
Enabling Efficient and Flexible Coupling of Parallel Scientific Applications ∗

Li Zhang and Manish Parashar
The Applied Software Systems Laboratory (TASSL)

Rutgers University
94 Brett Road, Piscataway, NJ 08854, USA

{emmalily, parashar}@caipclassic.rutgers.edu

Abstract

Emerging scientific and engineering simulations are
presenting challenging requirements for coupling between
multiple physics models and associated parallel codes that
execute independently and in a distributed manner. Real-
izing coupled simulations requires an efficient, flexible and
scalable coupling framework and simple programming ab-
stractions. This paper presents a coupling framework that
addresses these requirements. The framework is based on
the Seine geometry-based interaction model. It enables ef-
ficient computation of communication schedules, supports
low-overheads processor-to-processor data streaming, and
provides high-level abstraction for application developers.
The design, CCA-based implementation, and experimental
evaluation of the Seine based coupling framework are pre-
sented.

1. Introduction

Scientific and engineering simulations are becoming in-
creasingly sophisticated as strive to achieve more accurate
solutions to realistic models of complex phenomena. A
key aspect of these emerging simulations is the modeling
of multiple interacting physical processes that comprise the
phenomena being modeled, which leads to challenging re-
quirements for coupling between multiple physical mod-
els and associated parallel codes that execute independently
and in a distributed manner. For example, in plasma sci-
ence, an integrated predictive plasma edge simulation cou-
ples an edge turbulence code with a core turbulence code
through common grids at the spatial interface [17]. Sim-
ilarly, in geosciences, multiple scales in the domain and
multiple physics models are coupled via shared boundaries

∗The research presented in this paper is supported in part by the Na-
tional Science Foundation via grants numbers ACI 9984357, EIA 0103674,
EIA 0120934, ANI 0335244, CNS 0305495, CNS 0426354 and IIS
0430826.

between neighboring entities [18]. These coupled systems
provide the individual models with a more realistic simu-
lation environment, allowing them to be interdependent on
and interact with other physics models in the coupled sys-
tem and to react to dynamically changing boundary condi-
tions.

However, achieving efficient, flexible and scalable cou-
pling of physics models and parallel application codes
presents significant algorithmic, numerical and computa-
tional challenges. From the computational point of view,
the coupled simulations, each typically running on a distinct
parallel system or set of processors with independent (and
possibly dynamic) distributions, need to periodically ex-
change information. Specifically, this requires that: (1) in-
teraction/communication schedules between individual pro-
cessors executing each of the coupled simulations need to
be computed efficiently, locally, and on-the-fly, without re-
quiring synchronizations or gathering global information,
and without incurring significant overheads on the simu-
lations themselves; and (2) data transfers should also be
efficient and should happen directly between the individ-
ual processors of each simulation. Furthermore, specifying
these coupling behaviors between the simulations codes us-
ing popular message-passing abstractions can be cumber-
some and often inefficient, as these systems require match-
ing sends and receives to be explicitly defined for each
interaction. As the individual simulations become larger,
more dynamic and heterogeneous and their couplings more
complex, implementations using message passing abstrac-
tions can quickly become unmanageable. Clearly, realizing
coupled simulations requires an efficient, flexible and scal-
able coupling framework and simple high-level program-
ming abstractions.

This paper presents a coupling framework that addresses
these requirements. The framework is based on the Seine
geometry-based interaction model [12], which is motivated
by two observations about the targeted applications: (a) for-
mulations of these scientific and engineering applications
are based on multi-dimensional geometric discretizations of

1-4244-0054-6/06/$20.00 ©2006 IEEE

the problem domain (e.g., grid or mesh) and (b) couplings
and interactions in these applications can be defined based
on geometric relations in this discretization (e.g., intersect-
ing or adjacent regions). Seine provides a geometry-based
virtual shared space interaction abstraction. This abstrac-
tion derives from the tuple space model. However, instead
of implementing a general and global interactions space (as
in the tuple model), Seine presents an abstraction of tran-
sient geometry-based interaction spaces, each of which is
localized to a sub-region of the overall geometric domain.
This allows the abstraction to be efficiently and scalably im-
plemented and allows interactions to be decoupled at the
application level. A Seine interaction space is defined to
cover a closed region of the application domain described
by an interval of coordinates in each dimension, and can be
identified by any set of coordinates contained in the region.

The Seine geometry-based coupling framework differs
from existing approaches in several ways. First, it pro-
vides a simple but powerful abstraction for interaction and
coupling in the form of the virtual geometry-based shared
space. Processes register geometric regions of interest, and
associatively read and write data associated with the regis-
tered region from/to the space in a decoupled manner. Sec-
ond, it supports efficient local computation of communica-
tion schedules using lookups into directory implemented as
a distributed hash table. The index space of the hash table
is directly constructed from the geometry of the applica-
tion using Hilbert space filling curves [13]. Processes reg-
ister their regions of interest with the directory layer, and
the directory layer automatically computes communications
schedules based on overlaps between the registered geomet-
ric regions. Registering processes do not need to know of
or explicitly synchronize with other processes during reg-
istration and the computation of communication schedules.
Finally, it supports efficient and low-overhead processor-to-
processor socket-based data streaming and adaptive buffer
management. The Seine model and the Seine-based cou-
pling framework is designed to complement existing paral-
lel programming models and can work in tandem with sys-
tems such as MPI, PVM and OpenMP.

