exper-
iments, we used a query that covers the whole temporal
range of the dataset and the overall size of the dataset is
40GB. Figure 11 shows that the proposed algorithm scales
well as the size of the dataset is increased.
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6 Conclusion and Future Work

We have presented the design and implementation of an
algorithm to support sampling queries on large scale, mul-
tidimensional and dynamic data sets. The key contribution
of our work is 1) a novel application of the Hilbert space
filling curve to generate a locality-preserving linear map-
ping and ordering of multi-dimensional data and 2) the use
of geometric size bins for placement of data on disk for ef-
ficient sample generation. This scheme allows for sample
generation in time proportional to the size of the sample.
We further demonstrate the system is scalable. Experimen-
tal results show that the proposed approach is applicable for
ad-hoc temporal database queries. Our results demonstrate
good load balancing and speedup.

Future work includes several directions. First, we plan
to incorporate a sample quality evaluation function into our
framework so that we could support user-defined sampling
criteria. Second, we will obtain real query workloads and
evaluate our algorithm with respect to the end-application
performance improvement. Finally, we will investigate the
effect of dynamic workloads and design adaptive strategies
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to accommodate such cases.
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