
On Efficient Distributed Deadlock Avoidance for Real-Time and

Embedded Systems

César Sánchez∗ Henny B. Sipma∗ Zohar Manna∗

Venkita Subramonian† Christopher Gill†

∗Stanford University †Washington University
Computer Science Dept. Dept. of Computer Science and Engineering
Stanford, CA 94305 USA St. Louis, MO 63130 USA

{cesar,sipma,zm}@CS.Stanford.EDU {venkita,cdgill}@CSE.wustl.EDU

Abstract

Thread allocation is an important problem in dis-
tributed real-time and embedded (DRE) systems. A
thread allocation policy that is too liberal may cause
deadlock, while a policy that is too conservative limits
potential parallelism, thus wasting resources. However,
achieving (globally) optimal thread utilization, while
avoiding deadlock, has been proven impractical in dis-
tributed systems: it requires too much communication
between components.

In previous work we showed that efficient local thread
allocation protocols are possible if the protocols are pa-
rameterized by global static data, in particular by an
annotation of the global call graph of all tasks to be per-
formed by the system. We proved that absence of cyclic
dependencies in this annotation guarantees absence of
deadlock.

In this paper we present an algorithm to compute
optimal annotations, that is annotations that maximize
parallelism while satisfying the condition of acyclicity.
Moreover, we show that the condition of acyclicity is in
fact tight and exhibits a rather surprising anomaly: if
a cyclic dependency is present in the annotation of the
call graph and a certain minimum number of threads
is provided, deadlock is reachable. Thus, in the pres-
ence of cyclic dependencies, increasing the number of
threads may introduce the possibility of deadlock in an
originally deadlock free system.

∗This research was supported in part by NSF grants CCR-
01-21403, CCR-02-20134, CCR-02-09237, CNS-0411363, and
CCF-0430102, by ARO grant DAAD19-01-1-0723, and by
NAVY/ONR contract N00014-03-1-0939.

†Supported in part by NSF CAREER grant CCF-0448562.

1. Introduction

In this paper we study a problem common to several
forms of resource allocation in distributed real-time
and embedded (DRE) systems. We focus our study on
distributed middleware architectures, and in particular
on thread allocation in the presence of “nested upcalls.”
We use “thread” to mean an “execution context”, a
resource necessary to run a computation. We assume
that a dispatching mechanism (i.e., a reactor [1]) in each
distributed computational node manages access to a
local thread pool of a constant size that is fixed at de-
sign time. A nested upcall is produced when a method
running in reactor A invokes a remote method in reac-
tor B, which in turn invokes, possibly through further
calls, a method in A. Nested upcalls can be produced
in a variety of middleware implementations [1, 2, 3].
One common way to deal with nested upcalls is Wait-
OnConnection: every time a method is invoked, the
calling task holds on to its thread until the call re-
turns. Consequently, any subsequent invocation to
the same reactor—including nested upcalls—requires
a new thread to execute. A common goal in the design
of DRE systems is to calculate a bound on resources.
Provided with a fixed number of threads, this strategy
can lead to deadlocks. How to avoid these deadlocks is
the problem studied in this paper.

An execution of a system consists of a concurrent
flow of “tasks” (e.g., method upcalls) competing for
threads, which can lead to a classic deadlock situation.
Deadlock occurs when a set of tasks is in a “circu-
lar wait” state, where each task in the set is waiting
for a thread currently held by another task in the set
while locking a thread that is, in turn, needed by one
of the other tasks. The phenomenon of deadlock has

1-4244-0054-6/06/$20.00 ©2006 IEEE

been studied extensively in the context of computer
operating systems [4]. The two classical solutions are
deadlock prevention and deadlock avoidance.

Deadlock prevention is not possible for WaitOnCon-
nection because (1) threads can only be allocated to
one task a time, (2) a thread is held until the call chain
is finished, which may require subsequent threads in
the same and other reactors, and (3) a thread being
held by one task cannot be released to another task.

Deadlock avoidance methods keep the system in a
safe set of states where the circular chain of resource
contention that produces the deadlock does not occur.
Our work follows this approach. A classic deadlock
avoidance algorithm for non-distributed systems is Di-
jkstra’s Banker’s algorithm [5], which initiated much
follow-up research [6, 7, 8, 9] and is still the basis for
most current algorithms. Its key characteristic is the
use of a combination of static knowledge (the maxi-
mum amount of resources needed by each task) and
dynamic knowledge (the number of resources currently
available) to make its dynamic decisions about resource
allocation. This approach has been further refined in
deadlock avoidance algorithms for Flexible Manufac-
turing Systems (FMSs) [10, 11, 12, 13], which usually
incorporate more static knowledge about the processes
to maximize concurrency without sacrificing deadlock
freedom.

For distributed systems, on the other hand, it was
observed in [14, 15] that a general solution to dis-
tributed deadlock avoidance is impractical, since it re-
quires global atomic actions, or distributed synchro-
nization. In our previous work [16], however, we show
that efficient deadlock avoidance algorithms exist in the
particular case of systems in which the distributed call
graphs are nonrecursive and known a priori. For DRE
systems this is usually the case.