The design, implementation and experimental evaluation
of the Seine based coupling framework are presented. The
implementation is based on the DoE Common Component
Architecture (CCA) [5] and enables coupling within and
across CCA-based simulations. The experimental evalua-
tion measures the performance of the framework for vari-
ous data redistribution patterns and different data sizes. The
results demonstrate the performance and overheads of the
framework.

The rest of the paper is organized as follows. Section
2 presents some background and discusses related work.
Section 3 introduces the Seine geometry-based interaction
model and the design of the Seine-based coupling frame-

work. Section 4 presents the CCA-based implementation of
the coupling framework and an experimental evaluation of
its performance. Section 5 presents a conclusion and out-
lines future research directions.

2. Background and Related Work

Parallel data redistribution (also termed the MxN prob-
lem) is a key aspect of the coupling problem, since it ad-
dresses the problem of transferring data from a parallel pro-
gram/model running on M processors to another parallel
program/model running on N processors. Different aspects
of this problem have been addressed by recent projects such
as Model Coupling Toolkit [7], InterComm [4], PAWS [3],
CUMULVS [2], DCA [9], SciRun2 [11], etc., with different
foci and approaches. One approach, used by component-
based systems such as CCA, encapsulates parallel data re-
distribution support into a standard component, which can
then be composed with other components to realize differ-
ent coupling scenarios. An alternate approach embeds the
parallel data redistribution support into a Parallel Remote
Method Invocation (PRMI) [10] mechanism. This PRMI-
based approach addresses issues other than just data redis-
tributions, such as remote method invocation semantic for
non-uniformly distributed components. Existing projects
based on these two approaches are summarized in Table 1.

Projects such as Model Coupling Toolkit (MCT), In-
terComm, PAWS (Parallel Application Workspace), CU-
MULVS (Collaborative User Migration, User Library for
Visualization and Steering), and DDB (Distributed Data
Broker) use the component-based approach. As presented
in the table, some of these systems have only partial or im-
plicit support for parallel data redistribution, or can support
only a limited set of data redistribution patterns. Projects
such as PAWS and InterComm fully address the parallel
data redistribution problem. These systems can support ran-
dom data redistribution patterns. PRMI-based projects in-
clude SciRun2, DCA and XCAT.

While the projects discussed above address aspects of
parallel data redistribution and coupling problem, these sys-
tems differ in the approaches they use to compute commu-
nication schedules, the data redistribution patterns that they
support, and the abstractions they provide to the application
developer. Most of the existing systems gather distribution
information from all the coupled models at each proces-
sor and then locally compute data redistribution schedules.
This implies a global synchronization across all the cou-
pled systems, which can be expensive and limit scalability.
Further, abstractions provided by these systems are based
on message passing, which require explicit matching sends
and receives and synchronous data transfers. Moreover, ex-
pressing very general redistribution patterns using message
passing type abstractions can be quite cumbersome.

Table 1. Parallel Data Redistribution Projects
Approach I: Component-based Parallel Data Redistributions

Project Brief Overview MxN
Name Support
MCT Facilitates model coupling between model components in the Earth System Modelling Framework (E- Implicit
[7] SMF) [8]. A flux coupler in ESMF uses MCT functionality to transfer data between physics simulation

components.
InterComm Provides the support for direct data transfer between different parallel programs. It achieves efficient c- Full
[4] ommunication in the presence of complex data distributions for multi-dimensional array data structures.
PAWS Provides the ability to share data structures between parallel applications. Multi-dimensional arrays in Full
[3] PAWS can be partitioned and distributed completely generally. A central controller is used.
CUMULVS Is a middleware library aimed to provide support for remote visualization and steering of parallel app- Mx1
[2] lications and sharing parallel data structures between programs. Array distribution pattern is restricted.
DDB Handles distributed data exchanges between ESM (Earth Science Model) components. DDB is design- Implicit
[14] ed to avoid centralized coupling.

Approach II: PRMI-based Parallel Data Redistribution
SciRun2 Defines PRMI and data redistribution as extensions to the SIDL [6] language. It supports all-to-all or Partial
[11] one-to-one process participation in the parallel RMI.
DCA Is a prototype distributed CCA framework built on top of MPI. It adopts many MPI concept in defining Partial
[9] process participation, MxN data redistribution, and argument passing in Parallel RMI.
XCAT Is a distributed CCA framework based on Globus that uses RMI over XSOAP. It supports parallel data Partial
[15] redistribution for the case of M=N.

The Seine geometry-based coupling framework supports
the component-based approach. It provides a simple but
powerful high-level abstraction, based on a virtual associa-
tive shared space, to the application developer. Communi-
cation schedules are computed locally and in a decentral-
ized manner using a distributed directory layer. The di-
rectory layer automatically detects overlaps between regis-
tered regions and computes communications schedules. All
interactions are completely decoupled and data transfer is
socket-based and processor-to-processor, and can be syn-
chronous or asynchronous. The Seine coupling framework
is described in detail in the following section.

