
Helper Thread Prefetching
for Loosely-Coupled Multiprocessor Systems∗

Changhee Jung1‡, Daeseob Lim2‡, Jaejin Lee3, and Yan Solihin4†

1Embedded Software Research Division 2Department of Computer Science and Engineering
Electronics and Telecommunications Research Institute University of California, San Diego

Yuseong-Gu, Daejeon, 305-530, Korea 9500 Gilman Drive, La Jolla, CA 92093-0114 USA
chjung@etri.re.kr dalim@cse.ucsd.edu

3School of Computer Science and Engineering 4Department of Electrical and Computer Engineering
Seoul National University North Carolina State University

Seoul 151-744, Korea Raleigh, NC 27695-7911 USA
jlee@cse.snu.ac.kr solihin@eos.ncsu.edu

Abstract

This paper presents a helper thread prefetching scheme that
is designed to work on loosely-coupled processors, such as in
a standard chip multiprocessor (CMP) system or an intelligent
memory system. Loosely-coupled processors have an advantage
in that fine-grain resources, such as processor and L1 cache re-
sources, are not contended by the application and helper threads,
hence preserving the speed of the application. However, inter-
processor communication is expensive in such a system. We
present techniques to alleviate this. Our approach exploits large
loop-based code regions and is based on a new synchronization
mechanism between the application and helper threads. This
mechanism precisely controls how far ahead the execution of the
helper thread can be with respect to the application thread. We
found that this is important in ensuring prefetching timeliness
and avoiding cache pollution. To demonstrate that prefetching
in a loosely-coupled system can be done effectively, we evalu-
ate our prefetching in a standard, unmodified CMP system, and
in an intelligent memory system where a simple processor in
memory executes the helper thread. Evaluating our scheme with
nine memory-intensive applications with the memory processor
in DRAM achieves an average speedup of 1.25. Moreover, our
scheme works well in combination with a conventional processor-
side sequential L1 prefetcher, resulting in an average speedup
of 1.31. In a standard CMP, the scheme achieves an average
speedup of 1.33.

∗This work was supported in part by the Ministry of Education
under the Brain Korea 21 Project, by the Ministry of Information
and Communication under the IT Leading Research and Devel-
opment Project, and by the Institute of Computer Technology at
Seoul National University. Correspondence to jlee@cse.snu.ac.kr.
†Solihin was supported by National Science Foundation through
grants CCF-0347425 and CNS-0406306, and by IBM through
IBM Faculty Partnership Award.
‡Jung and Lim did their work when they were students of Seoul
National University.

1. Introduction

Data prefetching tolerates long memory access latency by
predicting which data in memory is needed in the future and
fetches it to the cache before it is accessed. To deal with irreg-
ular access patterns that are hard to predict, one recent class of
prefetching techniques that relies on a helper thread has been
proposed [2, 10, 11, 13, 16, 19]. The helper thread executes an
abbreviated version of the application code ahead of the appli-
cation execution, bringing data into the cache early to avoid the
application’s cache misses.

Prior studies of helper thread prefetching schemes have re-
lied on a tightly-coupled system where the application and the
helper thread run on the same processor in a Simultaneous Multi-
Threaded (SMT) system [2, 4, 10, 11, 13, 16]. Using a tightly-
coupled system has a major drawback that the application and
helper threads contend for fine-grain resources such as proces-
sor and L1 cache resources. Partitioning resources between the
threads can remove the contention; however, it introduces hard-
ware modifications into the critical path of the processor cores.
Alternatively, the resource contention for the helper thread can
be managed by imposing priorities among the threads [6]; how-
ever, this requires modifications to the operating system and the
processor’s front end, and reduces the effectiveness of the helper
thread.

This paper presents a helper thread prefetching scheme that
is designed for loosely-coupled processors, such as in a standard
CMP or an intelligent memory system. Loosely-coupled proces-
sors have an advantage that threads do not contend for fine-grain
resources such as the processor and L1 cache. The lack of con-
tention preserves the application thread’s speed and avoids un-
necessary hardware at the processor’s critical path. However,
high inter-processor communication latency in loosely-coupled
processors presents a challenge.

The main contributions of this paper are architecture and
compiler techniques that enable effective helper thread prefetch-
ing for loosely-coupled multiprocessors. The contributions in-
clude:

• A loop-based helper thread extraction algorithm based on
modules [12, 17], yielding very large prefetching regions
(millions of instructions).

1-4244-0054-6/06/$20.00 ©2006 IEEE

L2 $

Memory
Controller

DRAM

DRAM

Memory Module
L1 $ L1 $

Application Helper
Thread

Figure 1. The CMP architecture used in this paper.

DRAM

L1 $ DRAM

Memory
Processor

Main
Processor

L1 $

L2 $

Memory
Controller

Memory Module
Thread
Helper

Thread
Application

(a)

Interface
Bus

Directory

Memory
Processor

Cache

sync reg0
sync reg1
sync reg2

1

Main Processor
Memory Module

Filter

3
2

Controller

Memory

DRAM

(b)

Figure 2. The intelligent memory architecture used
in this paper: (a) the location of the memory pro-
cessor and (b) the hardware support for prefetch-
ing.

• A coarse-grain synchronization mechanism for precise con-
trol of the execution of the prefetching thread without high
synchronization overheads or the requirement of custom
synchronization hardware in CMP.

• A mechanism for the prefetching thread to instantly catch
up to the application execution.

• Characterization and analysis of the effects of non-memory
operations on the helper thread’s performance.

• Architecture mechanisms to support intelligent memory
prefetching: cache coherence extension and synchronization
registers.

To demonstrate the effectiveness of our approach, we test it on
two platforms that differ on how loosely coupled the processors
are. The first platform is a standard CMP system where there are
two identical processor cores in a single chip. Each core has its
own primary cache, and all cores share a secondary (L2) cache. In
this system, the application and the helper thread run on separate
cores.

The second platform tested is an intelligent memory system
where a simple general purpose core is embedded in the memory
system. The core can be placed in different locations, such as
in the Double Inline Memory Module (DIMM) or in the DRAM
chips. The intelligent memory architecture has a heterogeneous
mix of processors: the main processor that is more powerful and
backed up by a deep cache hierarchy due to its high memory
access latency, and a memory processor which is less powerful but
has a smaller memory latency. The memory processor is loosely
coupled to the main processor because it does not share any cache
hierarchy with the main processor. In this system, the helper
thread runs on the memory processor, while the application runs
on the main processor.

We present a helper thread extraction algorithm that can be

automatically constructed by the compiler from the application
program. The helper thread contains only computations that are
essential for for address calculation. In addition, because our de-
sign should work even when there is no shared cache between the
application and the helper thread, the helper thread is augmented
with explicit prefetch instructions that prefetch (and push) the
data to the L2 cache.