An efficient distributed deadlock avoidance algo-
rithm should access only local data at run-time. This
can be complemented, however, by static global data.
The protocols we proposed in [16] are parameterized
by annotations that are computed statically, based on
the call graphs. The efficiency (dispatching through-
put) and correctness (deadlock avoidance) depend on
these annotations. In [16] we established an annotation
condition that guarantees deadlock avoidance. The
first contribution of this paper is an algorithm to com-
pute annotations that satisfy the annotation condition
while maximizing thread utilization and thus through-
put. This algorithm appears in Section 4.

The second contribution of this paper, which ap-
pears in Sections 5 and 6, is a proof that the annota-
tion condition is tight: violating it compromises dead-
lock freedom. Moreover we show that if the annota-

tion condition is violated, the following anomaly1 can
occur: a system that is deadlock free with a certain
number of threads can reach deadlock with a larger
number of threads. This is clearly undesirable from
an engineering perspective, since it is common practice
to “overprovision”, that is to assign extra resources to
seek higher confidence that safety and performance re-
quirements will be met. Therefore, to avoid this situa-
tion, the annotation condition must be satisfied.

Sections 2 and 3 summarize the computational
model and present the Annotation Theorem. Finally,
Section 7 presents our conclusions and describes possi-
ble lines of further research.

2. Model of Computation

We model a DRE system S : 〈R,G〉 as a set of
reactors R : {r1, . . . , rk} and a set of call graphs
G : {G1, . . . , Gm}. The reactors model the distributed
components where the local thread allocation is man-
aged and the computations are performed. The call
graphs model the flows of possible computations as fi-
nite trees 〈N = (M × R), E〉, where each node (f, r)
in N consists of a method name f (from a set M of
possible methods), and the reactor r that executes f .
We use the notation n : 〈f :r〉 to represent that node n
consists of method f that runs in reactor r. An edge
in E between 〈f : r〉 and 〈g : s〉 represents that f , in
the course of its execution in r may invoke method g
in reactor s.

Each reactor r maintains a set of local variables Vr

and has a number of preallocated threads (represented
by the constant Tr ≥ 1). Vr also contains a local vari-
able tr whose value represents the number of available
threads in r. Initially, in every reactor r, tr = Tr.

A protocol implements the distributed deadlock
avoidance algorithm and consists of two pieces of code:
one that runs when an incoming invocation requests a
new thread, and another that executes when a method
has terminated and the thread can be released. The
protocol runs in the reactor where the corresponding
method resides, and can be different for each node in
each call graph. In particular, two different methods
that run in the same reactor can run different proto-
cols.

Using these protocols, the invocation of a method
corresponds to the execution of the abstract program
shown in Fig. 1. The entry section, labeled �0, checks a
condition on the local variables of the reactor to ensure
the availability of the thread and the safety of its as-
signment. If the condition is satisfied, then some local

1This anomaly resembles the Belady anomaly [17] that as-
signing more resources can degrade a system’s performance.

n ::

⎡
⎢⎢⎢⎢⎢⎢⎣

�0 :
}

entry section

�1 : f()
}

method invocation

�2 :
}

exit section

�3 :

⎤
⎥⎥⎥⎥⎥⎥⎦

Figure 1. Protocol schema for node n : 〈f :r〉.

variables are modified accordingly, and the task enters
the method invocation section, labeled �1. Upon termi-
nation (which might require the return of some remote
calls), the exit section, labeled �2 is run, which updates
local variables to record the release of the thread. The
entry and exit sections are executed atomically.

Multiple instances of these protocols can be running
concurrently in each reactor. Each instance is called a
task. Formally, the state of a task is modeled as a
labeled call graph:

Definition 1 (Labeled Call Graph). A labeled call
graph (G, γ) is an instance of a call graph G ∈ G and a
labeling function γ : NG �→ {⊥, �0, �1, �2, �3} that maps
each node in the call graph to a protocol location, or to
⊥ for method calls that have not been performed yet.

For example, when a new task is spawned, the
corresponding call graph G is labeled as follows:
γ(root(G)) = �0, and γ(n) = ⊥ for the rest of the
nodes. The subtree of an annotated call graph models
the state of a sub-task. We use “task” to refer to both
sub-tasks and proper tasks. If the root of a task is la-
beled � we say that the task is in �. A task is said to
be active if it is in �1 or in �2, and waiting if it is in �0.

The state σ : 〈I, sR〉 of a system S consists of a
set I of existing (proper) tasks and valuations sR for
the local variables Vr of all reactors. The initial state
of a system Θ entails that I = ∅ (since there is no
task running initially in the system) and the initial
conditions Θr for all reactors r. In particular Θr entails
that tr = Tr, since all threads are initially available.

A run of a system is an infinite sequence of states
σ0, σ1, . . . such that (1) σ0 is an initial state (σ0 � Θ)
and (2) every state is obtained from a previous state
by a system’s transition, i.e., for every i, σi+1 results
from σi by taking one of the following transitions τ :

1. Creation: A new task is added to I, with all
nodes labeled ⊥.

2. Method invocation: a sub-task labeled ⊥, and
whose parent task is labeled �1, changes to �0.

3. Method entry: a waiting task whose enabling
condition, according to the protocol for its root
node, is satisfied changes from �0 to �1 and updates
the variables according to the protocol.

