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Abstract

The ability to understand the factors contributing to
parallel program performance are vital for understand-
ing the impact of machine parameters on the perfor-
mance of specific applications. We propose a method-
ology for analyzing the performance characteristics of
parallel programs based on message-passing traces of
their execution on a set of processors. Using this
methodology, we explore how perturbations in both sin-
gle processor performance and the messaging layer im-
pact the performance of the traced run. This analysis
provides a quantitative description of the sensitivity of
applications to a variety of performance parameters to
better understand the range of systems upon which an
application can be expected to perform well. These per-
formance parameters include operating system inter-
ference and variability in message latencies within the
interconnection network layer.

1. Introduction

The primary causes of performance degradation
within distributed memory parallel computers are the
latency of the interconnection network and perturba-
tions to applications due to interactions with the op-
erating system and other tasks. One technique for
analyzing the performance characteristics of a distrib-
uted memory parallel program is to simulate perturba-
tions in message latency and processor compute time,
and propagate these perturbations through subsequent
messages and computations to observe their effect on
application runtime. This is easily modeled as a dis-
crete event simulation, and many well defined tech-
niques exist for building and analyzing such mod-
els [7, 5]. Unlike a general discrete event model, we

chose to directly analyze the message-passing graph
that results from the execution of the program on a set
of nodes. In this paper, we introduce a performance
analysis methodology that is developed to study these
perturbations. This allows us to greatly simplify the
model and analysis code, and provides a simple frame-
work for defining the constraints under which the ana-
lyzer can model perturbations while still guaranteeing
correctness and message order of the parallel program.

We perform and present this research in the context
of the Message Passing Interface (MPI) library [8], but
the work itself is not bound to MPI. Parallel programs
for distributed memory systems generally are imple-
mented via primitives for passing data between proces-
sors and synchronizing computations between pairs of
processors and collective processor groups. The MPI
implementation of this programming model is widely
used and currently very popular. Other implemen-
tations exist, such as the older Parallel Virtual Ma-
chine (PVM) [18] and the Aggregate Remote Memory
Copy Interface (ARMCI) [12]. Our performance analy-
sis methodology is applicable to all of these message-
passing implementations by simply defining the primi-
tives of the implementation in the context of the frame-
work presented here.

1.1. Related work

Several researchers have developed model and trace-
based systems for analyzing the performance of par-
allel programs. Petrini et al. [14] relied on modeling
the parallel program and the parallel computer before
performing the analysis. This method was used to pre-
dict the performance of programs on machines prior to
their construction, and to identify the causes of per-
formance discrepancies from the predictions once the
machine was constructed.

1-4244-0054-6/06/$20.00  ©2006 IEEE



Unlike the model-based approach, other techniques
are driven by traces of actual program runs. Trace
driven methods have the advantage that they capture
nuances in execution that arise from unique data condi-
tions at runtime that cannot be modeled purely by ex-
amining the static program code itself. Unfortunately,
this specificity is not as flexible as model-based ap-
proaches with respect to performance prediction and
extrapolation. In a trace, one loses the statistical prop-
erties of the control flow branch and join structure
of the original code, limiting the potential for perfor-
mance extrapolation.

Dimemas [1, 3], a commercial tool developed at
CEBPA-Centro Europeo de Paralelismo de Barcelona,
is one such tool for performance prediction of parallel
programs using trace-based analysis. The user spec-
ifies the communication parameters of the target ma-
chine. A simple model [1, 3, 15] is assumed for commu-
nication which consists of (a) machine latency, (b) ma-
chine resources contention, (c) message transfer (mes-
sage size/bandwidth), (d) network contention, and (e)
flight time (time for message to travel over the net-
work). Given a trace-file and the user’s selection of
network parameters, Dimemas simulates the parallel
program’s execution using the communication model.
While Dimemas captures most of the parameters that
affect the impact of the network on a parallel program’s
execution time, the model does not have similar capa-
bilities for analyzing the operating system’s interfer-
ence with the application’s performance.