In addition, we characterize the relationship between prefetch-
ing effectiveness and the relative speed of the helper thread to the
application thread. Based on the observation, we propose a new
busy-waiting synchronization mechanism that controls how far
ahead the execution of the helper thread can be with respect to
the application. The synchronization also detects the case where
the helper thread execution lags behind the application and al-
lows the helper thread to instantly catch up to the application
execution.

To support our prefetching scheme, simple hardware modifi-
cations are made to the intelligent memory, while no hardware
modifications are made to the CMP. The intelligent memory mod-
ifications include three synchronization registers to facilitate fast
synchronization, the main processor’s L2 cache modification to
enable accepting incoming prefetches initiated by the memory
processor, and a per-line stale bit in the memory to enforce co-
herence automatically between the main and memory processors.

Despite the simple hardware support, we show that our
scheme is effective. It delivers an average speedup of 1.25 for nine
memory-intensive applications in an intelligent memory where
the memory processor is integrated in the DRAM. Furthermore,
our scheme works well in combination with a conventional se-
quential hardware L1 prefetcher, achieving an average speedup
of 1.31. When the memory processor is integrated in the DIMM,
the average speedup is 1.26. For a two-way unmodified CMP
architecture, our scheme delivers an average speedup of 1.33.

The rest of the paper is organized as follows: Section 2 de-
scribes the architectures and hardware support used in this pa-
per; Section 3 presents helper thread construction and synchro-
nization mechanisms between the application and helper threads;
Section 4 describes our evaluation environment; Section 5 dis-
cusses the relationship between the speed of the helper thread
and prefetching effectiveness; Section 6 presents the evaluation
results; Section 7 discusses related work; and Section 8 concludes
the paper.

2. Architectures and Hardware Support

2.1. The CMP Architecture
For the CMP architecture, the application and helper threads

are run on different processors in the same chip, as shown in
Figure 1.

We assume that the L1 caches are write-through and an inval-
idation based coherence protocol between L1 and L2 is supported
(Section 2.3).

2.2. The Intelligent Memory Architecture
For intelligent memory, we need the extra hardware support

shown in Figure 2. Figure 2(a) shows the architecture of a system
that integrates the memory processor in the DRAM chips or in
the memory module (e.g., DIMM). Embedding processors in the
DRAM chips allows very low latency and high bandwidth access
to the DRAM; however, it requires modifying the DRAM chips
and DRAM interface, and adding inter-DRAM chip communi-
cation support. Embedding a simple processor in the DIMM
requires fewer modifications. Firstly, commodity DRAM chips
can be used because they do not need to be modified. Secondly,
fewer processors are needed because typically several DRAM
chips share a module. Finally, since all transactions go through
the module, the memory processor can readily snoop existing

00 long refresh potential
01 (network t * net) {
02 node t * node, * tmp;
03 . . . // some computation
04 while (node != root) {
05 while (node) {
06 if(node->orientation
07 == UP) {
08 node->potential
09 = node->basic arc->cost
10 + node->pred->potential;
11 } else {
12 node->potential
13 = node->pred->potential
14 - node->basic arc->cost;
15 checksum++;
16 }
17 tmp = node;
18 node = node->child;
19 }
20 node = tmp;
21 while (node->pred) {
22 tmp = node->sibling;
23 if(tmp) {
24 node = tmp;
25 break;
26 } else
27 node = node->pred;
28 }
29 }
30 }

(a)

long refresh potential
(network t * net) {

node t * node, * tmp;

while (node != root) {
while (node) {
pref(node);
pref(node->pred);
pref(node->basic arc);
tmp = node
node = node->child;

}
node = tmp;
while (node->pred) {
tmp = node->sibling;
if (tmp) {
node = tmp;
break;

} else
node = node->pred;

}
}

}

(b)

Figure 3. Constructing a prefetching helper thread:
(a) the original application thread, and (b) the con-
structed helper thread. The prefetching section is
the refresh potential() subroutine in mcf.

transactions or generate new prefetch transactions. In the follow-
ing, we will describe the architecture support for the intelligent
memory architecture in detail.

As shown in Figure 2(b), a miss request from the main proces-
sor is deposited in queue1. When the memory processor executes
a prefetch instruction, it generates a prefetch request that not
only places the data in its own cache, but also pushes the data
to the L2 cache of the main processor. The request is placed in
queue2 after filtered by a Filter module. The Filter module is
a fixed-size FIFO list that keeps most recent prefetch addresses.
When there is a new prefetch request, it compares the requested
address with the addresses in the list. If there is a match, the
request is dropped. Otherwise, the request is placed in queue2,
and the address is added to the tail of the Filter’s list. The Filter
module drops unnecessary prefetches and improves prefetching
performance when there are prefetch requests to the same block
address (but not necessarily to the same words) issued in a short
time period.

Replies from memory to the main processor are placed in
queue3. When prefetch replies reach the memory controller, their
addresses are compared to the main processor’s miss requests in
queue1. If the prefetched line matches a miss request from the
main processor, it is considered to be the reply of the miss request
in queue1. This miss request is not sent to the memory.

The main processor’s L2 cache in the intelligent memory ar-
chitecture needs to be modified so that it can accept prefetched
lines from the memory that it has not requested. The L2 cache
uses free Miss Status Handling Registers (MSHRs) for this. If
the L2 cache has a pending request and a prefetched line with
the same block address arrives, the line simply steals the MSHR
and updates the cache as if it were the reply. If it does not have an
existing pending request, a request that matches the prefetched
line is created. Finally, a prefetched line arriving at L2 is dropped

in the following cases: the L2 cache already has a copy of the line,
the write-back queue has a copy of the line because the L2 cache
is trying to write it back to memory, all MSHRs are busy, or all
the lines in the set where the prefetched line wants to go are in
transaction-pending state.

Figure 2(b) shows that the memory processor has three spe-
cial synchronization registers. Two of them are used to record the
relative progress of the main thread and the helper thread. The
other is used to transfer the value of the synchronization vari-
able from the application thread to the helper thread. The main
processor accesses these registers as coprocessor registers. The
details of the synchronization mechanisms using these registers
are explained in Section 3.3.

2.3. Cache Coherence

Since our helper thread and the application thread share data,
we need to guarantee data coherence in the caches by guarantee-
ing that a read operation gets the value from the latest write.
Since the helper thread construction algorithm removes writes to
shared data, we only need to consider writes by the main proces-
sor and reads by the memory processor. In addition, the degree
of sharing data between the application and helper threads are
not that high because of the way we construct the helper thread
(i.e., privatization in Section 3.1). Thus, the overhead of cache
coherence does not significantly affect prefetching performance.

Coherence for CMP. We assume that the L2 cache enforces
invalidation-based coherence between the L1 caches of the pro-
cessors. When a processor suffers an L1 read miss, the L2 cache
supplies the data. Since both L1 caches are write-through, the
L2 cache always has the latest copy of a cache line. When a pro-
cessor suffers an L1 write miss, the L2 cache supplies the data
and invalidates the copy of the line in the other L1 cache if the
line is cached there. When a processor writes to a line in the
L1 cache, the value is written to the L2 cache, and the L2 cache
invalidates the copy of the line in the other L1 cache if the line is
cached there.