3. The Seine Geometry-based Coupling
Framework

Seine is a dynamic geometry-based coupling/interaction
framework for parallel scientific and engineering applica-
tions. It is derived from the tuple space model and provides
the abstraction of a virtual shared space, allowing it to sup-
port decoupled and extremely dynamic communication and
coordination patterns. It is based on the observations that
(a) formulations of the targeted scientific applications are
based on multi-dimensional geometric discretizations of the
problem domain (e.g., grid or mesh) and (b) couplings and
interactions in these applications can be defined based on
geometric relations in this discretization (e.g., intersecting
or adjacent regions), and allows virtual interaction/coupling
spaces to be localized to specific regions of interaction in
the discretized application domain. This enables efficient

and scalable implementations. Seine spaces can be dy-
namically created and destroyed. Finally, Seine comple-
ments existing parallel programming models and can co-
exist with them during program execution. The Seine in-
teraction/coupling model and framework are described in
detail in this section.

3.1. The Seine Geometry-based Coupling
Model

Conceptually, the Seine coupling/interaction model is
based on the tuple space model where entities interact with
each other by sharing objects in a logically shared space.
However there are key differences between the Seine model
and the general tuple space model. In the general tuple
space model, the tuple space is global, spans the entire
application domain, can be accessed by all the nodes in
computing environments, and support a very generic tuple-
matching scheme. These characteristics have presented sev-
eral implementation challenges for the general tuple model.
In contrast, Seine defines a virtual dynamic shared space
that spans a geometric region, which is a subset of the en-
tire problem domain, and is accessible to only the dynamic
subset of nodes to which the geometric region is mapped.
Further, objects in the Seine space are geometry-based, i.e.
each object has geometric descriptor, which specifies the
region in the application domain that the object is associ-
ated with. Applications use these geometric descriptors to
associatively put and get objects to/from a Seine space. In-
teractions are naturally decoupled.

Seine provides a small set of very simple primitives,

Table 2. Primitives of the Seine geometry-
based coupling/interaction framework.

Primitives Description

init(bootstrap Uses a bootstrap mechanism to
server IP) initialize the Seine runtime system.
register(object Registers a region with Seine.
geometric descriptor)
put(object geometric Inserts a geometric object into
descriptor, object) Seine.
get(object geometric Retrieves and removes a geometric
descriptor, object) object from Seine. This call will

block until a matching object is put.
rd(object geometric Copies a geometric object from Seine
descriptor, object) without removing it. Multiple rd can

be simultaneously invoked on an
object. It returns immediately if the
object searched for does not exist.

deregister(object De-registers a region from Seine.
geometric descriptor)

which are listed in Table 2. The register operation allows
a process to dynamically register a region of interest, which
causes it to join an appropriate existing space or a new space
to be created if one does not exist. The put operator is used
to write an object into the space, while the get operator reads
a matching object from the space, if one exists. The get op-
eration is blocking, i.e., it blocks until a matching object
is put into the space. rd copies a geometric object from
Seine without removing it. It is non-blocking, i.e., it returns
immediately with an appropriate return code if a matching
object does not exist. The deregister operation allows a pro-
cessor to de-register a previously registered region. The
operation of Seine is described in more detail later in this
section.

3.2. Design of the Seine Geometry-based
Coupling Framework

A schematic of the Seine architecture is presented in Fig-
ure 1. The framework consists of three key components:
(1) A distributed directory layer that enables the registra-
tion of spaces and the efficient lookup of objects using their
geometry descriptors; (2) A storage layer consisting of local
storage at each processor associated with a shared space and
used to store its shared objects; (3) A communication layer
that provides efficient data transfer between processors.

Directory layer: The Seine distributed directory layer is
used to (1) detect geometric relationships between shared
geometry-based objects, (2) manage the creation of shared
spaces based on the geometric relationship detected so that
all objects associated with intersecting geometric regions
are part of a single shared space, (3) manage the operation

Applications

Seine Interaction Space Access Interface

Load Balance Protocol
Space Management

Protocol

Consistency Protocol

Storage Layer
Directory Layer

Space Mapping Unit (SFC)

Communication Layer (TCP Socket)

Operating System

Supporting
Environment

for Other
Parallel

Programming
Models
(MPI/

OpenMP)

Figure 1. Architecture of the Seine geometry-
based coupling/interaction framework.

of geometry-based shared spaces during their lifetimes in-
cluding the merging of multiple spaces into a single space
and the splitting of a space into multiple spaces, and (4)
manage the destruction of a shared space when it is no
longer needed.

The directory layer is essentially a distributed hash table
where the index space of the table is directly constructed
from the geometry of the discretized computational do-
main using the Hilbert space filling curve (SFC). Space-
filling curves [13] are a class of locality preserving map-
pings from d-dimensional space to 1-dimensional space, i.e.
Nd → N1, such that each point in Nd is mapped to a
unique point or index in N1. Using this mapping, a point
in the Nd can be described by its spatial or d-dimensional
coordinates, or by the length along the 1-dimensional index
measured from one of its ends. The construction of SFCs
is recursive and the mapping functions are computationally
inexpensive and consist of bit level interleaving operations
and logical manipulations of the coordinates of a point in
multi-dimensional space. SFCs are locality preserving in
that points that are close together in the 1-dimensional space
are mapped from points that are close together in the d-
dimensional space.

