
Load Balancing in the Presence of Random Node Failure and

Recovery

Sagar Dhakal1, Majeed M. Hayat1, Jorge E. Pezoa1, Chaouki T. Abdallah1,
J. Doug Birdwell2, and John Chiasson2

1University of New Mexico 2University of Tennessee
Dept. of Electrical and Computer Engineering Dept. of Electrical and Computer Engineering

Albuquerque, NM 87131-0001 USA Knoxville, TN 37996-2100 USA
{dhakal, hayat, jpezoa, chaouki}@eece.unm.edu {birdwell, chiasson}@utk.edu

Abstract

In many distributed computing systems that are
prone to either induced or spontaneous node failures,
the number of available computing resources is dynam-
ically changing in a random fashion. A load-balancing
(LB) policy for such systems should therefore be robust,
in terms of workload re-allocation and effectiveness in
task completion, with respect to the random absence
and re-emergence of nodes as well as random delays in
the transfer of workloads among nodes. In this paper
two LB policies for such computing environments are
presented: The first policy takes an initial LB action
to preemptively counteract the consequences of random
failure and recovery of nodes. The second policy com-
pensates for the occurrence of node failure dynamically
by transferring loads only at the actual failure instants.
A probabilistic model, based on the concept of regener-
ative processes, is presented to assess the overall per-
formance of the system under these policies. Optimal
performance of both policies is evaluated using analyt-
ical, experimental and simulation-based results. The
interplay between node-failure/recovery rates and the
mean load-transfer delay are highlighted.

1. Introduction

In a distributed computing system, large work-
loads are divided among independent computational
elements (CEs), or nodes, in an attempt to minimize
the average service time per task of the entire system.
Such load allocation is referred in the literature as load
balancing (LB). In a heterogeneous computing environ-
ment, where different nodes (links) may have different

processing speeds (delays), an effective LB policy must
consider factors like inhomogeneity in node’s process-
ing speeds, variability and inhomogeneity in delays in
inter-node communications, the number of available
nodes in the system, etc.

Additionally, a distributed computing system may
utilize dynamic sets of CEs, where nodes may join and
leave the system in a random fashion. An example
of such systems is “SETI at Home” [1]. Such systems
typically use dedicated workstations as well as dynamic
resources comprising a network of non-dedicated nodes,
such as a collection of desk-tops or portable computing
devices that are online, which are used remotely, upon
availability, to participate in the distributed comput-
ing. However, these nodes can go off-line anytime, re-
gardless of the portion of the load assigned to them.
Furthermore, the participation of any node may be in-
terrupted by either the local usage of the node by its
owner or due to the occurrence of physical failure or
damage to the node. (The latter effect applies even to
the set of dedicated nodes.) Such scenarios induce an
uncertainty in the availability of the number of func-
tional nodes, whereby any node (including the dedi-
cated nodes) may randomly fluctuate between a “fail-
ure” (or “down”) and “working” (or “up”) states.

Clearly, uncertainty in the number of working nodes
is expected to degrade the performance of any LB pol-
icy which does not account for the above-described
node-failure and recovery mechanism. More precisely,
the distribution of task completion time (or service
time) is dependent on the statistics of node failure and
recovery. Available literature on distributed comput-
ing in such uncertain environments, primarily consid-
ers LB policies where any node failure is addressed only
after its occurrence. Checkpoint-resume or terminate-

1-4244-0054-6/06/$20.00 ©2006 IEEE

restart mechanisms are used to detect failures and re-
cover unprocessed tasks at the failed nodes [2, 3]. The
node failure can also be tackled by keeping multiple
copies of workload on different nodes [4], while the
work of Choi et al. [5] addresses performance of the
system based only on the unreliable resources, with-
out addressing the cooperation between dedicated and
non-dedicated nodes. Additionally, most of the exist-
ing literature [6, 7] that offers analytical formulation
of distributed-computing systems assumes a homoge-
neous setup and that network delays are determinis-
tic. However, in distributed systems that operate over
a wireless LAN, these assumptions are violated since
(1) the communication delays are strongly random, (2)
the statistics of these delays are inhomogeneous, and
(3) the nodes are not homogeneous. We have reported
in our earlier work that conventional LB policies that
do not consider the presence of random delays perform
poorly in a delay infested systems [8, 9].