Coherence for Intelligent Memory. To track the main
processor’s writes, the memory processor maintains a stale bit
for each line in the main memory. The directory is stored in
the main memory and cached by the memory processor in the
directory cache. Figure 2(b) shows that the memory processor
caches some of the stale bits in its chip.

If the stale bit is set, it indicates that the block is cached by
the main processor and its state is modified. If the stale bit is not
set, the block is either uncached by the main processor or cached
in one of the clean states (clean-exclusive or clean-shared).

Initially, the stale bit for each block is clear. If the main
processor suffers a read miss, the block is returned to the main
processor. If the main processor suffers a write miss, the block is
returned to the processor, while the stale bit is set (to one) in the
directory. If the main processor writes to a line that is in a clean
state, it sends a stale bit update request to the memory processor,
which sets the stale bit in the directory. If, on the other hand, the
write is to a line that is already in the modified state, no request
is generated to the memory processor. When a modified line is
written back to the memory, the stale bit is cleared.

When the memory processor performs a read, it checks the
stale bit. If the stale bit is clear, it accesses the data from its
cache or from the main memory. If the stale bit is set, it has to
retrieve the correct version from the main processor. To do that,
it simply asks for the main processor to write-back the line. The
write-back clears the stale bit, and the memory processor can
snoop the data being written back for its use without accessing
the main memory.

00 long refresh potential(network t * net) {
01 node t * node, * tmp;
02 int syncInterval = LOOP SYNC INTERVAL;
03 sema init(&sem loop sync, MAX DIST);
04 sema V(&sem helper start);
05 . . . // some computation
06 while (node != root) {
07 while (node) {
08 ...
09 }
10 ...
11 if (!(- -syncInterval)) {
12 syncInterval = LOOP SYNC INTERVAL;
13 node main = node;
14 sema V(&sem loop sync);
15 }
16 }
17 }

(a)

00 long refresh potential(network t * net) {
01 node t * node, * tmp;
02 int syncInterval = LOOP SYNC INTERVAL;
03 sema P(&sem helper start);
04
05 while (node != root) {
06 while (node) {
07 pref(node);
08 pref(node->pred);
09 pref(node->basic arc);
10 ...
11 }
12 ...
13 if (!(- -syncInterval)) {
14 syncInterval = LOOP SYNC INTERVAL;
15 if (sem loop sync.count > MAX DIST) {
16 sema init(& sem loop sync, MAX DIST);
17 node = node main; // catch up
18 } else
19 sema P(&sem loop sync);
20 }
21 }
22 }

(b)

Figure 4. Synchronizing the main and helper threads in a CMP: (a) the main thread and (b) the helper thread.
00 long refresh potential(network t * net) {
01 node t * node, * tmp;
02
03 SYNC CLEAR MAIN();
04 SYNC SIGNAL();
05 . . . // some computation
06 while (node != root) {
07 ...
08 SYNC MAIN INC();
09 SYNC SET ADDR(node);
10 }
11 }

(a)

00 long refresh potential(network t * net) {
01 node t * node, * tmp;
02
03 SYNC CLEAR HELPER();
04 SYNC WAIT();
05 while (node != root) {
06 ...
07 SYNC HELPER INC();
08 while (SYNC TEST&SET(MAX DIST,&node));
09 }
10 }

(b)

Figure 5. Synchronizing the main and helper threads in an intelligent memory using special synchronization
registers: (a) the application thread and (b) the helper thread.

3. Active Prefetching

In this section, we present our helper thread construction algo-
rithm (Section 3.1) and the synchronization mechanisms for CMP
(Section 3.2) and intelligent memory (Section 3.3). Section 3.4
describes the synchronization mechanism for regular loop nests.

3.1. Constructing a Helper Thread

The goal of the helper thread construction algorithm is to
make the helper thread as short as possible but still contain the
instructions necessary to generate correct prefetches to target
loads/stores that will likely miss in the L2 cache. To achieve
that, we first extract prefetching sections, the code sections that
will be targeted for prefetching. These are chosen as regions of
code that have a high concentration of L2 cache misses. These
code sections can be identified by profiling or by using a static
code partitioning technique such as the one described in [12, 17].
The prefetching sections are typically loop nests or a non-leaf
subroutine consisting of several millions of dynamic instructions.
Reads and writes that likely miss in a prefetching section then
will be converted into prefetch instructions in the helper thread.
The helper thread is spawned only once at the beginning of the
application. It synchronizes with the application thread at the
start of each prefetching section, and after a multiple of itera-
tions inside a prefetching section. Using a large prefetching sec-
tion, one-time thread spawning, and infrequent synchronization
allows our scheme to work well for loosely-coupled systems. We
do not have any thread-spawn latency that occurs in the helper
thread prefetching for SMT processors due to context initializa-
tion [10, 11, 13].

The following is the algorithm we use to extract the prefetch-
ing helper thread for the identified loops.

1. Inline function calls in the loop.
2. Identify target reads and writes to array elements or struc-

tures’ fields that likely miss in the L2 cache.
3. Starting from these read and writes, identify address com-

putations by following the use-def chain while preserving
the original control flow.

4. Privatize the locations that are written in the address chain.

• If the location is an array element, substitute the
reads/writes of the array in the address chain with
reads/writes to a new privatized array that belongs
to the helper thread.

• Privatize scalar variables that are assigned in the ad-
dress chain with a new temporary variable.

5. Replace the target reads and writes by prefetch instructions
that access the same addresses.

6. Remove unnecessary computations, branches, and redun-
dant prefetch instructions. Combine the two branches of
the if-statement if they do not affect the original control
flow of the address computation.

Figure 3(a) shows the original refresh potential() subrou-
tine in mcf of Spec2000, which is selected as a prefetching sec-
tion. In the constructed helper thread (Figure 3(b)), node and
tmp are privatized to allow the helper thread to compute inde-
pendently, the original if statement on line 06 is combined in
the helper thread, and reads/writes are converted into prefetch
instructions (line 06-08 in the helper thread). In addition, unnec-
essary computation is removed, such as accesses to field members
that likely fall within the same cache line (node->potential and
node->basic arc->cost are in the same cache line as node). Note
that it is possible that the heap objects accessed in one iteration
(node, node->pred, and node->basic arc) happen to be in the

same cache line. If that is the case, only the first prefetch will
go to the memory, while the prefetches to other heap objects will
either be queued in the MSHRs in the CMP, or be filtered out by
the Filter module in the intelligent memory.

Our helper thread prefetching mechanism does not distin-
guish multiple access streams (e.g., one loop accesses two different
linked lists simultaneously), and performs well in such cases.