The Hilbert SFC is used to map the d-dimensional
coordinate space of the computational domain to the 1-
dimensional index space of the hash table. The index space
is then partitioned and distributed to the processors in the
system. As a result, each processor stores a span of the in-
dex space and is responsible for the corresponding region
of the d-dimensional application domain. The processor
manages the operation of the shared space in that region,
including space creation, merges, splits, memberships and
deletions. As mentioned above, object sharing in Seine is
based on their geometric relationships. To share objects cor-
responding to a specific region in the domain, a processor
must first register the region of interest with the Seine run-

time. A directory service daemon at each processor serves
registration requests for regions that overlap with the geo-
metric region and corresponding index span mapped to that
processor. Note that the registered spaces may not be uni-
formly distributed in the domain and as a result, registra-
tion load must be balanced while mapping and possibly re-
mapping index spans to processors.

To register a geometric region, the Seine runtime system
first maps the region in the d-dimensional coordinate space
to a set of intervals in the 1-dimensional index space using
the Hilbert SFC. The index intervals are then used to locate
the processor(s) to which they are mapped. The process
of locating corresponding directory processors is efficient
and only requires local computation. The directory ser-
vice daemon at each processor maintains information about
currently registered shared spaces and associated regions at
the processor. Index intervals corresponding to registered
spaces at a processor are maintained in an interval tree. A
new registration request is directed to the appropriate direc-
tory service daemon(s). The request is compared with ex-
isting spaces using the interval tree. If overlapping regions
exist, a union of these regions is computed and the existing
shared spaces are updated to cover the union. Note that this
might cause previously separate spaces to be merged. If no
overlapping regions exist, a new space is created.

Storage layer: The Seine storage layer consists of the lo-
cal storage associated with registered shared spaces. The
storage for a shared space is maintained at each of the pro-
cessors that have registered the space. Shared objects are
stored at the processors that own them and are not repli-
cated. When an object is written into the space, the update
has to be reflected to all processors with objects whose geo-
metric regions overlap with that of the object being inserted.
This is achieved by propagating the object or possibly cor-
responding parts of the object (if the data associated with
the region is decomposable based on regions, such as multi-
dimensional arrays) to the processors that have registered
overlapping geometric regions. Such an update propagation
mechanism is used to maintain consistency of the shared
space. As each shared space only spans a local communi-
cation region, it typically maps to a small number of pro-
cessors and as a result update propagation does not result
in significant overheads. Further, unique tags are used to
enable multiple distinct objects to be associated with the
same geometric region. Note that Seine does not impose
any restrictions on the type of application data structures
used. However, the current implementation is optimized for
multi-dimensional arrays.

Communication layer: Since coupling and parallel data
redistribution for scientific application typically involves
communicating relatively large amounts of data, efficient
communication and buffer management is critical. Further,

this communication has to be directly between individual
processors. Currently Seine maintains the communication
buffers at each processors as a queue, and multiple sends are
overlapped to better utilize available bandwidth [16]. Adap-
tive buffer management strategies described in [16] are cur-
rently being integrated.

3.3. Coupling Parallel Scientific Applica-
tions using Seine

A simple parallel data redistribution scenario shown in
Figure 2(a) is used to illustrate the operation of the Seine
coupling framework. In this scenario, data associated with
2-dimensional computational domain of size 120*120 is
coupled between two parallel simulations running on 4 and
9 processors respectively. The data decomposition for each
simulation and the required parallel data redistribution are
shown in the figure. Simulation M is decomposed into
blocks M.1 - M.4 and simulation N is decomposed into
blocks N.1 - N.9. The Seine coupling framework coexists
with these simulations and is also distributed across 4 pro-
cessors in this example. This is shown in the top portion of
Figure 3. Note that these processors may or may not overlap
with the simulation processors. Figure 3 also illustrates the
steps involved in coupling and parallel data redistribution
using Seine, which are described below.

The initialization of the Seine runtime using the init op-
erator is shown in Figure 3 (a). During the initialization
process, the directory structure is constructed by mapping
the 2-dimensional coordinate space to a 1-dimensional in-
dex using the Hilbert SFC and distributing index intervals
across the processors.

In Figure 3 (b), processor 1 registers an interaction re-
gion R1 (shown using a darker shade in the figure) in the
center of the domain. Since this region maps to index inter-
vals that spans all four processors, the registration request
is sent to the directory service daemon at each of these pro-
cessors. Each daemon services the request and records the
relevant registered interval in its local interval tree. Once
the registration is complete, a shared space corresponding
to the registered region is created at processor 1 (shown as
a cloud on the right in the figure).

In Figure 3 (c), another processor, processor 0, registers
region R2 (shown using a lighter shade in the figure). Once
again, the region is translated into index intervals and cor-
responding registration request is forwarded to appropriate
directory service daemons. Using the existing intervals in
its local interval tree, the directory service daemons detect
that the newly registered region overlaps with an existing
space. As a result, processor 0 joins the existing space and
the region associated with the space is updated to become
the union of the two registered regions. The shared space
also grows to span both processors. As more regions are

registered, the space is expanded if these regions overlap
with the existing region, or new spaces are created if the
regions do not overlap.