To the best of our knowledge, there are no LB poli-
cies which take preemptive actions to compensate for
node failure and recovery in heterogeneous distributed-
computing systems. By preemptive we mean adjusting
the LB action to compensate for the possibility of node
failure/recovery before node failure occurs. To appre-
ciate why such preemptive action is useful, consider a
scenario where a node fails while having a large sum of
unprocessed load, which would be transferred to other
nodes upon its failure. However, the transfer of such
large load may be accompanied by a large, random de-
lay, which may potentially result in idle times for the
other nodes. Note that such action would not be in-
effective had the delay been unsubstantial. Another
scenario where action-upon-failure LB policy may not
be effective is when the failure rate of a node is high. In
this case, the frequent load transfer upon-failure would
result in an increase in the overall volume of loads that
are in transit. Therefore, depending on the statistics of
the heterogeneous delay and node failure, we suspect
that a preemptive LB policy may provide superior per-
formance compared to an action-upon-failure-based LB
policy. There is therefore a need to develop and ana-
lyze preemptive LB policies and understand the precise
conditions at which they become effective.

In this paper we present LB policies for distributed
computing systems where each node may fail randomly
in time and subsequently recover in random amount of
time. The policies take into account the randomness in
processing speed of each node as well as the uncertainty
in the load-transfer delay between the nodes. Two dif-
ferent LB policies are presented specialized for two-
node systems. In the first LB policy (LBP-1), schedul-
ing is performed preemptively at the beginning of the

execution of a workload. In the second policy (LBP-
2), an initial scheduling is performed without the prior
knowledge of the statistics of failure and recovery, but
additional LB action is taken at every occurrence of
node failure. The performance of both policies are
analytically modeled, using the concept of regenera-
tive processes [12], and optimized over the initial LB
gain to minimize the average overall completion time
for a fixed initial load distributions. Both policies are
applied to real-time experiments over a wireless LAN
test-bed and the results are compared to the theory
and Monte-Carlo (MC) simulations. The theory pre-
sented in this paper can be extended to a multi-node
system in a straightforward way.

This paper is organized as follows. Section 2 con-
tains the description of both LBP-1 and LBP-2 fol-
lowed by regeneration-theory-based analysis of the sto-
chastic dynamics of LBP-1. The architecture of the
distributed computing system implemented to test the
LB is detailed in Section 3. In Section 4 we present
the experimental results obtained using a wireless LAN
environment and compare them to theoretical predic-
tions and to MC simulations. Finally, our conclusions
are given in Section 5.

2. LB policies and Theoretical Modeling

Two different LB policies, namely LBP-1 and LBP-
2, are presented in this section. Both policies allow
the nodes to jointly execute scheduling at time t =
0. LBP-1 takes a proactive initial scheduling action
by considering the node failure and recovery, while in
LBP-2, the initial scheduling does not account for the
node failure but a new balancing action is allowed at
every failure instant to compensate for the node failure.
In the rest of the paper, a task is the smallest indivisible
unit of workload, and a load, or workload, refers to a
collection of tasks. For simplicity, we present these two
policies in the context of a two-node system; however,
the same rationale and analysis applies to systems with
multiple nodes.

Consider a 2-node distributed computer system,
where the ith node has mi ≥ 0 tasks in its queue at
time t = 0 and each node has the initial queue-size
information of the other node. Suppose that the ser-
vice time (execution time per task), failure time and
recovery time of ith node follow exponential distrib-
ution with parameters (inverse of the mean), λdi , λfi

and λri , respectively. The load-transfer delay between
the nodes, say delay in transferring Lji tasks from node
i to node j, is also assumed to follow an exponential
distribution with rate λji, which depends on the size
of the load Lji. These approximations are supported

in Section 4 by experimental results.

2.1. Definition and analysis of LBP-1

The policy LBP-1 allows a one-time and a one-way
load transfer between the nodes and no other balancing
action is taken afterwards. At time t = 0, both nodes
are assumed to be functional and only one of the nodes,
say node i transfers Lji tasks to node j, where

Lji = �Kmi�, (1)

K ∈ [0, 1], i, j ∈ {1, 2} and i �= j, where the user-
specified control parameter K is known as LB gain. No
other load transfer occurs afterwards and each node
will process its remaining initial tasks as well as the
tasks transferred to it. The optimal policy is to choose
K, the sender node i and the receiver node j that will
minimize the expected value of the overall completion
time of the workload in the system. Our next goal is to
characterize the expected value of the overall comple-
tion time for a given initial workload and optimize it
over gain K. For the rest of this section, without loss
of generality, we will suppose that node 1 is sender i.e.,
at time t = 0, node 1 sends L := L21 tasks to node 2
as given by (1).