Users who are familiar with trace analysis tools
such as Vampir [4] and Dimemas will find the con-
cept of a message-passing graph essentially identical
to the visualizations that they create of parallel pro-
gram execution. While Dimemas and our work are
both trace-based performance analyzers for parallel
programs, several key differences between Dimemas
and our framework exist. 1) We seek to parameterize
both the on-node noise and cross-node messaging us-
ing empirically-derived distributions from microbench-
marks. Dimemas provides an API for this purpose,
but Dimemas itself does not actually perform this type
of parameterization. 2) We do not require a global
resolution of clocks in the trace files required by the
Vampir-like trace format used by Dimemas. 3) In our
framework, we handle arbitrarily large trace files by
streaming the trace through the simulator instead of
loading it all in core. In comparison, Dimemas can han-
dle large traces by reducing their information content
in a preprocessing step. 4) We also seek to compare the
effects of various architectures by using experimentally-
derived parameter distributions to construct empirical
distributions for deriving simulation parameters. Addi-
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Figure 1. Alternating phases of computation
(ci) and messaging (mi) over time.

tionally, Dimemas provides a ‘plug-in’ mechanism that
can be used to simulate delays both at the interconnect
layer due to latency and contention, and the compute
node to simulate operating system noise. As future
work, we will investigate the use this plug-in mecha-
nism to parameterize simulations using experimentally-
derived empirical distributions, instead of scalar con-
stants or idealized probability distributions. In this
paper, we extend the concept of trace-based analysis
beyond the static messaging graph to a framework in
which the graph is modified in a disciplined manner to
model performance perturbations and their effect.

2. The message-passing graph concept

Consider a parallel program using a distributed
memory programming model via message-passing. On
a given processor, the program alternates between pe-
riods of local computation and resource usage, and in-
teraction with remote processors via message-passing
events for both data movement and control synchro-
nization (see Fig. 1). If each of these periods has a
time stamp at the beginning and a small amount of
meta-data indicating what occurred during the period,
one can easily determine what the processor was doing
at any given time. We begin constructing the message-
passing graph by creating a set of “straight-line” graphs
(one per processor) with nodes at the beginning and
end of each computation of the messaging period and
an edge between successive events labeled with the du-
ration of the period. Given these straight-line graphs,
we now must consider message-passing activity to cre-
ate the program’s overall message-passing graph. The
edges used to construct the straight-line graphs are re-
ferred to as local edges in this paper.

During periods of message-passing activity, the
processor interacts with one or more other proces-
sors depending on which message-passing primitives
are invoked. Given the ordering of the events on each
processor and some simple knowledge about the block-
ing semantics of message-passing primitives, we can
easily perform a single pass over all events to decide



which events on remote processors correspond to local
message-passing events. Using this information, we can
create edges between the coupled events on interacting
processors representing the initiation and termination
of a message-passing primitive. These edges that rep-
resent processor interactions via message-passing are
referred to here as message edges.

It is vitally important for modeling consistency to
create a pair of message edges for each message-passing
event, although where one places the edges depends on
the event being modeled. The importance of the edge
pair is in recognition of the effect of local perturba-
tions on remote nodes on the completion time of lo-
cal message-passing events. The message-passing edges
must capture not only latency variations between the
nodes, but also allow for the propagation of remote
perturbations back to all affected processors.

For modeling consistency and clarity, the model
specified in this paper embeds the semantics of the
message-passing operations and their perturbations
within the graph itself. We avoid pushing the seman-
tics of the operations to the level of the algorithm that
walks the graph, as this both complicates the algo-
rithms and makes verification and validation of the sim-
ulation more difficult. For future research, we will in-
vestigate pushing such responsibility to the algorithms
instead of the graph representation for performance op-
timization of the analysis tool itself.

In the next section, we will show how to define this
graph for a subset of MPI-1 message-passing primi-
tives [8] based on the send-receive model. Many of the
remaining MPI operations share characteristics with
those we describe, and our definitions can be easily
extended to include them. Our methods currently do
not attempt to capture the put-get semantics of other
message-passing models such as ARMCI and those in-
troduced in MPI-2 [9].

3. Graph primitives for a subset of MPI-
1

A common method to classify message-passing prim-
itives is to partition them into two sets based on the
number of interacting processors, and partition these
into two further sets based on the blocking semantics
of the events. The first partition separates pairwise
events from collective events. A simple send operation
is pairwise, while a reduction is collective. The sec-
ond partition separates blocking events from nonblock-
ing events. The simple synchronous send operation is
blocking, while an MPI MPI Isend is nonblocking.