Once the shared space is created, processors can share
geometry-based objects using the space. This is illustrated
in Figures 3 (d) and (e). In Figure 3 (d), processor 0 uses
the put operation to insert object 2 into the shared space. As
there is an overlap between the regions registered by pro-
cessors 0 and 1, the update to object 2 is propagated from
processor 0 to processor 1. The propagated update may only
consist of the data corresponding to the region of overlap,
e.g., a sub-array if the object is an array. In Figure 3 (e),
processor 1 retrieves object 1 using a local get operation.

Building coupled simulations using the Seine abstrac-
tions: Seine provides a virtual dynamic geometry-based
shared space abstraction to the parallel scientific applica-
tions. Developing coupled simulations using this abstrac-
tion consists of the following steps. First, the coupled sim-
ulations register their geometric regions of interests with
Seine. The registration phase detects geometric relation-
ships between registered regions and results in the creation
of a virtual shared space localized to the region and the
derivation of associated communication schedules. Cou-
pling data between simulations consists of one simulation
writing the data into the space, along with a geometric de-
scriptor describing the region that it belongs to; and the
other simulation independently reading data from the space
with an appropriate geometric descriptor. The communica-
tion schedule associated with the space and the Seine com-
munication layer is used to set up parallel point-to-point
communication channels for direct data transfer between
source and destination processors. The associated parallel
data redistribution is conceptually illustrated in Figure 2(b).

Computation of communication schedules: Communi-
cation schedules in the context of coupling and parallel data
redistribution refer to the sequence of messages required
to correctly move data among coupled processes [10]. As
mentioned above, these schedules are computed in Seine
during registration using the Hilbert SFC-based lineariza-
tion of the multidimensional application domain coordinate
space. When a region is registered, the Seine directory layer
uses the distributed hash table to route the registration re-
quest to corresponding directory service node(s). The di-
rectory service node is responsible for detecting overlaps
or geometric relationships between registered regions effi-
ciently. This is done by detecting overlaps in corresponding
1-dimensional index intervals using the local interval tree.
Note that all registration requests that are within a particu-
lar region of the application domain are directed to the same
Seine directory service node(s), and as a result, the node(s)
can correctly compute the required schedules. This is in
contrast to most existing systems which require informa-

(120,120)

M.1 M.2

M.3 M.4

Array size:
120x120

M processors
(M=4)

(0,0)

Parallel
Data

Redistribution

(0,0)

(120,120)

N.1

N.2

N.3

N.4

N.5

N.6

N.7

N.8

N.9

Array size:
120x120

N processors
(N=9)

(a) An illustrative example

M Processors

N Processors

Seine-based
MxN

Component

(b) Abstraction of Seine-based parallel data redistribu-
tion

Figure 2.

tion about the distributions of all the coupled processes to
be gathered.

Data transfer: When an object is written into a space,
Seine propagates the object (or possibly the appropriate part
of the object, e.g., if the object is an array) to update remote
objects based on the relationships between registered geo-
metric regions, using the communication layer.

4 Prototype Implementation and Perfor-
mance Evaluation

4.1 A CCA-based Prototype Implementa-
tion

The current prototype implementation of the Seine cou-
pling framework is based on the DoE Common Component
Architecture (CCA) [5] and enables coupling within and
across CCA-based simulations. In CCA, components com-
municate with each other through ports. There are two basic
types of ports, the provides port and the uses port. Connec-
tions between components are achieved by wiring between
a provides port on one component and a uses port on the
other component. The component can invoke methods on
the uses port once it is connected to a provides port. CCA
ports are specified using the Scientific Interface Definition
Language (SIDL) [6]. CCA frameworks can be distributed

M.1

M.2

M.3

M.4

MxN.1

MxN.2

MxN.3

MxN.4

Seine stub
Seine stub

Seine stub
Seine stub

register(
0,60,
0,60)

register(
61,100,
0,60)

register(
0,60,

61,120)

register(
61,120,
61,120)

0 1 2 3 4 5 6 7

index interval
<32,47>

index interval
<16,31>

index interval

<0,15>

7
6

5
4

3
2
1

0

7

6
5

4
3
2
1

0

0 1 2 3 4 5 6 7

send update
to node 1
to update

Obj1(ver1)

updates
overlapped

region between
Obj2 and
Obj1

7

6
5
4

3
2
1
0

70 1 2 3 4 5 6 7

system

sets up
 directory

layer

overlap detected

node 1
registers

Reg

1

root
<0,15>

root
<16,31>

root

<32,47>
root

<48,63>

<8,11> <28,31> <32,35> <52,55>

<8,11> <28,31>

root
<0,15>

root
<16,31>

root
<32,47>

root
<48,63>

<52,55>

<32,35>
<32,33>

<46,47>

<48,51>

<52,55>

<56,63>

node
0

node
1

node
2

node
3

node
0

node
1

node
2

node
3

node
0

node
1

node
2

node
3

node 0
registers

Reg

2

node
0

node
1

node
2

node
3

node 0 puts
Obj2(version 1)