3.2. Synchronization for CMP
As we will show in Section 5, the speed difference between

the helper and application threads greatly affects the prefetching
performance. When the helper thread runs too far ahead of the
application thread, prefetched lines may pollute the cache and
may be evicted from it before they are accessed by the application
thread. On the other hand, if the helper thread runs behind
the application thread, it no longer fetches useful data, causes
cache pollution, and degrades the performance of the application
thread. In most cases, since we remove many instructions from
the original code to construct the helper thread, it usually runs
ahead of the application thread. However, in some cases the
helper thread may suffer long latency events (e.g., cache misses
or page faults). In this case, when the helper thread resumes,
it may slow down the application thread by polluting the cache
and be unable to catch up to the application thread within a
reasonable time period.

We present a new synchronization mechanism that targets
both problems without requiring any hardware modifications. It
prevents the helper thread from running too far ahead by con-
trolling the maximum distance between the helper thread and
the application thread. It also prevents the helper thread from
running behind the application thread by allowing it to catch up
quickly to the application thread. To achieve both goals, we use
lightweight general semaphores. In a semaphore, the P (s) oper-
ation is a wait operation that prevents the thread that executes
it from going past the synchronization until s > 0, after which it
decrements s by 1. V (s) is a signal operation that increments s
by 1. We assume that the P and V operations are atomic.

Figure 4(a) shows the original prefetching section of the
application thread, augmented with synchronization that con-
trols the helper thread’s execution distance, while Figure 4(b)
shows the helper thread code with the synchronization code
inserted. Two semaphores are used: sem helper start con-
trols when the helper thread should start its prefetching code,
while sem loop sync controls the execution distance of the helper
thread. The helper thread is spawned at the beginning of the ap-
plication. When it executes sema P(&sem helper start) on line
03 in (b), it busy waits there until the application thread calls
sema V(&sem helper start) on line 04 in (a). The helper thread
will synchronize every time after it executes LOOP SYNC INTERVAL

iterations in the loop. Since sem loop sync is initialized to
MAX DIST by the application thread on line 03, the helper thread
is allowed to run ahead by MAX DIST * LOOP SYNC INTERVAL.

When the helper thread synchronizes, it first restores the
value of syncInterval (line 14). Then, it checks the value of
the sem loop sync semaphore. A value larger than MAX DIST in-
dicates that the helper thread runs behind the application thread
since there are multiple signals that it has not consumed. In such
a case, the helper thread skips the iterations that the application
thread has already gone through by resetting the sem loop sync

to MAX DIST (line 16), and setting its current traversal node to
the application thread’s current node node main (line 17). If it is
not running behind, it simply consumes a signal and continues,
or waits until a signal is available (line 19).

3.3. Synchronization for Intelligent Memory
The synchronization mechanism for CMP in Section 3.2 can-

not be directly applied to an intelligent memory. For it to work

correctly, the semaphore variables must be placed in an un-
cachable region in memory so that the updates by the application
and the helper thread are seen by each other. If the semaphores
were cachable, the update by the helper thread would not be
propagated to the main processor since our simple intelligent
memory cache coherence mechanism in Section 2.3 assumes that
the memory processor does not write to shared data. However,
when the semaphores are not cached, each helper thread’s access
to them incurs a high latency, noticeably degrading the prefetch-
ing performance. Thus, we propose three special registers in the
memory processor to provide correct and efficient synchronization
(Figure 2(b)).

The first two registers (main count, helper count) store the
number of iterations that the application and helper threads have
executed, reflecting their respective progress. The distance be-
tween the two threads is obtained by subtracting these two reg-
ister values. The distance is then used to control how far ahead
the helper thread is allowed to run. Another register (sync addr)
stores the address of the synchronization variable that is trans-
ferred from the main processor and provides the mechanism for
the helper thread to catch up to the application thread when it is
running behind. We define APIs for synchronization using these
special registers.

Figure 5(a) and (b) show the application’s and the helper
thread’s code section using the synchronization APIs, respec-
tively. The helper thread is spawned at the beginning of the
application and busy-waits when it executes SYNC WAIT() on
line 04 in (b) until the application thread calls SYNC SIGNAL()

on line 04 in (a). SYNC CLEAR MAIN() and SYNC CLEAR HELPER()

initialize main count and helper count to 0. At the end of
each iteration, the application (or helper) thread increments the
main count (or helper count) register by calling SYNC MAIN INC()

(or SYNC HELPER INC()). In addition, the application thread calls
SYNC SET ADDR(node) to set the sync addr register to the ad-
dress of the node on which it is currently working. Finally, the
helper thread executes while (SYNC TEST&SET(MAX DIST,&node))

on line 08 in (b). If the function returns one, indicating that the
helper thread is ahead by MAX DIST iterations, it will busy wait in
the function until the application thread progresses. When it is
not yet too far ahead, it will exit the function and execute more
iterations. However, when it lags behind, it catches up to the ap-
plication thread by copying the application thread’s current node
to its own node variable.

3.4. Regular Loop Nests
Not only can we apply this synchronization mechanism to

pointer chasing loops, but also to regular loop nests with an outer
loop index variable i found in scientific/numerical applications.
The number of iterations is used to prevent the helper thread from
running too far ahead for intelligent memory. The case of CMP is
similar to the case of intelligent memory and it uses semaphores.
The main count register contains the number of iterations that
the application thread has performed. In the helper thread, the
helper count register contains the number of iterations that the
helper thread has performed. The difference between main count
and helper count indicates how far the helper thread is behind or
ahead. The iteration index variable i is stored in the sync addr,
allowing the helper thread to copy its value and catch up when
it discovers that it is running behind. Although there may be
more complex code in which the catch-up mechanism cannot be
applied, we do not encounter such a case in in the prefetching
sections of the benchmarks that we evaluate.

4. Evaluation Environment

Applications. To evaluate our helper threading strategies, we
use nine memory-intensive applications shown in Table 1. We
only choose SPEC2K applications with many cache misses and

supplement them with cache miss-intensive applications from
Olden and NAS.

The first four columns show the name, source, description,
and input set of the applications. The fifth column shows the
number of target loops selected as the prefetching sections. The
last column shows the percentage of the original execution time
covered by the target loops.

We apply the helper thread construction algorithm by hand.
We identify the target loops for helper threading using profiling.
We use the same input in profiling as well as testing.

Simulation Environment. The evaluation is performed us-
ing a cycle-accurate execution-driven simulator that models dy-
namic superscalar processor cores, CMP, and intelligent mem-
ory [8]. The MIPS instruction set is used for simulation. We
model a PC architecture with a simple memory processor inte-
grated in either a DRAM chip or the DIMM, following the micro-
architecture described in Section 2. Table 2 shows the parame-
ters used for each component of the architecture. All cycles are
3.2GHz cycles. We model a uni-programmed environment where
the application and the helper thread execute concurrently with-
out context switches. We model contention in the system be-
tween the application and helper threads on shared resources,
such as the L2 cache and the system bus in the CMP configu-
ration, plus memory controller and the DRAM resources (banks
and row buffers) in all configurations. Especially for the L2 cache,
a single L2 tag array and its contention are simulated.