A third class of primitives exist for single node op-
erations that are necessary, but straightforward with

respect to this work. These include functions such as
MPI Init, which appear in the trace files and graph,
but given the fact that they do not interact with other
nodes, are trivial to model.

3.1. Pairwise primitives

The first set of primitives are the pairwise primi-
tives. For a set of parallel processors, a pairwise event
is defined as one that involves two processors exchang-
ing a (potentially empty) data set.

3.1.1 Blocking

A blocking operation will not return control to the
caller until it has successfully completed or encounters
an error condition from which it cannot recover or pro-
ceed. The MPI Send operation is a blocking primitive
that sends a block of data to a receiver who posts a
matching MPI Recv receive operation. The MPI speci-
fication provides three forms of blocking send: the syn-
chronous send, the buffered send, and the ready send.
Each blocks until some condition has been met.

Pairwise blocking operations are easy to model in
the graph, as they require a simple matching of the
pair of events and the blocking nature of the opera-
tion requires a well defined begin and end relationship
between the nodes. The result is that perturbations
propagate through the graph to each node and pre-
serve the pairwise relationship and event ordering.

3.1.2 Blocking send/receive pair

Here we present a simple graph representation of the
paired send/receive operation MPI Send and MPI Recv.

In the presence of modeled perturbations, the end
times of each operation after perturbation are deter-
mined by Eq. (1).

t′se
= max( tse ,

tss + δos1 ,
tss + δλ1 + δt(d) + δos2 + δλ2)

t′re
= trs + δos2 + δλ1 + δt(d)

(1)

As we can see, due to the possibility of on-node in-
terference (δos), messaging latency (δλ), and pertur-
bations that are proportional to the amount of data
sent (δt(d)), the completion time of send operations is
dependent on the maximum of three values. These rep-
resent the original completion time (tse), the comple-
tion time delayed by local perturbations on the sender
alone (tss +δos1), or the delay due to latency in sending
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Figure 2. Subgraph representing a blocking
send and receive pair of d bytes of data. Lo-
cations are indicated where operating sys-
tem noise (δos), latency (δλ), and bandwidth
(δt(d)) are modeled.

the message, processing it on the receiving end with po-
tential receiver-local perturbations, and latency in ac-
knowledging completion (tss + δλ1 + δt(d) + δos2 + δλ2).

3.1.3 Nonblocking

It is widely recognized that significant performance
gains up to some limit can be made by hiding latency
to slow resources such as memory and I/O by over-
lapping additional computation with the resource re-
quest. As such, parallel programs often take advan-
tage of nonblocking messaging primitives to overlap
inter-processor communication with local computation
to hide the high latency of the interconnection net-
work. MPI provides primitives such as MPI Isend for
this purpose. These nonblocking primitives return im-
mediately (hence the “I”) to the caller, and their status
can be checked at a later time. This allows the program
to post data for transmission to a receiver as soon as
the data is ready, and perform additional computation
until the sender must block (if at all) pending the com-
pletion of the send operation.

Due to the fact that nonblocking calls immediately
return, variations in latency and local perturbations
on the receiving end of the transaction are not imme-
diately apparent to the sender. We are faced with two
possible situations with different consequences. First,
we have a situation where the transaction is semi-
synchronous. The send is nonblocking, but at a later
time the sender invokes a blocking routine such as
MPI Wait that forces the sender to not proceed fur-
ther until the communication is complete. This is easy
to simulate, as it can be considered similar (not neces-

sarily equivalent) to a synchronous send operation that
has been separated into two phases. The lack of equiv-
alence is due to the fact that multiple instances of the
operation may be interleaved.

The second situation is trickier, and represents a
truly asynchronous interaction between processors. In
this case, the sender posts nonblocking send opera-
tions, and never blocks on the successful completion of
the transaction before posting subsequent sends to the
same receiver. In Fig. 3 we illustrate the first case of
a paired send and receive followed at some later point
by a pair of wait operations.