4. Method execution: a task in �1 all of whose
descendants are labeled ⊥ or �3 changes its label
to �2.

5. Method exit: a task in �2 executes the action
corresponding to the exit section of its protocol
and changes the label to �3.

6. Deletion: a proper task in �3 is removed from I.

7. Silent: the state of the system is preserved.

All transitions except Creation and Silent are called
progressing transitions, since they correspond to the
progress of some existing task. Note that each task
only has a finite number of reachable labelings before
it is deleted. Moreover, no labeling is visited twice.

We assume that the protocols satisfy the following
two conditions:

1. The effect of the entry and exit sections on the
local variables of Vr cancel each other.

2. If the entry condition of some node n is disabled,
after the execution of the entry by some other task,
it is still disabled.

These two properties state that all the threads granted
to a task are returned when it finishes, and that the
assignment of threads to a different task cannot help a
waiting task to gain access to its desired resources. In
particular, spawning new tasks cannot help deadlocked
tasks. We are now ready to define deadlock formally :

Definition 2 (Deadlock). A state σ is called a dead-
lock if some task is waiting, but only non-progressing
transitions are enabled.

If a deadlock is reached, the tasks involved cannot
progress. Intuitively, each of the tasks has locked some
threads that are necessary for other tasks to complete,
but none of them has enough resources to terminate.

Deadlock-avoidance Protocols In [16] we intro-
duced protocols that avoid deadlock states and proved
their correctness. These protocols are based on annota-
tions of call graphs, which are extra static information
attached to the call graph nodes and inspected in the
protocols. Formally, let N =

⋃
i Ni be the (disjoint)

union of the nodes in the call graphs; an annotation is
a map α : N �→ N. Examples of possible annotations
are the height of the node in the call graph, or the
local-height (maximum number of nodes that reside in
the same reactor in any descending path).

The first protocol, Basic-P, is shown in Fig. 2 (see
also [16]). In the entry section, access is granted only if
the number of resources indicated by the annotation is
less than or equal to the number of threads available.
Note that when access is granted, not all resources—
as indicated by the annotation—are immediately re-
served, since tr is only decremented by one.

Basic-P can be optimized by exploiting the obser-
vation that tasks that need only one thread can always
terminate once the thread is granted, independently
of other tasks. The protocol Efficient-P, shown in
Fig. 3 (see also [16]) uses an extra local variable pr to
keep track of the potentially available threads, while
still using tr for the number of threads actually avail-
able.

3. The Annotation Theorem

Deadlock is caused by cyclic dependencies. In gen-
eral, the interference between different concurrent tasks
has to be considered. We introduce the notion of a
global call graph to capture all possible interferences:

Definition 3 (Global Call Graph). Given a system
S : 〈R, {G1, . . . , Gm}〉 and an annotation function α,
the global call graph GS,α : 〈N,→, 〉 consists of:

• N :
⋃

i Ni, the union of all call graph nodes;
• →:

⋃
i →+

i , the union of the descendant relations
of all call graphs Gi, where →+

i is the transitive
closure of →i;

• is defined as:

{(v, w) | α(v) ≥ α(w) and reactor(v)=reactor(w)}
where v and w may belong to different call graphs.

Example 1. Consider the following call graphs (func-
tion names are omitted for clarity):

G1 : n11 r n12 t n13 r n14 s

G2 : n21 r n22 s n23 r

Consider the annotation α(n11) = 3, α(n12) =
α(n13) = α(n14) = 1, and α(n21) = 2, α(n22) =

n ::

⎡
⎢⎢⎢⎢⎣

�0 :
[
when α(n) ≤ tr do

tr--

]

�1 : f()
�2 : tr++
�3 :

⎤
⎥⎥⎥⎥⎦

Figure 2. Protocol Basic-P for node n : 〈f :r〉.

α(n23) = 1. The following figure shows the global call
graph where the solid lines indicate edges in → and the
dotted lines indicate edges in . Transitive edges are
omitted for clarity.

n11 r
3

n12 t
1

n13 r
1

n14 s
1

n21 r
2

n22 s
1

n23 r
1

Definition 4 (Dependency Relation). Given a global
call graph GS,α : 〈N, →, 〉, v ∈ N is dependent on
w ∈ N , written v 	 w, if there exists a path from v to
w consisting of edges in → ∪ with at least one edge
in →.

For instance, in the global call graph of Exam-
ple 1 above, n11 	 n22, but n11 �	 n21. A global
call graph has a cyclic dependency if for some node
v, v 	 v. The global call graph of Example 1 con-
tains the following cyclic dependency: n13 	 n13, since
n13 → n14 n22 → n23 n13. The following theorem
justifies that the protocols introduced above are indeed
distributed deadlock avoidance algorithms:

Theorem 5 (Annotation Theorem, from [16]). Given
a system S and annotation α, if the global call graph
GS,α does not contain any cyclic dependencies, then
both Basic-P and Efficient-P used with α guarantee
absence of deadlock.

A system S with annotation α satisfies the annota-
tion condition if there is no cyclic dependency in its
global call graph GS,α.