Obj
2

node 1 gets Obj1(ver1)

node
0

node
1

node
2

node
3

node 1 gets

Obj1(version 1)

Obj
1

node 0 puts Obj2(ver1)

node
0

node
1

node
2

node
3

2

node 0 puts
Obj2(ver1)

node
0

node
1

node
2

node
3

node 0 puts Obj2(ver1)

node
0

node
1

node
2

node
3

1

1

2
1

1-dimensional index space

index interval
<48,63>

a

b

c

d

e

Seine
Coupling

Framework

Node
0

Node
2

Node
3

Directory
Service

Example

N.1

N.2

N.3

N.4

N.5

N.6

N.7

N.8

N.9

MxN.1

MxN.2

MxN.3

MxN.4

MxN.5

MxN.6

MxN.7

MxN.8

MxN.9

Seine stub
Seine stub

Seine stub
Seine stub

Seine stub

Seine stub
Seine stub

Seine stub
Seine stub

1.register(); 2.get()

1.register(); 2.get()

register(0
,40,

81,120)

register(0
,40,

41,80)

register(
0,40,
0,40)

register(41
,80,

81,120)

register(41
,80,

41,80)

register(41,
80,0,40)

register(81,
120,81,120)

register(81
,120,

41,80)

register(81,
120,0,40)

1.register(); 2.get()

1.register(); 2.get()

1.register(); 2.get()

1.register(); 2.get()

1.register(); 2.get()

1.register(); 2.get()

Node
1

Reg1

Reg2

1.register()

2.put()

1.register()

2.put()

1.register()

2.put()

1.register()

2.put()

1.register(); 2.get()

Figure 3. Operation of coupling and parallel data redistribution using Seine.

Ccaffeine Framework
Instance A

Ccaffeine Framework
Instance C

Ccaffeine Framework
Instance B

M Processes N Processesx Processes

Component
A1

(Sender)

Component
B1

(Receiver)Seine-
based
MxN
Comp-
onent
(Stub)

Seine-
based
MxN
Comp-
onent
(Stub)

Seine-based
MxN

Component

init
Seine

register
data

send
data

init
Seine

register
data

receive
data

Out-of-bound
communication

Out-of-bound
communication

Component
A2

(Receiver)

Component
B2

(Sender)

register
data

receive
data

register
data

send
data

Figure 4. MxN data redistribution between CCA frameworks using the Seine coupling component.

or direct-connected. In a direct-connected framework all
components in one process live in the same address space.
Communication between components, or the port invoca-
tion, is local to the process.

The Seine coupling framework was encapsulated as a
CCA compliant component within the CCAFFEINE direct-
connected CCA framework, and is used to support coupling
and parallel data redistribution between multiple instances
of the framework, each executing as an independent sim-
ulation, as well as within a single framework executing in
the multiple component-multiple data (MCMD) mode. The
former setup is illustrated in Figure 4. In the figure, co-
horts of component A1 need to redistribute data to cohorts
of component B1; similarly, cohorts of component B2 need
to redistribute data to cohorts of component A2. To en-
able data redistribution between framework instances A and
B (executing on M and N processors respectively) a third
framework instance, C, containing the Seine coupling com-
ponent is first instantiated. This framework executes on X
processors, which may or may not overlap with the M and
N processors of frameworks A and B. The Seine coupling
component handles registrations and maintains the Seine di-
rectory. Frameworks A and B initiate Seine stubs, which
register with the Seine coupling component. The ports de-
fined by the Seine coupling and stub components are regis-
ter, put and get. The operation is as follows. To achieve A1
- B1 coupling, component A1 registers its region of interest
using the register port of its stub and invokes the put port
to write data. Similarly component B1 independently reg-
isters its region of interest using the register port of its stub
and invokes the get port. The register request is forwarded
to the Seine coupling component, and if there is an over-
lap between their registered regions, at the put request from
A1, the data written by A1 are directly and appropriately
forwarded to Seine stubs at B1 by Seine stubs at A1. At the
get request from B1, the data received by Seine stubs at B1
are copied from Seine’s buffer. Note that A1 does not have
to be aware of B1 or its data distribution.

Experiment with different data redistribution scenar-
ios: In this experiment, a 3-dimensional array of size
120*120*120 is redistributed to 27 processors from 2, 4,
8, and 16 processors respectively, i.e., M = 2, 4, 8 and 16,
and N = 27. Data in the array are of type double. The dis-
tribution of the array is (Block, Block, Block) 1 on the x-,
y-, z-axis respectively on both the sender and receiver ends,
except that for case I and II, (Block, Block, Collapsed) 2 is
used at the sender end. The registration, data transfer, and
send (put) and receive (get) costs are listed in Table 3. The
application components do not explicitly compute commu-
nication schedules when using Seine. However, from their
perspective, the time spent on computing communication
schedule is equivalent to the time it takes to register their
region of interest, i.e., the cost of the register operation,
which is a one time cost. Since this cost depends on the
region and its overlap, it will be different for different com-
ponents, and the cost listed in Table 3 is the average cost.
As the table shows, for a given total data size to be redis-
tributed, the average registration cost decreases as the num-
ber of processors involved increases. The reason for this
decrease is that as the number of processors involved in reg-
istration increases, each processor is assigned a correspond-
ingly smaller portion of the array. As a result, each proces-
sor registers a smaller region. Since processing a register
request involves computing intersections with registered re-
gions, a smaller region will result in lower registration cost.
In this experiment, as the number of processors increases,
i.e., 2+27, 4+27, 8+27, and 16+27, and the size of the over-
all array remains constant, the sizes of regions registered by
each processor decrease and the average registration cost
decreases correspondingly. This experiment also measured
the cost in data send (put) and receive (get) operations re-