δos1 δos2

δos3 δos4

tws2 : Waitstarttws1 : Waitstart

twe1 : Waitend twe2 : Waitend

tre : IRecvendtse : ISendend

tss : ISendstart(d) trs : IRecvstart

δλ2
posted posted

block block

δλ1 + δt(d)

Figure 3. Subgraph representing a nonblock-
ing send and receive pair of d bytes of data,
and the corresponding wait operations. The
send/receive pair is matched with a wait pair
by matching the status flags that uniquely
identify the send/receive transaction.

Eq. (2) shows the modified end times for the wait
operations. Note that the end times of the send and
receive operators are not modified due to their imme-
diate return semantics.

t′we1
= max( twe1 + δos1 + δλ1 + δt(d) + δλ2 + δos3 ,

twe1 + δos2 + δλ2 + δos3)
t′we2

= max( twe2 + δos2 + δos4 ,
twe2 + δos1 + δλ1) (2)

3.2. Collective primitives

Collective operations are used in nearly all parallel
programs that require each processor to receive some
amount of global state during the execution of the par-
allel program. These include synchronization primi-
tives such as a barrier, data distribution primitives
such as broadcast, and global application of associa-
tive operators such as a reduction. The presence of
collective operations is often a primary source of per-
formance degradation in a parallel program because a
single slow processor will induce idle time in all other
processors. In particular, local perturbations can have
a global effect on the overall program behavior.



Fortunately, modeling this is easily accomplished in
the graph framework. Consider a set of p processors
participating in a collective operation. Each proces-
sor has incurred some amount of simulated delay up
to this point due to local perturbations and message
latency. What must be decided is what the delay on
each processor should be after the collective operation
has occurred. A simple approach is to choose the max-
imum delay from the set of processors, and propagate
it across all others. This is not necessarily accurate
beyond a rough first approximation. The collective op-
eration requires a sequence of network transactions to
occur, and between each exists periods of local com-
putation. This means that there is a possibility that
local perturbations and network latency may cause the
delay on each processor after the transaction to actu-
ally be greater than the maximum delay entering the
collective.

Consider an all-reduce operation (MPI AllReduce)
such as a global summation. One can easily show
that a butterfly messaging topology can be used to
require each processor to send and receive O(log(p))
messages [6, 13]. This can be explicitly constructed in
the graph, which allows for analysis to be performed
without any special knowledge of the operation. Un-
fortunately, this is not space or time efficient given the
fact that we know a-priori that a single collective op-
eration can be considered equivalent to log(p) periods
of local computation and pairwise messaging. As such,
we can simply model the collective as an edge from
all p processors to a single processor, on which the
log(p) communication and computation perturbations
are propagated, and a set of edges from this processor
to all others that induces no additional perturbations,
but simply communicates the maximum of this set of
perturbations to every other processor.

AllReducestart1

block block

AllReduceend1

AllReducestartp

AllReduceendp

· · ·

· · ·AllReduceend2

AllReducestart2

block· · ·

lδ

lδmax lδmax lδmax

lδ lδ

Figure 4. An AllReduce operator subgraph.
The abbreviated noise annotations on edges
are described in the text.

In Fig. 4 we show how an AllReduce operator is
modeled. In the AllReduce operation, each node must
contribute local data to a global operation, the result of

which is then sent to all processors. Instead of model-
ing the communication topology precisely, we approx-
imate it by sampling operating system noise and la-
tency log(p) times for each processor, and labeling the
edge from each ith processor to the first with this value
called lδ. The maximum value of all lδ values is com-
puted, and propagated back out to all nodes along the
return edge labeled lδmax . This has the effect that is fre-
quently observed in practice of forcing the slowest node
(or in this case, the most perturbed node and link) to
dominate the performance of the entire collective.

A simplification of this graph can be used to model
a simpler Reduce operator in which only one processor
holds the result after completion. In this case, three
modifications are necessary. First, the message edges
labeled lδ are simplified to only sample latency once.
Second, each processor has a local edge from the start
node to the blocking node labeled with local operating
system noise. Finally, the lδmax edges become unla-
beled, as they are do not contribute additional pertur-
bations themselves, but are simply required to carry
the contribution of noise on the processor receiving the
reduction result to those providing data to the opera-
tion.