4. Minimal Annotations

In this section we show how to compute globally
acyclic annotations efficiently.

An annotation α is called minimal if it does not
have dependency cycles and reducing the value of the
annotation for one node produces a dependency cycle.
It is easy to see that in a minimal annotation decreasing
the value of any number of nodes while preserving the
rest also generates a dependency cycle. Moreover, the
annotation of any leaf in a minimal annotation is 1.

To compute a minimal annotation, we iterate
through the nodes in the global call graph in a reverse
topological order (with respect to the local descendant
relation →), i.e., we visit a node m before a node n
if n → m. At the iteration for node n we compute
the minimum value of α(n) such that no cycle exists
among the nodes already visited. When n is visited,
the following sets are computed:

n ::

⎡
⎢⎢⎢⎢⎣

�0 1 :
[
when 1 ≤ tr do

tr--

]

�1 1 : f()
�2 1 : tr++
�3 1 :

⎤
⎥⎥⎥⎥⎦ n ::

⎡
⎢⎢⎢⎢⎣

�0 2 :
[
when α(n) ≤ pr ∧ 1 ≤ tr do

〈pr--, tr--〉
]

�1 2 : f()
�2 2 : 〈tr++, pr++〉
�3 2 :

⎤
⎥⎥⎥⎥⎦

If α(n) = 1 If α(n) > 1

Figure 3. The protocol Efficient-P for node n : 〈f :r〉.

1: {Order N in reverse topological order}
2: {Let Reactn = {m | reactor(m)=reactor(n)}}
3: for n = n1 to n|N | do
4: if n is a leaf then
5: Belown ← ∅

6: Candn ← ∅

7: α(n) ← 1
8: else {n has D = Descn direct descendants}
9: Belown ← ∅

10: new = D
11: repeat
12: Belown ← Belown ∪ new
13: new ← ⋃

i∈Belown
(Belowi ∪ Reachi)

14: until new ⊆ Belown

15: Candn ← Belown ∩ Reactn

16: α(n) ← 1 + max {α(m)|m ∈ Candn}
17: end if
18: Reachn ← ∅

19: for all m visited, with m ∈ Reactn do
20: if α(m) ≤ α(n) then
21: Reachn ← Reachn ∪ {m}
22: end if
23: if α(n) ≤ α(m) then
24: Reachm ← Reachm ∪ {n}
25: end if
26: end for
27: end for

Figure 4. Algorithm for minimal annotations

1. The set Descn = {m | n → m} of all the direct
descendants of n.

2. The set Belown containing all nodes that can be
reached from descendants of n by any sequence of
→ or :

Belown = {m | ∃d ∈ Descn, d(→ ∪)∗m}

3. Let Reactn be the set of nodes residing in the same
reactor as n. We define Candn as the set of all
possible nodes (candidates) that can precede n in

a cyclic dependency:

Candn = {m | m ∈ Belown, and m ∈ Reactn}.
To see that every candidate to precede n in a cyclic

dependency belongs to Candn, consider a cycle C that
contains n; clearly the node m preceding n in C has
to reside in the same reactor, since according to the
reverse topological order, no ancestor of n has been
visited. On the other hand, the successor s of n in C
is either: (1) a descendant of n (which is covered in
Belown) or (2) resides in the same reactor as n. Case
(2) is impossible since otherwise m n s and, by re-
moving n we can form a cycle for s 	 s without using
n. This contradicts the inductive hypothesis that prior
to visiting n the annotation has no cycles.

Finally, to break condition (1) we prevent m n for
all candidates m from Candn by assigning the following
annotation for n:

α(n) = 1 + max{α(m) | m ∈ Candn}.
Note that with this annotation n does not appear in
any cycle with nodes visited previously. Moreover,
by picking a value smaller than α(n) a cycle can be
created, which justifies the minimality of the annota-
tion. Different minimal annotations can be computed
by picking different iteration orders.

Even a näıve implementation of this algorithm that
computes the Belown, Descn and Candn sets from
scratch at every iteration exhibits a low polynomial
complexity: Fig 4 shows a direct implementation.
Lines 8-13 compute the set of nodes that are reachable
from the direct descendants of n using any number of
→ or , which takes less than |N |2 steps. Lines 18-25
maintain in Reachn the set of nodes reachable with ,
which takes less than |N | steps. Therefore, the pro-
gram finishes in O(|N |3). Note that this computation
is performed at design time, and the annotations cal-
culated are used but not changed at run-time.

This off-line approach could in fact be applied on-
line at a longer time scale than that of the functions
themselves, for example as part of the DRE system
admission control for new functionality at run-time.

5. Cycles and Unavoidable Deadlocks

This section introduces preliminary definitions that
will be used in Section 6 to prove that deadlocks are
always reachable if the Anotation Condition is not sat-
isfied.

Dependency Cycles A cyclic dependency can occur
by a sequence of nodes v1, . . . , vk, with v1 = vk such
that:

1. for all i, vi → vi+1 or vi vi+1, and
2. for some j, vj → vj+1.
Without loss of generality, since both relations →

and are transitive, if one such sequence exists, then
there is another sequence such that edges from → and

alternate:

Definition 6 (Dependency Cycle). A depen-
dency cycle consists of two sequences of nodes
〈[A1, . . . , Ak], [B1, . . . , Bk]〉, of the same length, such
that for all i there is an → edge from Ai to Bi and a

edge from Bi to Ai+1 (here + stands for addition
modulo k + 1):

A1 A2 A3

. . .