To do so it is necessary that we introduce the notion
of work states of the distributed system and show its
implication in the dynamics of the system. A node may
either be in a working mode, indicated by “1,” or dead
or recovery mode, indicated by “0.” Therefore, at any
given instant, a 2-node system has 22 work states that
can be represented as (k1, k2), where (k1, k2) ∈ {0, 1}2.
For example, work state (1, 1) corresponds to the case
when both nodes are working while work state (1, 0)
means node 1 is working while node 2 is dead. For the
ith node, let Xi and Yi be the random variables repre-
senting the time to failure (if the node is initially in a
working state) and the time to recovery (if the node is
initially in a dead state), respectively. We set Y1 = ∞
if the initial work state of the nodes is (1, k), Y2 = ∞ if
the initial work state of the nodes is (k, 1), X1 = ∞ if
the initial work state of the nodes is (0, k), and X2 = ∞
if the initial work state of the nodes is (k, 0). Thus,
the random variable σ

�= min(X1, X2, Y1, Y2) repre-
sents the time when the first node recovery or node
failure occurs.

Next, we use the concept of regenerative processes
[12] to obtain a set of difference equations that char-
acterize the expected value of the overall completion
time. Let Wi and Z be the random variables repre-
senting the time of the first task completion at the ith
node and the time of arrival of load L sent from node
1 to node 2, respectively. Define the random variable

τ
�= min(σ, W1, W2, Z), which represents the time of

the first occurrence of any of the above events. The
event {τ = s} is termed a regeneration event since its
occurrence will regenerate queues at time s that have
similar statistical properties and dynamics as their pre-
decessors, but with a different initial work state or dif-
ferent workload distribution. For example, with the
initial work state (0, 0), the occurrence of the event
{τ = s} implies that new versions of the queues will
emerge at time s with similar dynamics, except that
the initial work state has now changed to either (0, 1)
or (1, 0), depending on the occurrence of the events
{τ = Y2 = s} or {τ = Y1 = s}, respectively. Note
that the occurrence of the event {τ = W2 = s} implies
that the set of queues that emerge at time t = s would
statistically be the same as those at time t = 0 if node
2 had one task less than what node 2 had for its ini-
tial workload. In summary, upon the occurrence of the
event {τ = s} the queueing system re-emerges, or it
is regenerated, with a different initial load or working
state.

2.1.1 Expected completion time

Let T k1,k2
M1,M2

denote the overall completion time, where
node 1 has M1 := m1 −L tasks and node 2 has M2 :=
m2 tasks at time t = 0, with L tasks in transit (from
node 1 to node 2) given that the system’s work state is
(k1, k2) at time t = 0. We can use iterated conditional
expectations to write:

E[T k1,k2
M1,M2

] = E
[
E[T k1,k2

M1,M2
|τ]

]

=
∫ ∞

0

E[T k1,k2
M1,M2

|τ = s]fτ (s)ds, (2)

where fτ (t) is the probability density function of τ . For
(k1, k2) = (1, 1), we can write

E[T 1,1
M1,M2

|τ = s] =
2∑

i=1

E[T 1,1
M1,M2

|τ = s = Wi]P{τ = Wi}

+
2∑

i=1

E[T 1,1
M1,M2

|τ = s = Xi]P{τ = Xi}

+ E[T 1,1
M1,M2

|τ = s = Z]P{τ = Z}.
Now we can utilize the concept of regeneration that

was explained earlier in this section to obtain

E[T 1,1
M1,M2

|τ = W2 = s] = s + E[T 1,1
M1,M2−1].

Therefore,∫ ∞

0

E[T 1,1
M1,M2

|τ = s = W2]fτ (s)ds =

E[τ] + E[T 1,1
M1,M2−1]. (3)

Similarly, if {τ = X2 = s} occurs, we obtain

E[T 1,1
M1,M2

|τ = X2 = s] = s + E[T 1,0
M1,M2

].