1Block distribution along each dimension. This notation for distribu-
tion patterns is borrowed from High Performance Fortran and is described
in [1].

2The first two dimension are distributed using a Block distribution and
the third dimension is not distributed.

Table 3. Cost in seconds of computing reg-
istration and data transfer for different data
redistribution scenarios.

Array size: 120x120x120
Data type: double
Distribution type (x-y-z):

M side: block-block-collapsed (Cases I & II)
or block-block-block (Cases III & IV)

N side: block-block-block
MxN Case I Case II Case III Case IV

2x27 4x27 8x27 16x27

Registration 5.6725 3.6197 2.7962 2.273
Data transfer 0.6971 0.3381 0.1636 0.1045
M side (put) 0.6971 0.3381 0.1636 0.1045
N side (get) 0.0012 0.0012 0.0012 0.0012

spectively. The Seine model decouples sends and receives.
In Seine, a push model is used to asynchronously propagate
data. As a result, the cost of a data send consists of data
marshalling, establishing a remote connection, and sending
the data, while the cost of data receive consists of only a lo-
cal memory copy from the Seine buffer. Consequently, the
total data transfer cost is essentially the data send cost, and
is relatively higher than the data receive cost. We explicitly
list the data transfer cost in the table since this metric has
been used to measure and report the performance of other
coupling frameworks.

Experiment with different array sizes: In this experi-
ment, the size of the array and consequently, the size of the
data redistribution is varied. The distribution of the array
is (Block, Block, Cyclic) on the x-, y-, z-axis respectively
on both the sender and receiver ends. The registration, data
transfer, and send (put) and receive (get) costs are listed in
Table 4. As these measurements show, the registration cost
increases with array size. As explained for the experiment
above, this is because the registered regions of interest are
correspondingly smaller and the computation of intersec-
tions is quicker for smaller array sizes. As expected, the
costs for send and receive operations also increase with ar-
ray size.

Scalability of the Seine directory layer: In this experi-
ment, the number of processors over which the Seine cou-
pling and parallel data redistribution component is dis-
tributed is varied. Distributing this component also dis-
tributes the registration process, and registrations for differ-
ent regions can proceed in parallel. This leads to a reduction
in registration times as seen in Table 5. The improvement,
however, seems to saturate around 4 processors for this ex-
periment, and the improvement from 4 to 8 processors is not
significant. Note that the actual data transfer is directly be-

Table 4. Cost in seconds of registration and
data transfer for different array sizes.

MxN: 16x27
Data type: double
Distribution(x-y-z): block-block-cyclic

M side: number of cycles at z direction=3
N side: number of cycles at z direction=4

Array size 603 1203 1803 2403

Registration 0.0920 0.9989 6.31 9.987
Data transfer 0.0423 0.1117 0.271 0.8388
M side (put) 0.0423 0.1117 0.271 0.8388
N side (get) 0.0001 0.0008 0.004 0.0136

Table 5. Scalability of the directory layer of
the Seine coupling component.

MxN: 16x27
Array size: 120x120x120
Data type: double
Distribution(x-y-z): block-block-block
Number of processors 1 4 8
running Seine coupling
component

Registration 4.2 2.273 2.089
Data transfer 0.112 0.1045 0.1172
M side (put) 0.112 0.1045 0.1172
N side (get) 0.0012 0.0012 0.0012

tween the processors and is not effected by the distribution
of the Seine component, and remains almost constant.

From the evaluation presented above, we can see that the
registration cost ranges from less than a second to a few
seconds, and is the most expensive aspect of Seine’s per-
formance. However, registration is a one-time cost for each
region, which can be used for multiple get and put opera-
tions. Note that registration cost also includes the cost of
computing communication schedules, which do not have to
be computed repeatedly. Data transfers take place directly
between the source and destination processors using socket-
based streaming, which does not incur significant overheads
as demonstrated by the evaluation. Overall, we believe that
the costs of Seine operations are reasonable and not signif-
icant when compared to per iteration computational time of
the targeted scientific simulations.