Ak

B1 B2 B3 Bk

The nodes Ai are called A-nodes or “above” nodes,
and nodes from B are called Bi-nodes or “below”
nodes. We say that a dependency cycle is simple if
all A-nodes reside in a different reactor.

Lemma 7. If a global call graph GS,α has a depen-
dency cycle, then it also has a simple dependency cycle.

Proof. By contradiction, assume that there is a de-
pendency cycle but no simple dependency cycle. Let
C = 〈[A1, . . . , Ak], [B1, . . . , Bk]〉 be one dependency cy-
cle with the minimum number of pairs of A-nodes that
reside in the same reactor. In C there are Ai and Aj

that reside in the same reactor (w.l.o.g. we assume
j > i). Then, either α(Ai) ≥ α(Aj) or α(Aj) ≥ α(Ai).
In the first case:

Ai−1 Ai Aj

Bi−1 Bi Bj

by transitivity of , Bi−1 Aj and therefore the nodes

〈 [A1, . . . , Ai−1, Aj , . . . , Ak],
[B1, . . . , Bi−1, Bj . . . , Bk]〉

form a dependency cycle of strictly fewer pairs of
A-nodes running in the same reactor. Similarly, if
α(Aj) ≥ α(Ai), as shown in:

Ai Aj−1 Aj

Bi Bj−1 Bj

By transitivity Bj−1 Ai, and then the sub-graph
〈[Ai, . . . , Aj−1], [Bi, . . . , Bj−1]〉 forms a dependency cy-
cle with fewer coincidences. In both cases the minimal-
ity of the dependency cycle C is contradicted. There-
fore there is a simple dependency cycle, as desired.

The following definition models the sequence of calls
that a task must perform to enter a node and execute
the corresponding method:

Definition 8 (Path). A path in a call graph Gj is a
sequence of nodes, starting from the root, that follows
the descendant relation →j. The path leading to a node
n is the ordered sequence of its ancestors. The nodes
n1, . . . , nk−1 are called internal nodes of the path π :
(n1, . . . , nk−1, nk).

Unavoidable deadlocks We introduce the notion
of “unavoidable deadlocks” to aid in reasoning about
system states that will inevitably reach a deadlock.
An unavoidable deadlock state will reach a deadlock
if the tasks involved are scheduled to execute, so either
the tasks starve or the system will reach a deadlock,
but they cannot progress to termination. Unavoidable
deadlocks are easier to produce in proofs than dead-
locks.

Definition 9 (Unavoidable Deadlock). A state σ with
tasks I = {Pi} is an unavoidable deadlock state if no
Pi terminates in any state reachable from σ.

An alternative characterization is given by:

Lemma 10. If in state σ no task can individually pro-
ceed to completion when continuously scheduled, then
σ is an unavoidable deadlock.

Proof. (Sketch) We show that if σ is not an unavoidable
deadlock state, then there is a task that can proceed
to termination when continuously scheduled. Consider
the shortest run extending σ for which an existing task
terminates. Clearly, there is no creation of new tasks
since we could produce a strictly shorter run by remov-
ing all the corresponding transitions. If all transitions
in the extension are related to the terminating task P ,
we are done. If not, pick one of the transitions τ that
is not related to P ; since τ does not increase resources,

all transitions that are subsequently enabled in the run
were enabled had τ not been taken. Therefore, we can
produce a shorter run by removing τ .

6. Producing Deadlocks

In this section we show that in every scenario whose
global call graph contains a dependency cycle, given
enough resources, a deadlock can be reached.

Example 2 below shows a scenario with an annota-
tion and initial resources that does not lead to a dead-
lock in spite of the presence of a cyclic dependency.
We then increase the reactor’s resources by just enough
threads to produce a deadlock.

Given a system consisting of a global call graph with
a dependency cycle we prove the existence of resources
such that some run leads to deadlock. We calculate
these resources by generating a system’s run such that
when all the A-nodes in a simple dependency cycle are
entered by tasks, no more tasks can visit any A-node,
and consequently no B-node can be visited either. In
effect, the tasks cannot proceed beyond the A-nodes
thus reaching an unavoidable deadlock state.

We construct the run as follows. Let
〈[A1, . . . , Am], [B1, . . . , Bm]〉 be a simple depen-
dency cycle in a global call graph G, for the (distinct)
reactors r1, . . . , rm ⊆ R. Let π1, . . . , πm be the paths
leading to the A-nodes A1, . . . , Am. We build an
execution by spawning ki tasks for each path πi and
scheduling the ki tasks to gain access to the nodes in
πi simultaneously.

During the construction of this execution we gener-
ate a set of constraints (on the possible values of ki and
the total number of threads {Tr}) in order for all the
sets of tasks ki to be able to reach their target node Ai

and exhaust the threads after they gain access to Ai’s
method section. A global constraint consisting of the
conjunction of all these intermediate constraints cap-
tures for which values the run exists. Finally, we prove
that this global constraint is satisfiable. Each solution
corresponds to an actual execution of the system that
reaches an unavoidable deadlock.