4. Creation of message-passing graph

The message-passing graph that we create for analy-
sis is generated using trace data from an execution of
the program on a parallel system. Each processor cre-
ates an event trace that records the local timestamp,
the event type, and event metadata for each event that
occurs. This is done via the standard PMPI interface
defined by the MPI specification. Each MPI primitive
to be recorded is wrapped with a lightweight PMPI
wrapper that records the event in a memory resident
buffer. The buffer is dumped to an event trace file when
it becomes full, and is then reset to empty for future
events. The size of this buffer can be tuned to compen-
sate for event frequency and overhead for I/O to dump
the trace information to a file. It is unavoidable that
tracing will introduce performance perturbations not
present in the non-instrumented version of the parallel
program. We have taken care to minimize this pertur-
bation, but must recognize that it is present and must
be kept in mind during later analysis of the program
performance. For future work we will use more robust
tracing tools that already exist as discussed later.



4.1. Avoiding clock synchronization

It is important to recognize that constructing the
graph only requires pairing events across processors.
The execution order on each processor makes this pos-
sible using execution ordering only. It is tempting,
although misleading, to infer information about two
processors using their local timestamps and clocks.
This is related to a difficult problem in distributed
systems to synchronize a set of clocks that are sepa-
rated by links with non-trivial, and most importantly,
unknown and statistically-defined latencies and clock
drifts [2].

We take advantage of the fact that a trace of a pro-
gram that ran to completion represents a message pat-
tern that was sufficiently correct for a proper run. Each
message event is guaranteed to have a counterpart,
and this counterpart can be found simply by process-
ing each event in order on each processor. If an event
is encountered and the counterpart must be found, the
algorithm must simply find the next event on the coun-
terpart processor that has not already been found that
matches. This is different, and significantly simpler
than deriving the messaging graph from static code, by
recognizing the fact that the run occurred and the mes-
sage ordering is fixed as a result. Although attempting
to resolve clocks across the traces is also a possible way
to align and match events, using the message ordering
on each processor to regenerate the messaging pattern
makes this unnecessary.

4.2. An implementation of the graph con-
struction algorithm

We have designed and implemented a prototype pro-
gram to process trace data into the message-passing
graph structure, and introduce simulated perturba-
tions in order to analyze the sensitivity of an applica-
tion to message-passing latency and operating system
noise. The graph is created according to the message-
passing primitive semantics specified by the MPI stan-
dard and implementation specification, some of which
were illustrated in Section 3. The trace files are gener-
ated using a C library conforming to the PMPI stan-
dard with timestamp data provided by the high res-
olution, cycle-accurate timers available on all modern
microprocessors.

We now present how to construct the message-
passing graph from trace data. An event is split into
two subevents: a start subevent and an end subevent,
which correspond to entry and exit from the message
passing operation that produced the event. For finer
granularities, more subevents can be added without

much effort to capture implementation specific details
of how the processors interact during the message-
passing primitive.

Fig. 5 in Appendix A shows a message-passing graph
that our model generated from a set of trace data.
For simplicity and clarity in this example, we used re-
duced trace data and only blocking MPI primitives.
Each edge connects two subevents with an edge weight
equal to the delay incurred between its source and sink
subevents. The source and sink subevents need not be
necessarily the start subevent and end subevent, but
may be anything depending on whether the edge is a
local edge or a message edge.

In order to simulate the operating system noise, the
weight of a local edge connecting two subevents in the
same trace is altered and the change is additively prop-
agated through the graph to all graph nodes reachable
from the sink node of the modified edge. Likewise,
to simulate network latency, the weight of a message
edge connecting two subevents in different traces is al-
tered and the change is again propagated through the
graph. Thus, behavior of the program under study
with varying operating system circumstances and net-
work parameters can be studied quantitatively by mod-
ifying edge weights and carrying their cumulative effect
through the graph as it is traversed. This information
gives a firm base on which the degree of suitability of a
parallel program to a particular platform can be deter-
mined. We also can explore how varying parameters
affects not only overall runtime, but regions within the
graph where perturbations are absorbed or fully prop-
agated, corresponding to tolerant or highly sensitive
code, respectively.