Interestingly, the occurrence of the event {τ = Z = s}
will regenerate the new queues, independently of the
original queues, with similar statistical properties with
the exception that Z = ∞}. This prompts us to define
a new, simpler random variable T̂ 1,1

r1,r2
, which denotes

the overall completion time when node i has ri ≥ 0
tasks and the system work state is (1, 1) at time t = 0
while there is no tasks in transit. With this, we can
write

E[T 1,1
M1,M2

|τ = Z = s] = s + E[T̂ 1,1
M1,M2+L].

Let µ1,1
M1,M2

:= E[T 1,1
M1,M2

]. From basic probability,
the definition of τ implies that τ is an exponential ran-
dom variable with rate λ =

∑2
i=1 λdi +

∑2
i=1 λfi +λ21.

Also, P{τ = Wi} = λdi/λ, P{τ = Xi} = λfi/λ and
P{τ = Z} = λ21/λ. Using (2) and the decomposition
based on regeneration principle, we obtain

µ1,1
M1,M2

=
1
λ

+
λd1

λ
µ1,1

M1−1,M2
+

λd2

λ
µ1,1

M1,M2−1

+
λf1

λ
µ0,1

M1,M2
+

λf2

λ
µ1,0

M1,M2
+

λ21

λ
µ̂1,1

M1,M2+L.

Similarly, with the initial work state (k1, k2) = (0, 1),
we can characterize E[T 0,1

M1,M2
] by the equation

µ0,1
M1,M2

=
1
λ

+
λd2

λ
µ0,1

M1,M2−1

+
λr1

λ
µ1,1

M1,M2
+

λf2

λ
µ0,0

M1,M2
+

λ21

λ
µ̂0,1

M1,M2+L,

where, λ = λd2 + λr1 + λf2 + λ21. In this fashion, we
obtain a set of difference equations satisfying

µ = A−1b, (4)

with

A=

⎛
⎜⎜⎝

1 −λr2/λA −λr1/λA 0
−λf2/λB 1 0 −λr1/λB

−λf1/λC 0 1 −λr2/λC

0 −λf1/λD −λf2/λD 1

⎞
⎟⎟⎠

b=

⎡
⎢⎢⎢⎣

1
λA

+ λ21
λA

µ̂0,0
M1,M2+L

1
λB

+ λd2
λB

µ0,1
M1,M2−1 + λ21

λB
µ̂0,1

M1,M2+L
1

λC
+ λd1

λC
µ1,0

M1−1,M2
+ λ21

λC
µ̂1,0

M1,M2+L
1

λD
+ λd1

λD
µ1,1

M1−1,M2
+ λd2

λD
µ1,1

M1,M2−1 + λ21
λD

µ̂1,1
M1,M2+L

⎤
⎥⎥⎥⎦

where,

λA = λr1 + λr2 + λ21,

λB = λd2 + λr1 + λf2 + λ21,

λC = λd1 + λf1 + λr2 + λ21,

λD = λd1 + λd2 + λf1 + λf2 + λ21

µ =
[
µ0,0

M1,M2
, µ0,1

M1,M2
, µ1,0

M1,M2
, µ1,1

M1,M2

]T
.

Observe that (4) holds for M1, M2 ≥ 1; thus, it is re-
quired that we compute the solution to the initial con-
ditions µk1,k2

0,0 , µk1,k2
0,1 and µk1,k2

1,0 , as well as µ̂k1,k2
M1,M2+L.

The first three quantities can be computed in a similar
fashion but with a fewer possible events. For exam-
ple, µk1,k2

0,0 can be computed by setting W1 = ∞ and
W2 = ∞, since there are no tasks to be executed. Fi-
nally, using arguments based on regeneration, it turns
out that µ̂k1,k2

M1,M2+L can also be written as µ̂ = Â−1b̂
(we omit details), where Â is similar to A with λ21 = 0,
and b̂ is similar to b with λ21 = 0. In this case, the
initial condition µ̂k1,k2

0,0 = 0.
We make the final observation that swapping the

roles of the sender and receiver nodes does not change
the analysis detailed above. Therefore, our earlier as-
sumption that node 1 was the sending node can now be
relaxed. With the above complete solution of the mean
overall completion time, the optimal gain value K and
the sender/receiver pair (i.e., which node should be
sending tasks to the other) that will minimize µ1,1

M1,M2

can be found. This allows the determination of the
optimal implementation of LBP-1. Numerical and ex-
perimental results are discussed in Section 4.