The first constraints capture the properties that the
sets of resources are not empty and that at least one
task follows each path:

∧
r

Tr ≥ 1
∧
πi

ki ≥ 1 (1)

A (macro) step in the execution consists of all the
ki tasks that follow some path πi entering the method
section of a node n in πi. In terms of the computational
model described in Sec. 2 above, this corresponds to ki

consecutive executions of the Method entry transi-
tion. We use (n, ki) to denote that all the ki tasks gain
access to the method section of node n, and say that
the ki tasks “visit” node n. We use H to represent the
set of all visits during an execution:

H
def= {(n, ki) | n belongs to path πi}.

Observe that, in principle, the same node n could be-
long to different paths, if they share a common prefix,
and therefore there can be more than one visit to the
same node n (for different ki’s).

The steps of the paths can be interleaved in many
ways, each of which leads to different runs and is cap-
tured by different constraints. We consider any total
order < on H that respects the topological order of
each path, that is, if n appears before m in path πi

then (n, ki) < (m, ki). Also, we say that a total order
is admissible if it also satisfies that every A -node is the
last node visited residing in its reactor (i.e., if (n, kj)
resides in ri then (n, kj) < (Ai, ki).) Finally, we define
(Hr, <r) to be the projection of (H, <) for nodes that
reside in reactor r:

Hr
def= {(n, ki) | (n, ki) ∈ H and reactor(n)= r}.

Note that the order < is admissible precisely when ev-
ery Ai is maximum in <ri .

The set of constraints that implies the unavoidable
deadlock is reached is:

• Threads are exhausted: For all reactors ri all
threads are exhausted after the ki tasks visit Ai

ψi : Tri −
∑

(n,kj)∈Hri

kj = α(Ai) − 1. (C1)

Note that
∑

(n,kj)∈Hri
kj corresponds to the to-

tal number of threads reserved in this execution
in reactor r. This constraint forces the remaining
threads in r to be α(Ai) − 1, and therefore insuf-
ficient for any subsequent visit to Bi−1.

• The run is feasible: For all intermediate nodes
(n, ki) ∈ H , with n �= Ai the protocol allows
thread allocation for all ki tasks. Assuming that
node n resides in r, this is expressed by

ϕ(n,ki) : Tr −
∑

(m,kj)≤r(n,ki)

kj ≥ α(n) − 1. (C2)

To show that an unavoidable deadlock is reachable it
is sufficient to show that the following global constraint
– together with (1) – is satisfiable:

Φ : (
∧

ν∈H

ϕν) ∧ (
∧

ψi)

A solution to Φ provides the initial resources and the
number of tasks following each path that produce the
unavoidable deadlock. To see that Φ is satisfiable we
first simplify (C1) as:

Tri =
∑

(n,kj)∈Hr

kj + α(Ai) − 1. (C1’)

This equation gives a means to compute the value of Tri

once all the ki values (and the order <) are determined.
Since α(Ai) ≥ 1 and ki ≥ 1, then Tri ≥ 1 and this
equation is consistent with (1).

Now, using (C1’) we simplify the constraint (C2)
corresponding to ϕ(n,ki) to:

∑
(m,kj)>r(n,ki)

kj ≥ α(n) − α(Ai). (C2’)

The following example illustrates the use of this
technique to construct a run.

Example 2. Consider a scenario with the following
call graphs G1 and G2 (function names are again omit-
ted), where we also display the annotations and the cor-
responding global call graph:

G1 : n11 t
1

n12 r
1

n13 s
1

G2 : n21 t
1

n22 s
1

n23 r
1

This global call graph has a simple dependency cy-
cle 〈[n12, n22], [n13, n23]〉. If the resources allocated are
Tr = 1, Ts = 1 and Tt = 1 no deadlock is reachable.
To see this, it is enough to observe that only one task
can be granted access to either node n11 or n21, so the
facts that Tt = 1 and that these nodes have annotation
1 serialize the access to the rest of the nodes in the
call graphs. This serialization actually breaks the cyclic
contention expressed by the annotation condition.

However, we show that allocation of more reactor
threads (by increasing Tt) could lead to a deadlock. We
illustrate this now using the technique outlined above.
The two paths leading to A-nodes are π1 = (n11, n12)
and π2 = (n21, n22). Let k1 denote the number of tasks
following π1 and k2 following π2. The set of visits is:

H = {(n11, k1), (n12, k1), (n21, k2), (n22, k2)}.

We pick the following admissible total order <, that
respects the topological order of π1 and π2 and for which
the A-nodes are the last visits of their reactors:

(n11, k1) < (n21, k2) < (n12, k1) < (n22, k2).