4.3. Correctness

Correctness of the graph and its modification during
the analysis process is vital. The process of taking
traces and merging them into a single message-passing
graph has the benefit of using the fact that the program
did run correctly in the first place in order to create the
traces. Constructing the graph based on this is simply
a matter of associating events to match message end
points, and this has been shown to be possible in the
past as evidenced in tools such as Vampir. Correctness
is important to consider though when modifying the
timings of events in the process of analyzing the noise
sensitivity of the program.

The key question in this process is whether the
modified timings of events causes events to occur pre-
maturely with respect to their counterparts on other
processors. In a purely synchronous program, this is
impossible, as the delays are propagated along the lo-



cal and message edges, and all events on interacting
processors are delayed in a quite straightforward man-
ner. Nonblocking, asynchronous interactions are the
complicating factor. For example, a processor that ini-
tiates a send that does not block on the successful com-
pletion of the transmission does not immediately see
delays on the receiving end before it proceeds to addi-
tional events. In MPI, this is realized in the MPI ISend
primitive. Fortunately, in most codes that have been
examined, these nonblocking calls have a correspond-
ing blocking event that causes the sender to block on
a check for the completion of the send. In essence, the
nonblocking send allows the programmer to implement
a synchronous send operation with the ability to in-
line code that does not depend on the completion of
the send in between the initiation of the transfer and
the check that it completed. In MPI-1, this is realized
as the pairing of MPI ISend with a blocking MPI Wait
(with WaitAll and WaitSome existing for similar block-
ing semantics on sets of ISend operations) primitive.

In the worst case, one processor issues a sequence
of nonblocking sends without checking that any have
completed before issuing more to the same processors.
If the receiver posts blocking receives or MPI Wait oper-
ations, correctness is preserved by ensuring that delays
in the sends are propagated to the receiver and push
the wait operations ahead to match the difference in
time due to the delay. In the event that this is not pos-
sible, and both sides use only asynchronous calls with
no synchronization (a possible, although questionable
practice for most programs), the tool cannot guaran-
tee that an arbitrarily perturbed graph is correct and
produces a warning that this situation has been iden-
tified.

5. Parameterizing simulated perturba-
tions

Given application traces, the questions that we wish
to answer using the framework and tools presented here
deal with how well one can expect a program to per-
form on a parallel computer under the influence of a
set of performance influencing parameters. For exam-
ple, one can execute a parallel program on a system
with a minimal, lightweight kernel running on com-
pute nodes, and then explore what amount of operat-
ing system overhead the application can tolerate before
significant performance degradation occurs. The previ-
ous sections discuss the methodology for exploring the
application performance under varying parameters. To
best study these questions, one must also have a dis-
ciplined approach to determining how to parameterize
the simulation and analysis tools.

We propose that in the initial phase of this research,
parameters be determined using microbenchmarks that
are carefully constructed to probe very specific perfor-
mance parameters. Each parallel platform has a sig-
nature that is defined by the set of metrics determined
by various microbenchmarks, and this signature is pro-
vided to the analysis tools, along with an application
trace, to estimate the behavior of the program on the
new platform. Our current work treats parameters as
random variables with a distribution parameterized by
the microbenchmarks.

Two methods can be used to generate parameters for
analysis given the output of microbenchmarks. First,
one can estimate parameters for assumed distributions
of the parameters. For example, it is generally assumed
that queueing time can be modeled as an exponential
distribution, and the parameter of the distribution can
be estimated from experimental measurements. The
second method for generating parameters is to use the
data itself to build an empirical distribution. This
method relies on gathering a sufficiently large number
of samples such that the shape of the actual distrib-
ution is accurately captured. It is a simple exercise
to show that the resulting empirical distribution ap-
proaches the actual distribution as the sample size in-
creases, as stated by the law of large numbers [17].

5.1. Operating system noise

Operating system noise is the result of time lost to
non-application tasks due to operating system kernel or
daemons requiring compute time. A “noisy” operating
system will frequently take time from applications for
its own operations, while a “noiseless” operating sys-
tem will allow applications to use as many cycles as
possible. The effects of this noise can be quite severe,
as exemplified by experiences with the ASCI Q super-
computer [14].