For the synchronization overhead of intelligent memory, we
used the following delays for simulation:

• Latency for transferring an address from the application
to a synchronization register in the intelligent memory
(SYNC SET ADDR): Bus data delay (64)+ Memory con-
troller delay (4) = 68 cycles.

• Latency for transferring a signal from the application to
the intelligent memory (SYNC MAIN INC): Bus command
delay (3) + Memory controller delay (4) = 7 cycles.

Synchronization APIs. The new synchronization APIs (in
Section 3.3) are only needed by the intelligent memory architec-
ture, not CMP. For CMP, the communication is achieved through
semaphore variables in shared memory: communication latency
is equivalent to cache hit/miss latency to those variables.

Main Processor’s Hardware Prefetching. The main pro-
cessor optionally includes a hardware prefetcher at the L1 cache
level that can prefetch eight streams of strided accesses to consec-
utive cache lines. The prefetched data is placed in the L1 cache.
It uses the double delta scheme, in which it waits until it identi-
fies three consecutive lines being accessed before it prefetches six
lines in the identified stream. The prefetcher is somewhat similar
to stream buffers [9], but the prefetched lines are placed in the
L1 cache.

5. Performance Characterization

In this section, we evaluate and analyze the effects of non-
memory operations on the prefetching performance. Intuitively,
the more non-memory operations a prefetching section has, the
shorter the helper thread can be, allowing the helper thread to
run sufficiently ahead of the application thread. To obtain a more
precise idea of the extent and nature of this problem, we evaluate
the speedup resulting from prefetching when the amount of non-
memory operations is varied.

To achieve that, we create a synthetic benchmark that per-
forms linked-list traversal on a fixed number of nodes, and vary
the amount of non-traversal operations in each iteration. Fig-
ure 6(a) and (b) show the speedup ratio and the fraction of elim-
inated L2 cache misses in the application thread due to the helper
thread prefetching, respectively. The x-axis represents the execu-
tion time of the target loops for the entire traversal, including the

synchronization overhead. Therefore, when non-memory opera-
tions are added into the code, the execution time increases along
the x-axis. The helper thread runs on the memory processor in
DRAM in the intelligent memory configuration. The figure shows
that there are three cases.

In Case 1, when there is a small fraction of L2 cache misses
eliminated, there is a slight slow down in the application. This
is because the helper thread code is not much shorter than the
application code. When the helper thread runs on the memory
processor, it is either slower or not much faster than the appli-
cation that runs on the main processor. As a result, instead of
eliminating L2 cache misses, it causes extra prefetching traffic
and pollutes the L2 cache, even though much of the effect is mit-
igated by the ability of the synchronization to help the helper
thread catch up.

In Case 2, the helper thread is sufficiently faster than the
main thread, resulting in timely and effective prefetches. The
actual speedup depends on the speed of the helper thread relative
to the application thread. The speedup saturates at some point
(the border of Case 2 and Case 3) after the helper thread has
prefetched all the L2 cache misses that it is able to prefetch.
Assuming that each L2 cache miss contributes to the memory
stall time equally, the execution time of the application after
prefetching (Tnew) can be modeled as:

Tnew = Torig − Torig mem · (1 − Missnew

Missorig
)

where Torig denotes the original execution time of the loop run-
ning on the main processor and Torig mem denotes the memory
stall time portion of Torig due to L2 cache misses in the loop.
Missorig and Missnew are the number of L2 misses in the loop
before and after prefetching, respectively. The formula shows that
if the difference of the execution time between the main thread
and the helper thread increases, the reduction of L2 cache misses
becomes larger (smaller Missnew), resulting in better speedups
(smaller Tnew). Note that the fraction of eliminated L2 cache

misses in Figure 6(b) corresponds to 1− Missnew
Missorig

in the formula.

Since Torig and Torig mem are constant in the experiment, the
formula states that the application’s speedup after prefetching is
proportional to the fraction of the eliminated cache misses. This
explains why the shape of the figure in Case 2 in Figure 6(a)
follows that in Figure 6(b).

In Case 3, the helper thread cannot eliminate any more L2
cache misses (Figure 6(b)). However, the speedup in Figure 6(a)
decreases since the non-memory-stall fraction of the execution
time also grows, hence reducing the speedup.

We also have varied the number of nodes that are traversed.
Although the results are not shown in Figure 6, they exactly
follow the trends in the figure.

6. Evaluation and Discussion

6.1. Prefetching Performance
Figure 7 compares the execution time of the entire applications

(not just the targeted loops) for the following cases: a) there is
no prefetching (nopref); b) there is only hardware processor-side
prefetching (c8); c) our helper thread prefetching is running on
a memory processor in the DRAM chip (helper); d) the hard-
ware prefetching is backed up by the helper thread prefetching
in the memory processor in DRAM (c8+helper); e) in the DIMM
(DIMM); and f) in a separate CMP processor (CMP). For all
applications and their average, the bars are normalized to no-
pref. Each bar shows the memory stall time due to L2 cache
misses in the target loops (beyondL2(Target)) or other parts of
the application (beyondL2(Other)), memory stall time due to L1
or L2 cache hits (uptoL2), hardware cache coherence overhead
(coherence), and the remaining time (busy).

Appl Suite Problem Input # of target % execution
loops time

bzip2 SpecInt2000 Compression/Decompression Reference 1 29.51%
cg NAS Conjugate gradient Class W 1 91.63%
em3d Olden Electromagnetic wave 200,000 1 47.55%

propagation in 3D
equake SpecFP2000 Seismic wave propagation simulation Reference 1 65.16%
mcf SpecInt2000 Combinatorial optimization Subset of Reference 1 78.03%
mg NAS Multigrid solver Class A 1 47.56%
mst Olden Finding minimum spanning tree 1,200 nodes 1 69.11%
parser SpecInt2000 Word processing Subset of Reference 1 19.48%
swim SpecFP2000 Shallow Water Modeling Train 3 99.21%

Table 1. Applications used.
MAIN PROCESSOR

6-issue dynamic. 3.2 GHz. FUs: Int-ALU/Mul/Div: 2/1/1, Fp-Add/Mul/Div: 2/1/1, Ld/St: 1/1.
Branch penalty: 12 cycles
L1 data: write-through, 8 KB, 4 way, 64B line, 2-cycle hit RT, 16 outstanding misses
L2 data: write-back, 1MB, 8 way, 128B line, 22-cycle hit RT, 32 outstanding misses
RT memory latency: 381 cycles (row miss), 333 cycles (row hit)
Memory bus: split-transaction, 8B, 800 MHz, 6.4 GB/sec peak