Consequently, the set of constraints is:

Tt − k1 ≥ α(n11) − 1
Tt − k1 − k2 ≥ α(n21) − 1
Tr − k1 = α(n12) − 1
Ts − k2 = α(n22) − 1

Simplifying with the numerical values of the anno-
tation α and using the substitutions (C1’) and (C2’):

Tt − k1 ≥ 0
Tt − k1 − k2 ≥ 0

Tr = k1

Ts = k2

This system is clearly satisfiable, as shown by picking
k1 = k2 = 1, and Tr = 1, Ts = 1 and Tt = 2. In other
words, the following sequence leads to an unavoidable
deadlock: (1) let resources be Tr = 1, Ts = 1 and Tt =
2; (2) two tasks are spawned, one instance (P1) of call
graph G1 and another (P2) of call graph G2; (3) P1

advances through n11, and then P2 advances to n21;
(4) finally, P1 advances to n12 and P2 enters n22. At
this point tr = ts = 0, and consequently none of the
tasks can proceed independently to completion, so the
deadlock is unavoidable. The execution of this example
is depicted graphically in Fig. 5.

The previous discussion shows that if we violate the
annotation condition, even if we come up with a set
of resources (Tr = 1, Ts = 1 and Tt = 1) that avoids
deadlock, if we allocate more resources (Tr = 1, Ts = 1
and Tt = 2) there is a possibility of deadlock.

The following example shows a more sophisticated
scenario, were paths leading to the nodes causing the
deadlock have common ancestors:

Example 3. Consider a scenario with a single call
graph G with annotations α(n1) = 3, and α(n2) =
α(n3) = α(n4) = α(n5) = α(n6) as we show in the
following global call graph:

n2 t
1

n3 r
1

n4 s
1

n1 r 3

n5 s
1

n6 r
1

There is a simple dependency cycle
〈[n3, n5], [n4, n6]〉, which generates the paths
π1 : (n1, n2, n3) and π2 : (n1, n5). Path π1 rep-
resents the sequence of nodes that are visited prior to
n3, while path π2 contains the sequence ending in n5.
Observe that node n1 is shared among the two paths.

Let k1 tasks follow path π1 and k2 tasks follow
π2. The set of visits for these two paths is H =
{(n1, k1), (n2, k1), (n3, k1), (n1, k2), (n5, k2)}. One ad-
missible total order is: (n1, k1) < (n2, k1) < (n1, k2) <
(n5, k2) < (n3, k1). This order corresponds to the run
displayed in Fig 6.

n11 t
1•••

n12 r
1

n13 s
1

n21 t
1◦◦◦

n22 s
1

n23 r
1

n11 t
1•••

n12 r
1

n13 s
1

n21 t
1◦◦◦

n22 s
1

n23 r
1

n11 t
1•••

n12 r
1

n13 s
1

n21 t
1◦◦◦

n22 s
1

n23 r
1

(a) Task sets k1 and k2 are spawned. (b) All k1 visit n11. (c) All k2 visit n21.

n11 t
1

n12 r
1•••

n13 s
1

n21 t
1◦◦◦

n22 s
1

n23 r
1

n11 t
1

n12 r
1•••

n13 s
1

n21 t
1

n22 s
1◦◦◦

n23 r
1

(d) All k1 tasks visit A1 = n12. (e) k2 visits A2 = n22.

Figure 5. The run constructed in Example 2. The k1 tasks are denoted by •••and the k2 tasks by ◦◦◦.

n2 t
1

n3 r
1

n4 s
1

n1 r 3
•••
◦◦◦

n5 s
1

n6 r
1

n2 t
1

n3 r
1

n4 s
1

n1 r 3
•••

◦◦◦
n5 s

1
n6 r

1

n2 t
1•••

n3 r
1

n4 s
1

n1 r 3

◦◦◦
n5 s

1
n6 r

1

(a) Task sets k1 and k2 are spawned. (b) All k1 visit n1. (c) All k1 visit n2.

n2 t
•••1

n3 r
1

n4 s
1

n1 r 3

◦◦◦
n5 s

1
n6 r

1

n2 t
1•••

n3 r
1

n4 s
1

n1 r 3

n5 s
◦◦◦1

n6 r
1

n2 t
1

n3 r
1•••

n4 s
1

n1 r 3

n5 s
1◦◦◦

n6 r
1

(d) All k2 tasks visit n1. (e) k2 visit A2 = n5. (f) k1 visit A1 = n3.

Figure 6. The run constructed in Example 3.

The corresponding set of constraints is:

Tr − k1 ≥ α(n1) − 1
Tt − k1 ≥ α(n2) − 1

Tr − k1 − k2 ≥ α(n1) − 1
Ts − k2 = α(n5) − 1

Tr − (k1 + k2) − k1 = α(n3) − 1

which rewrite, according to (C1’) and (C2’), into:

k2 + k1 ≥ 2
Tt − k1 ≥ 0

k1 ≥ 2

Ts = k2

Tr = k1 + k2 + k1

This system of equations is clearly satisfiable. One
possible solution is k1 = 2, k2 = 1, and Tr = 5, Ts = 1,
Tt = 2. In other words, if the reactors r, s and t have
initially available 5, 1 and 2 threads (resp.), then 2
tasks can be spawned to follow the path π1, and 1 to
follow π2 which causes a deadlock.

If a scenario violates the annotation condition a
deadlock is possible:

Theorem 11. If an annotation has dependency cycles
then given enough resources a deadlock is reachable.