Microbenchmarks are available to probe systems to
infer the perturbation due to operating system noise,
and the data from these microbenchmarks can be
used to generate empirical distributions from which
our analysis tool can sample. The fixed time quan-
tum (FTQ) microbenchmark described in [16] probes
for periodic perturbations in a large number of fine
grained workloads. The point-to-point messaging mi-
crobenchmark described by Mraz [11] uses a simple
message-passing program to probe the effect of noise on
message-passing programs. As discussed in Section 3,
noise is represented in the message-passing graph via
edge weights on local edges. This models the additional
time a processor requires to complete a fixed amount
of work due to preemption for operating system tasks.



5.2. Interconnection network performance

The interconnection network on a parallel computer
has two parameters that influence performance the
most: bandwidth (how much data can be transmitted
in a quantum of time), and latency (how much time is
required to move a minimal quantum of data between
two nodes). These parameters are easy to determine,
and well known; simple benchmarks for bandwidth and
latency exist for MPI and other communication proto-
col layers. A latency benchmark measures the varia-
tion in the time taken to send a message between two
nodes. Given the lack of an accurate, high-precision
global clock across communicating processors, the la-
tency benchmark uses a traditional ping-style message
exchange between two processors. A bandwidth bench-
mark is similar, except with messages of a significant
size in one direction, with an acknowledgment returned
to the sender. The size of the large message must be
sufficiently large so as to make the latency component
negligible in the overall time.

Two assumptions are made regarding this bench-
mark. First, the connection between the nodes has
symmetric performance characteristics with the distri-
bution of message latencies (from sender to receiver
and vice-versa) both independent and identically dis-
tributed (iid). Second, two separate messages from one
host to another have latency distributions that are also
iid. Systems where routing adaptation and “warming
up” of links occurs will violate this second assumption,
and a suitable alternative tool must be employed to
measure and model the appropriate statistical distrib-
ution.

Variations in message latency and bandwidth are
modeled within the graph as edge weights on message
edges. Latency noise is modeled independently of the
size of the message, while variations in bandwidth must
be modeled as a function of the message size. Inter-
connect noise is also simulated using empirical distrib-
utions derived from sampled data.

6. Implementation and example applica-
tion

The initial implementation of the tools for analyz-
ing traces includes a simple PMPI-based tracing gener-
ation library and an analyzer that inputs these traces,
constructs the message-passing graph, and allows for
a very simple parameterization of edge weight modi-
fications to explore noise and latency variations. The
analysis tool uses the algorithm described in Section 4
to connect individual traces for each processor with

message edges. To avoid the obvious limitations im-
posed by memory constraints, the analysis tool uses
a windowed approach to building the graph. This is
particularly important to consider given the number of
events in a long running, high processor count job.

Given the set of performance parameters related to
noise in the operating system on processors and the
interconnection network connecting them, the analysis
tool processes the graph in the following manner. As
the graph is created using subgraphs as described in
Section 3 the δ values that are indicated as edge weights
are generated by sampling the empirical distributions
associated with the parameters. The original message-
passing trace has edge weights on local edges corre-
sponding to the time intervals observed in the run that
generated the trace. Message edges are weighted zero
originally, as the effects of latency and bandwidth are
already embedded in the timings of the actual events
that occurred. Simulating additional delays in mes-
saging is achieved by marking message edges with non-
zero, positive values. As the graph is streamed through
the tool, the max() operators defined in Section 3 are
applied to modify the times of each node in the graph
based on the simulated perturbation deltas added to
both message and local edges. The end result is a final
modified timestamp on the final node for each proces-
sor corresponding to the MPI Finalize event.

From this new completion time, we can observe how
running times for the overall program and individual
processors increase in the presence of varying degrees of
noise. For example, if we generate a trace on a system
with relatively low noise (such as a bproc cluster as
discussed in [16]), we can parameterize the simulation
with performance parameters measured on a system
with higher noise to explore how the program can be
expected to perform on a system composed of higher
noise processors.

It should be clear that we do not currently explore
the possibility of determining how a trace taken on a
high noise system would run on a system with lower
noise. A similar methodology could be applied by in-
troducing negative edge weights, but this sort of analy-
sis is being left for future work.