MEMORY PROCESSOR
2-issue dynamic. 800 MHz. FUs: Int-ALU/Mul/Div: 2/1/0, no FP units, Ld/St: 1/1.
Pending ld/st: 16/16. Branch penalty: 6 cycles
L1 data: write-back, 64 KB, 2 way, 64B line, 4-cycle hit RT, 16 outstanding misses
In DIMM: RT mem latency: 155 cycles (row miss),

107 cycles (row hit)
Latency of a prefetch request to reach DRAM: 71 cycles

In DRAM: RT mem latency: 95 cycles (row miss),
47 cycles (row hit)

Internal DRAM data bus: 32B wide, 800 MHz, 25.8 GB/sec peak

CONFIGURATIONS
CMP: 2 main procs, private L1 caches, shared L2 cache and lower memory hierarchy
Intelligent Memory: 1 main proc + 1 memory proc, shared main memory

PREFETCHING
Filter module: 32 entries, FIFO
Main proc prefetching: hardware 8-stream sequential prefetcher

Table 2. Parameters of the simulated architecture. Latencies correspond to contention-free conditions. RT
stands for round-trip from the processor. All cycles are 3.2 GHz cycles.

On average, beyondL2(Target) is the most significant compo-
nent of the processor’s stall time in nopref, accounting for 61%
of the total execution time. It is also significantly larger than
beyondL2(Other), indicating that the L2 cache misses are quite
concentrated in the targeted loops. C8 performs relatively well
on the applications with sequential access patterns such as cg,
equake, mg, and swim. However, it is relatively ineffective for
applications that have mostly irregular access patterns, such as
bzip2, em3d, mcf, mst, and parser. On average, c8 reduces the
execution time by 11%.

Helper reduces the execution time significantly for almost all
applications except for parser. This is partly due to the small
memory stall time of the target loops (beyondL2(Target)) in
parser. In addition, Helper can reduce only the beyondL2(Target)
time because it only performs prefetches in the target loops,
whereas c8 prefetches for all parts of the application and hides
the L1 miss latency. Because of that, c8 outperforms helper in
mg.

c8+helper performs the best on average. It removes over
50% of the beyondL2(Target) time and reduces the total exe-
cution time by 24%, resulting in a speedup of 1.31. We can see
that in most cases, when both prefetching schemes are combined,
c8+helper achieves better performance than either one of them
can. This is because: 1) the helper thread prefetching is able
to target irregular access patterns that are difficult to prefetch
using a conventional prefetcher; 2) conventional prefetching con-
tributes improvements from outside the targeted loops; and 3)
conventional prefetching provides additional L1 miss latency hid-
ing.

Finally, DIMM and CMP also achieve very good speedups.
Despite the memory processor suffering from higher memory ac-

cess latency in the DIMM, DIMM achieves an average speedup of
1.26. In CMP, the very high memory access latency in the CMP
processor is partially offset by the speed of the processor. As a
result, CMP is able to deliver an average speedup of 1.33. This
is a significant result considering that CMP does not require any
hardware modifications. Therefore, CMP is an attractive archi-
tecture to run the helper thread.

6.2. Prefetching Effectiveness
Figure 8 gives further insights into the prefetching effective-

ness of our schemes. It shows the number of prefetch requests
normalized to the original number of L2 misses in nopref. The re-
quests are classified into 1) those that completely/partially elim-
inate a cache miss (Useful), and 2) those that are useless because
either they are replaced from the L2 cache before they are ac-
cessed (Replaced), or they are dropped on their arrival at the L2
cache because the line is already in L2 cache (Redundant). The
figure shows that on average, almost 60% of the L2 cache misses
are prefetched by the helper. However, helper also generates 27%
useless prefetches. c8+helper achieves lower Useful prefetching
but higher performance due to the contribution from the con-
ventional prefetching. Finally, CMP achieves much lower useless
prefetching, especially Redundant. This is because, in the CMP,
a prefetch request is issued only for a line that is not already in
the L2 cache. Overall, CMP is attractive due to its high Useful
prefetching and, at the same time, low Replaced and Redundant
prefetching.

6.3. Impact of Synchronization Hardware
Figure 9 compares the execution time of the application thread

using c8+helper prefetching when the synchronization uses un-

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Execution time (clock ticks)

S
pe

ed
up

Case 3

Case 2

Case 1

(a)

0%

10%

20%

30%

40%

50%

60%

70%

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Execution time (clock ticks)

L2
 m

is
s

re
du

ct
io

n

Case 3

Case 2

Case 1

(b)

Figure 6. The prefetching performance for a fixed number of nodes in a linked-list traversal: (a) speedup and (b)
the fraction of L2 cache misses that are eliminated. The unit of execution time is one million clock ticks.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

n
o

p
re

f
c
8

h
e

lp
e

r
c
8

+
h

e
lp

e
r

D
IM

M
C

M
P

n
o

p
re

f
c
8

h
e

lp
e

r
c
8

+
h

e
lp

e
r

D
IM

M
C

M
P

n
o

p
re

f
c
8

h
e

lp
e

r
c
8

+
h

e
lp

e
r

D
IM

M
C

M
P

n
o

p
re

f
c
8

h
e

lp
e

r
c
8

+
h

e
lp

e
r

D
IM

M
C

M
P

n
o

p
re

f
c
8

h
e

lp
e

r
c
8

+
h

e
lp

e
r

D
IM

M
C

M
P

n
o

p
re

f
c
8

h
e

lp
e

r
c
8

+
h

e
lp

e
r

D
IM

M
C

M
P

n
o

p
re

f
c
8

h
e

lp
e

r
c
8

+
h

e
lp

e
r

D
IM

M
C

M
P

n
o

p
re

f
c
8

h
e

lp
e

r
c
8

+
h

e
lp

e
r

D
IM

M
C

M
P

n
o

p
re

f
c
8

h
e

lp
e

r
c
8

+
h

e
lp

e
r

D
IM

M
C

M
P

n
o

p
re

f
c
8

h
e

lp
e

r
c
8

+
h

e
lp

e
r

D
IM

M
C

M
P

bzip2 cg em3d equake mcf mg mst parser swim average

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e busy Coherence uptoL2 beyondL2(other) beyondL2(Target)

Figure 7. Execution time of the applications with different prefetching schemes and different architectures.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

bzip2 cg em3d equake mcf mg mst parser swim average

L
2
 p

re
fe

tc
h
e
s

Useful Replaced Redundant

Figure 8. Breakdown of the L2 misses and lines prefetched by the helper thread. Note that c8 does not have any
bars because it prefetches data into the L1 cache of the main processor.

cachable semaphores (no registers) versus when it uses synchro-
nization registers (with registers), normalized to the semaphore
case. The figure shows that the synchronization registers re-
duce the execution time by 5% on average. The reduction is
quite significant in bzip2, cg, mst, and swim. This is because
a low-overhead synchronization allows us to control the dis-
tance between the helper thread and the application more finely,
by synchronizing at the end of each iteration. With uncached
semaphores, the large synchronization overhead forces us to use
a larger LOOP SYNC INTERVAL value to reduce the synchronization
frequency to every several iterations of the target loop (see Sec-
tion 3).