Proof. Let S be a system and α an annotation such
that the global call graph GS,α has dependency cycles.
Consider a simple cycle C, which by Lemma 7 always
exists. There is an admissible order for visiting the
nodes in C: the order < where first all internal nodes
of every path πi are visited in topological order, and
then all Ai are visited is admissible.

Using any admissible order the generated set of con-
straints (C1’) and (C2’) is satisfiable. The following
values of ki and Tr satisfy all the equations: (1) if a re-
actor r does not appear in any equation then let Tr = 1.
(2) Take ki to be the largest value of the right hand side
of any formula ϕ(n,ki) where ki appears. This way, all
(C2’) are satisfied. (3) Compute the values of Tri using
(C1’). (4) Finally, if some reactor r is visited in some

intermediate node but no Ai resides in r, simply pick
Tr to be the addition of all other elements appearing in
all equations involving Tr. All these are of type (C2)
which are then satisfied.

Using the same construction we can show that Φ is
still satisfiable even if we add extra constraints of the
form Tr > c for constants c. Therefore, given any set
of resources, a scenario with reachable deadlocks can
always be built by allocating more resources.

7. Conclusions

We have presented an efficient method to compute
optimal annotations that meet the annotation condi-
tion. We have also shown that the annotation condi-
tion captures the essence of deadlock avoidance: if this
condition is violated then by increasing the resources
of a deadlock free system a deadlock can be reached.

The deadlock avoidance schema presented here as-
sumes that call graphs do not have cycles. Even though
this is still useful for DRE systems, it is an impor-
tant open problem to see under which conditions cyclic
global call graphs, for example with simple forms of
recursion, can be handled. It is also interesting to
see to what extent these techniques can be applied to
FMSs, where efficient variations of (centralized) dead-
lock avoidance have been developed in recent years.

References

[1] D. C. Schmidt, M. Stal, H. Rohnert, and
F. Buschmann, Pattern-Oriented Software Archi-
tecture: Patterns for Concurrent and Networked
Objects, Volume 2. John Wiley & Sons, 2000.

[2] D. C. Schmidt, “Evaluating Architectures for
Multi-threaded CORBA Object Request Bro-
kers,” CACM Special Issue on CORBA, vol. 41,
no. 10, 1998.

[3] V. Subramonian, G. Xing, C. Gill, C. Lu,
and R. Cytron, “Middleware specialization for
memory-constrained networked embedded sys-
tems,” in Proc. RTAS’04, 2004.

[4] A. Silberschatz, P. Galvin, and G. Gagne, Operat-
ing System Concepts. John Wiley & Sons, 2003.

[5] E. W. Dijkstra, “Cooperating sequential pro-
cesses,” Technological University, Eindhoven, the
Netherlands, Tech. Rep. EWD-123, 1965.

[6] A. N. Habermann, “Prevention of system dead-
locks,” CACM, vol. 12, pp. 373–377, 1969.

[7] J. W. Havender, “Avoiding deadlock in multi-
tasking systems,” IBM Sys. Journal, vol. 2, pp.
74–84, 1968.

[8] R. C. Holt, “Some deadlock properties of com-
puter systems,” ACM Computing Surveys, vol. 4,
pp. 179–196, 1972.

[9] T. Araki, Y. Sugiyama, and T. Kasami, “Com-
plexity of the deadlock avoidance problem,” 2nd
IBM Symp. on Math. Foundations of Computer
Sci., pp. 229–257, 1971.

[10] S. A. Reveliotis, M. A. Lawley, and P. M. Ferreira,
“Polynomial-complexity deadlock avoidance poli-
cies for sequential resource allocation systems,”
IEEE Trans. on Automatic Control, vol. 42,
no. 10, pp. 1344–1357, 1997.

[11] Z. A. Banaszak and B. H. Krogh, “Deadlock avoid-
ance in flexible manufacturing systems with con-
currently competing process flow,” IEEE Trans.
on Robotics and Automation, vol. 6, no. 6, pp.
724–734, 1990.

[12] K. Xing, B. Hu, and H. Chen, “Deadlock avoid-
ance policy for petri-net modeling of flexible man-
ufacturing systems with share resources,” IEEE
Trans. on Automatic Control, vol. 41, no. 2, pp.
289–295, 1996.

[13] P. M. Merlin and P. J. Schweitzer, “Deadlock
avoidance in store-and-forward networks–I: Store-
and-forward deadlock,” IEEE Trans. on Comm.,
vol. 28, no. 3, 1980.

[14] M. Singhal and N. G. Shivaratri, Advanced
Concepts in Operating Systems: Distributed,
Database, and Multiprocessor Operating Systems.
McGraw-Hill, 1994.

[15] M. Singhal, “Deadlock detection in distributed
systems,” IEEE Computer, vol. 22, no. 11, pp.
37–48, 1989.

[16] C. Sánchez, H. Sipma, V. Subramonian, C. Gill,
and Z.Manna, “Thread allocation protocols for
distributed real-time and embedded systems,” in
Proc. of FORTE’05, 2005.

[17] L. A. Belady, R. A. Nelson, and G. S. Shedler, “An
anomaly in space-time characteristics of certain
programs running in a paging machine,” CACM,
vol. 12, no. 6, pp. 349–353, 1970.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