6.1. Token ring

A token ring is one of the simplest messaging topolo-
gies found in realistic parallel programs. In n-body
simulations, it is occasionally true that the n2 parti-
cle interactions must be computed directly instead of
using approximation algorithms that require O(nlogn)
or O(n) computations. For p processors, it is possi-
ble then to divide up the n particles into sets of n

p



on each processor. Each processor pi then packages
up the set of particles that it “owns”, and passes it
to the (i + 1 mod p)th processor. This processor com-
putes the interactions between its local particles and
those contained in this “token” containing a particle
set from some other processor. This set is then passed
on to the next processor as before, and this is repeated
p times until each processor receives the token contain-
ing its local particle set, at which time each processor
has computed the influence of all n particles on their
local set.

Our initial experiments verify the intuitive behavior
that one would expect from a fully synchronous pro-
gram as this. We performed a traced run on 128 proces-
sors of a ring-based program, and varied the degree of
perturbations from none to a mean of 700 cycles worth
of perturbation at 100 cycle increments. The result-
ing change in running times increases for each proces-
sor that matches the 100 cycle increments multiplied
by the number of traversals of the ring. For example,
if the ring was traversed 10 times with each proces-
sor injecting 100 cycles of noise for each message, the
runtime of each processor increased by approximately
10*100*128 cycles.

7. Future work and conclusions

The current set of tools we designed and imple-
mented are developed to explore the feasibility and al-
gorithmic aspects of this method of performance explo-
ration. Two major areas of work are in need of imme-
diate attention. First, we plan to use existing tracing
libraries that provide a more complete treatment of the
MPI specification, in addition to allowing traces to be
generated for other message-passing and shared mem-
ory parallel programming tools. The library we are
exploring, KOJAK [10], provides the EPILOG tracing
format and accessor library. The second area of work
is to provide a mechanism to provide a richer set of
parameters to the simulation, and maintain a history
of analysis experiments that are performed using our
tools. We would also like to investigate modeling re-
duced noise from that observed in the traced runs to
explore how performance could be expected to change
if the run was performed on a system with less noise.

We have presented an analysis methodology and
prototype of a performance analysis tool driven by
message-passing traces, which is scalable and ensures
correctness of the analysis that preserves message or-
dering true to the trace-generating run. We discussed
how operating system and interconnect parameters can
be generated and integrated into our analysis method-
ology. We model the application as a message-passing

graph, which is traversed in the same order as the exe-
cution order of the original parallel program. Enforcing
no changes in the order of execution ensures correctness
of the model in the presence of blocking and nonblock-
ing message-passing primitives. Our windowed graph
generation technique allows us to analyze traces of arbi-
trarily large size on systems with limited memory, thus
making it fully scalable. Since trace-based simulation
reflects application behavior on real machines under in-
ternal data states for real runs, the results are expected
to be more accurate for a given processor count than an
idealized model at the cost of restricting extrapolation
abilities.

While the tools are still early in development, cur-
rently supporting only a subset of blocking, nonblock-
ing and collective MPI primitives, this work introduces
a promising methodology for analyzing parallel pro-
gram performance taking into account their actual run-
time behavior for real problems. In the future, we also
plan to expand this performance analysis to support
more of the MPI-1 primitives, in addition to other par-
allel programming paradigms including but not limited
to extensions present in MPI-2 and other distributed
memory models such as ARMCI. These primitives rep-
resent what are known as one-sided communications
operations.

As the analysis tools mature, we plan to focus on
studying a number of regular and irregular parallel ap-
plications over different systems using this tool. We
ultimately aim to provide a methodology and a set of
tools to assist in the process of analyzing the perfor-
mance of large applications on a variety of parallel ar-
chitectures in order to characterize their performance
and guide users and system procurements to determine
the best platform for applications of interest to the user
community.
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A. An example message-passing graph

We show a message-passing graph generated from a
real trace generated by a simple sequence of blocking
communications between a small set of processors. The
graph was generated using our framework and visual-
ized using Graphviz.
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Figure 5. A Message-Passing graph for Trace
Data containing Blocking MPI Primitives.
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