5. Conclusion and Future Work

This paper presents the Seine framework data cou-
pling and parallel data redistribution. Seine addresses the
model/code coupling requirements of emerging scientific

and engineering simulations, enables efficient computa-
tion of communication schedules, supports low-overheads
processor-to-processor data streaming, and provides high-
level abstraction for application developers. Communica-
tions using Seine are decoupled and the communicating en-
tities do not need to know about each other or about each
other’s distributions. A key component of Seine is a dis-
tributed directory layer that is constructed as a distributed
hash table from the application domain and enables de-
centralized computation of communication schedules. A
component-based prototype implementation of Seine using
the CAFFEINE CCA framework, and its experimental eval-
uation are also presented. The Seine CCA coupling compo-
nent enables coupling and parallel data redistribution be-
tween multiple CCA-based applications. The evaluation
demonstrates the performance and low overheads of Seine.

This paper has addressed some of the core computational
issues in enabling large-scale coupled simulations. How-
ever, there remain several issues that still need investiga-
tion. For example, optimization of memory usage during
redistribution, especially when data sizes are large. Current
research is looking at optimizing the Seine communication
layer to use adaptive buffering and maximize utilization of
available network bandwidth.

References

[1] Distributed Data Descriptor.
http://www.cs.indiana.edu/ febertra/mxn/parallel-
data/index.html

[2] J.A. Kohl, G.A. Geist. Monitoring and steering of large-
scale distributed simulations, In IASTED International Con-
ference on Applied Modeling and Simulation, Cairns,
Queensland, Australia, September 1999.

[3] K. Keahey, P. Fasel, S. Mniszewski. PAWS: Collective inter-
actions and data transfers. In Proceedings of the High Perfor-
mance Distributed Computing Conference, San Francisco,
CA, August 2001.

[4] J.-Y. Lee and A. Sussman. High performance communica-
tion between parallel programs. In proceedings of 2005 Joint
Workshop on High-Performance Grid Computing and High
Level parallel Programming Models (HIPS-HPGC 2005).
IEEE Computer Society Press. Apr. 2005.

[5] CCA Forum. http://www.cca-forum.org

[6] S. Kohn, G. Kumfert, J. Painter, and C. Ribbens. Divorcing
language dependencies from a scientific software library. In
Proceedings of the Eleventh SIAM Conference on Parallel
Processing for Scientific Computing. SIAM, Mar. 2001.

[7] J.W. Larson, R.L. Jacob, I.T. Foster, and J. Guo. The
Model Coupling Toolkit. In V.N.Alexandrov, J.J.Dongarra,

B.A.Juliano, R.S.Renner, and C.J.K.Tan, editors, Interna-
tional Conference on Computational Science (ICCS) 2001,
volume 2073 of Lecture Notes in Computer Science, pages
185-194, Berlin, 2001. Springer-Verlag.

[8] S. Zhou. Coupling earth system models: An ESMF-CCA
prototype. http://webserv.gsfc.nasa.gov/ESS/esmf tasc/,
2003.

[9] F. Bertrand and R. Bramley. DCA: A distributed CCA
framework based on MPI. In Proceedings of HIPS 2004,
the 9th International Workshop on High-Level Parallel Pro-
gramming Models and Supportive Environments, Santa Fe,
NM, April 2004. IEEE Press.

[10] F. Bertrand, D. Bernholdt, R. Bramley, K. Damevski, J.
Kohl, J. Larson, A. Sussman. Data Redistribution and Re-
mote Method Invocation in Parallel Component Architec-
tures. In Proceedings of the 19th International Parallel
and Distributed Processing Symposium (IPDPS’05). April,
2005.

[11] K. Zhang, K. Damevski, V. Venkatachalapathy, and S.
Parker. SCIRun2: A CCA framework for high perfomance
computing. In Proceedings of the 9th International Work-
shop on High-Level Parallel Programming Models and Sup-
portive Environments (HIPS 2004), Santa Fe, NM, April
2004. IEEE Press.

[12] L. Zhang, M. Parashar: A Dynamic Geometry-Based Shared
Space Interaction Framework for Parallel Scientific Appli-
cations. In Proceedings of High Performance Computing -
HiPC 2004: 11th International Conference, Bangalore, In-
dia, December 19-22, 2004. Proceedings p.189-199.

[13] T. Bially. A class of dimension changing mapping and its ap-
plication to bandwidth compression. PhD thesis, Polytech-
nic Institute of Brooklyn, June 1967.

[14] L.A. Drummond, J. Demmel, C.R. Mechoso, H. Robinson,
K. Sklower, and J.A. Spahr. A data broker for distributed
computing environments. In Proceedings of the Interna-
tional Conference on Computational Science, pages 31-40,
2001.

[15] M. Govindaraju, S. Krishnan, K. Chiu, A. Slominski, D.
Gannon, and R. Bramley. XCAT 2.0: A component-based
programming model for grid web services. Technical Report
TR562, Department of Computer Science, Indiana Univer-
sity, June 2002.

[16] V. Bhat, S. Klasky, S. Atchley, M. Beck, D. McCune,
M. Parashar. High Performance Threaded Data Streaming
for Large Scale Simulations. In the Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing,
Pittsburgh, PA, USA, November, 2004.

[17] I. Manuilskiy and W.W. Lee. Phys. Plasmas 7, 1381 (2000).

[18] Q. Lu, M. Peszynska, and M.F. Wheeler. A parallel multi-
block black-oil model in multi-model implementation. In
2001 SPE Reservoir Simulation Symposium, Houston,
Texas, 2001. SPE 66359.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