6.4. Main Memory Bus Utilization
Figure 10 shows the main memory bus utilization of the differ-

ent schemes for the target loops. The additional bus utilization is
divided into one that is caused by the prefetching requests from
the helper thread and one that is caused by the reduction in
the overall execution time due to prefetching. Overall, the figure
shows that the majority of the increase in bus utilization is due
to the reduction in execution time, with only 10-15% extra bus
utilization coming from extra prefetching requests. This is quite

tolerable. Even in the worst case, the extra utilization due to
prefetching traffic is only 29% in c8+helper for bzip2.

6.5. Synchronization Intervals
Our synchronization is not performed for every iteration.

Instead, it is performed for LOOP SYNC INTERVAL itera-
tions. This reduces the synchronization overhead significantly.
The helper thread is allowed to run ahead by MAX DIST *
LOOP SYNC INTERVAL iterations, whose values are:

bzip2 150 cg 20 em3d 120
equake 30 mcf 15 mg 20
mst 100 parser 50 swim 3

Thus, if LOOP SYNC INTERVAL*MAX DIST is 120 and
LOOP SYNC INTERVAL is 40, then MAX DIST is 3.
We found these values through experiments. Larger
LOOP SYNC INTERVAL values have lower synchronization
overheads and produce better performance. MAX DIST must
be at least 1 to detect whether the helper thread lags behind.

6.6. Code Size and Memory Size
Since the helper thread was extracted for just one function for

all the applications except swim (swim has 3 target loops), the

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

bzip2 cg em3d equake mcf mg mst parser swim average
N

o
rm

a
liz

e
d

 Ex
e

c
u

ti
o

n
 Ti
m

e

no registers with registers

Figure 9. The performance comparison of the cases with and without special synchronization regis-
ters.

0%

10%

20%

30%

40%

50%

60%

70%

80%

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

n
o
p
re

f
c
8

h
e
lp

e
r

c
8
+

h
e
lp

e
r

D
IM

M
C

M
P

bzip2 cg em3d equake mcf mg mst parser swim average

%
 U

ti
liz

a
ti
o
n

No prefetching Due to the reduced execution time Due to prefetching

Figure 10. Main memory bus utilization for the target loops.

helper thread’s code size is very small compared to the applica-
tion.

Extra dynamic memory (heap and stack) created by the helper
thread is negligible because it just reads the dynamic memory
location created by the application thread for prefetching. In
addition, the helper thread does private writes only for address
calculation, which, in most cases, are to scalar variables. This
means that the dynamic memory size for the helper thread is
much smaller than the application thread and equal to the appli-
cation thread in the worst case.

7. Related Work

Most previous studies in executing a helper thread to hide
memory latency of the application thread focus on executing the
threads in a tightly-coupled system [2, 3, 4, 6, 13, 15, 16, 19,
21, 22], such as in a simultaneous multi-threaded (SMT) unipro-
cessor system. Typically, a program slice is extracted for each
critical instruction (i.e., instructions that frequently miss in L1
cache and hard-to-predict branches). Each program slice is con-
verted into a helper thread. Zilles and Sohi [21, 22] and Roth and
Sohi [16] extract the slices statically, while Collins et al. extract
the slices dynamically [4]. As a result of the design, the thread
granularity is small. This would result in high thread manage-
ment overhead in loosely-coupled systems such as a CMP or an
intelligent memory. In addition, the prefetching thread is typi-
cally not synchronized due to the granularity. In contrast, our
approach provides a much larger prefetching thread granularity
that tolerates thread management and synchronization overheads
well.

Kim et al. [10, 11] showed that helper thread prefetching is
quite effective for SMT processors, including the Intel Pentium 4
with Hyper-Threading. Although their prefetching sections are
loop-based regions similar to ours, they only evaluate it for an
SMT platform, while we evaluate and optimize our scheme for a
CMP and an intelligent memory. Their helper thread is synchro-
nized by suspending and resuming it, resulting in very high syn-
chronization overheads and custom SMT-specific hardware sup-
port. Consequently, their approach requires more complex thread
management support. In contrast, we use a much faster user-level
semaphore without thread suspension/resumption. Furthermore,
we provide a new mechanism to allow a lagging helper thread to
catch up with the application and architecture support for intel-
ligent memory.

Similar to our work, Brown et al. [2] proposes helper thread
prefetching for a CMP system. However, there are several major
differences. First, they use very fine-grain prefetching threads,
where each thread consists of fewer than 15 instructions and
prefetches for only one delinquent load. Such a fine granularity
results in high complexities. One complexity is that prefetching
threads need to be spawned early to tolerate spawning overhead
and cache miss latency, which is limited by data dependence. Sec-
ond, chained spawning with multiple helper threads is required
for the threads to stay ahead, requiring multiple CMP cores to
execute them. Third, the CMP’s cache coherence needs read-
broadcast and cache-to-cache transfer modifications. Finally,
such a granularity will incur a high overhead on the intelligent
memory where the communication latency is very high. In con-
trast, our prefetching scheme relies on large loop-regions with
millions of instructions, producing several consequences. First,
we only require one CMP core to execute one helper thread. Sec-
ond, our helper thread is only spawned once for each application.
Third, synchronization overhead is minimized by performing it
for every multiple of loop iterations. Fourth, the CMP can be
kept unmodified while delivering good speedups. Finally, even
on intelligent memory where the communication latency is very
high and there is no shared caches, our scheme produces speedups
comparable to a CMP system.

Sundaramoorthy et al. [15, 19] proposes the Slipstream ap-
proach that observes instruction retirement stream and removes
instructions that were not executed in the main thread to create
a shortened thread that is speculative. Although they evaluate
their scheme on a CMP, the cores need to be tightly integrated
to provide communication of register values and recovery from
misspeculation.

Our work is also related to memory-side prefetching [1, 5, 7,
14, 18, 20], where the prefetching is initiated by an engine that
resides in the memory system. Some manufacturers have built
such engines [14], such as the NVIDIA chipset which includes the
DASP controller in the North Bridge chip [14]. It seems that it is
mostly targeted to stride recognition. It also buffers prefetched
data locally. The i860 chipset from Intel is reported to have a
prefetch cache, which may indicate the presence of a similar en-
gine. Cooksey et al. [5] proposed the Content-Based prefetcher,
which is a hardware controller that monitors the data coming
from the memory. If an item appears to be an address, the en-
gine prefetches it, allowing automatic pointer chasing. Alexander
and Kedem [1] propose a hardware controller that monitors re-

quests at the main memory. If it observes repeatable patterns, it
prefetches rows of data from the DRAM to an SRAM buffer inside
the memory chip. Solihin et al. [17] proposed a thread that runs
in an intelligent memory that observes, learns, and prefetches for
the miss streams of the applications. In contrast to those studies,
our helper thread is constructed out of the application’s code.

Other studies proposed specialized programmable engines.
For example, Hughes [7], and Yang and Lebeck [20] proposed
adding a specialized engine to prefetch linked data structures.
While Hughes focuses on a multiprocessor processing-in-memory
system, Yang and Lebeck focus on a uniprocessor and put the
engine at every level of the cache hierarchy. The main processor
downloads information on these engines about the linked struc-
tures and what prefetches to perform. Because we do not use
specialized prefetching hardware, our helper thread is not lim-
ited to just prefetching linked data structures.

8. Conclusion

We have presented a helper thread prefetching scheme that
works effectively on loosely-coupled processors, such as in a stan-
dard chip multi-processor (CMP) system and an intelligent mem-
ory. To alleviate this high inter-processor communication in such
a system, we apply two novel techniques. Firstly, instead of
extracting a program slice per delinquent load instruction, our
helper thread extracts a program slice for a large loop-based code
section. Such a large granularity helps to decrease the overheads
of communication and thread management. Secondly, we present
a new synchronization mechanism between the application and
the helper thread that exploits loop iterations. The synchroniza-
tion mechanism precisely controls how far ahead the execution of
the helper thread can be with respect to the application, and at
the same time allows the helper thread to catch up to the applica-
tion when it lags behind. We found that this feature is important
in ensuring prefetching timeliness and avoiding cache pollution.

To demonstrate that prefetching in a loosely-coupled system
can be done effectively, we evaluate our prefetching in a standard,
unmodified CMP, and in an intelligent memory where a simple
processor is embedded in memory. Evaluating our scheme with
nine memory-intensive applications with the memory processor
in DRAM achieves an average speedup of 1.25. Moreover, our
scheme works well in combination with a conventional processor-
side sequential L1 prefetcher, resulting in an average speedup
of 1.31. In a standard CMP, the scheme achieves an average
speedup of 1.33. No hardware modifications are made to the
CMP, while for the intelligent memory, simple hardware support
for synchronization, coherence, and handling prefetch requests
are needed.

References

[1] T. Alexander and G. Kedem. Distributed Predictive Cache
Design for High Performance Memory Systems. In the Sec-
ond International Symposium on High-Performance Com-
puter Architecture, pages 254–263, February 1996.

[2] J. A. Brown, H. Wang, G. Chrysos, P. H. Wang, and J. P.
Shen. Speculative Precomputation on Chip Multiprocessors.
In the 6th Workshop on Multithreaded Execution, Architec-
ture (MTEAC-6), November 2002.

[3] R. S. Chappell, J. Stark, S. Kim, S. K. Reinhardt, and Y. N.
Patt. Simultaneous subordinate microthreading (ssmt). In
Proceedings of The 26th International Symposium on Com-
puter Architecture (ISCA’99), pages 186–195, May 1999.

[4] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen.
Dynamic speculative precomputation. In Proceedings of
The 34th International Symposium on Microarchitecture
(MICRO-34), December 2001.

[5] R. Cooksey, D. Colarelli, and D. Grunwald. Content-Based
Prefetching: Initial Results. In the 2nd Workshop on Intel-
ligent Memory Systems, pages 33–55, November 2000.

[6] G. K. Dorai and D. Yeung. Transparent threads: Resource
allocation in smt processors for high single-thread perfor-
mance. In Proceedings of the 11th Annual International
Conference on Parallel Architectures and Compilation Tech-
niques (PACT-11), September 2002.

[7] C. J. Hughes. Prefetching Linked Data Structures in Sys-
tems with Merged DRAM-Logic. Master’s thesis, University
of Illinois at Urbana-Champaign, May 2000. Technical Re-
port UIUCDCS-R-2001-2221.

[8] J. Renau, et al. SESC. http://sesc.sourceforge.net, 2004.
[9] N. Jouppi. Improving Direct-Mapped Cache Performance

by the Addition of a Small Fully-Associative Cache and
Prefetch Buffers. In the 17th International Symposium on
Computer Architecture, pages 364–373, May 1990.

[10] D. Kim, S.-W. Liao, P. H. Wang, J. del Cuvillo, X. Tian,
X. Zou, H. Wang, D. Yeung, M. Girkar, and J. P. Shen.
Physical Experimentation with Prefetching Helper Threads
on Intel’s Hyper-Threaded Processor. In the 2nd Interna-
tional Symposium on Code Generation and Optimization
(CGO 2004), pages 27–38, March 2004.

[11] D. Kim and D. Yeung. Design and Evaluation of Compiler
Algorithms for Pre-Execution. In the 10th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-X), pages 159–
170, October 2002.

[12] J. Lee, Y. Solihin, and J. Torrellas. Automatically mapping
code in an intelligent memory architecture. In Proceedings
of the 7th International Symposium on High Performance
Computer Architecture, January 2001.

[13] C.-K. Luk. Tolerating Memory Latency through Software-
Controlled Pre-Execution in Simultaneous Multithreading
Processors. In Proceedings of the 29th International Sym-
posium on Computer Architecture, June 2001.

[14] NVIDIA. Technical Brief: NVIDIA nForce Integrated
Graphics Processor (IGP) and Dynamic Adaptive Specu-
lative Pre-Processor (DASP). http://www.nvidia.com/.

[15] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. A study
of slipstream processors. In Proceedings of The 33rd In-
ternational Symposium on Microarchitecture (MICRO-33),
pages 269–280, December 2000.

[16] A. Roth and G. Sohi. Speculative Data-Driven Multithread-
ing. In Proceedings fo the 7th HPCA, pages 37–48, Jan 2001.

[17] Y. Solihin, J. Lee, and J. Torrellas. Automatic code mapping
on an intelligent memory architecture. IEEE Transactions
on Computers: Special Issue on Advances in High Perfor-
mance Memory Systems, 50(11), 2001.

[18] Y. Solihin, J. Lee, and J. Torrellas. Using a user-level mem-
ory thread for correlation prefetching. In Proceedings of the
29th International Symposium on Computer Architecture,
May 2002.

[19] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slip-
stream processors: Improving both performance and fault
tolerance. In Proceedings of The 9th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-IX), pages 257–268, Oc-
tober 2000.

[20] C.-L. Yang and A. R. Lebeck. Push vs. Pull: Data Movement
for Linked Data Structures. In International Conference on
Supercomputing, pages 176–186, May 2000.

[21] C. B. Zilles and G. S. Sohi. Understanding the backward
slices of performance degrading instructions. In Proceedings
of The 27th International Symposium on Computer Archi-
tecture (ISCA’00), pages 172–181, June 2000.

[22] C. B. Zilles and G. S. Sohi. Execution-based prediction us-
ing speculative slices. In Proceedings of The 28th Inter-
national Symposium on Computer Architecture (ISCA’01),
July 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