2.1.2 Probability distribution function of the
completion time

Let pk1,k2
M1,M2

(t) := P{T k1,k2
M1,M2

≤ t} = E[1{T
k1,k2
M1,M2

≤t}],

where, 1A is an indicator function for the event A. By
using the smoothing property of expectations and ex-
ploiting the concept of regeneration, it is straight for-
ward to show that

ṗ = A1p + B1u, (5)

where A1 =

⎛
⎜⎜⎝

−λD λf1 λf2 0
λr1 −λB 0 λf2

λr2 0 λC λf1

0 λr2 λr1 λA

⎞
⎟⎟⎠, B1 = I4,

the 4 × 4 identity matrix,

u=

⎡
⎢⎢⎢⎣

λd1p
1,1
M1−1,M2

(t) + λd2p
1,1
M1,M2−1(t) + λ21p̂

1,1
M1,M2+L(t)

λd2p
0,1
M1,M2−1(t) + λ21p̂

0,1
M1,M2+L(t)

λd1p
1,0
M1−1,M2

(t) + λ21p̂
1,0
M1,M2+L(t)

λ21p̂
0,0
M1,M2+L(t)

⎤
⎥⎥⎥⎦

p =
[
p1,1

M1,M2
(t), p0,1

M1,M2
(t), p1,0

M1,M2
(t), p0,0

M1,M2
(t)

]T
,

and p̂k1,k2
M1,M2

(t) = E[1{T̂
k1,k2
M1,M2

≤t}], which results in a

similar set of equations as in (5) but with λ21 = 0.
Clearly, solving (5) requires the explicit and a priori so-
lution of p̂k1,k2

M1,M2
(t). Indeed, by using the initial condi-

tion p̂k1,k2
0,0 (t) = 1, we can iteratively solve for p̂k1,k2

M1,M2
(t)

and use it in (5).

2.2. Policy LBP-2

In this policy, each node initially executes load bal-
ancing at time t = 0 without considering the future
possibility of node failures and subsequent recoveries
of any node in the distributed system. Each node is
assumed to be equipped with a backup system that
can only send or receive tasks, as explained in more
detail in Section 3. Subsequently, upon the occurrence
of every node failure, the backup system of the failing
node executes another balancing action to compensate
for the time that will be wasted till the node recovers.
As before we will assume that at time t = 0 each node
in the system has knowledge of the initial workload of
all other nodes.

Based on the processing rates of the nodes, the ini-
tial LB action is taken to achieve an “approximately”
uniform division of the total workload of the whole sys-
tem among all the nodes assuming that all nodes will
remain functional. It has been shown in our previous
works that in a delay infested system, the division of
the load based on the nodes’ processing speeds alone
does not yield a minimal average overall completion
time [8, 10]. Specifically, at time t = 0, every node
computes its excess load by comparing its load to the
average over all load of the system. For example, the
excess load at node j is given by

Lexcess
j =

(
mj −

λdj∑n
k=1 λdk

n∑
l=1

ml

)+

,

where (x)+ �= max(x, 0). This is a more plausible way
to calculate the excess load of a node in a heteroge-
neous computing environment as compared to our ear-
lier method that did not consider the processing speeds
of the nodes [8–11]. Clearly, with the inclusion of the
processing speeds of the nodes, a slower (faster) node
has a larger (smaller) excess load than what it would
have had under our earlier definition. The excess load
is then partitioned among the n−1 nodes by assigning
a larger portion to a node with smaller relative load.
Such a partition is obtained by using fraction pij given
as

pij =

⎧⎨
⎩

1
n−2

(
1 − λ−1

di
mi

�
l �=j λ−1

dl
ml

)
, n ≥ 3

1, n = 2
(6)

with pjj = 0. Indeed, it is easy to check that∑n
l=1 plj = 1. Therefore, these fractions form a par-

tition based not only on the amount of loads at the
receiver nodes, as in [8–11], but also use the processing
speeds of the receiver nodes. Consequently, pijL

excess
j

uniformly divides the excess load of node j among
all other nodes. But, due to the inherent delay in

load transfer between nodes, such a uniform partition
(which, in comparison to LBP-1, does not involve a
LB gain, K) will not guarantee the minimum possible
overall completion time [8]. To remedy this, the user-
defined gain K ∈ [0, 1] will be used to calculate the
actual portion of the load to be dispatched to node i
from node j. The load to be transferred from node j
to node i therefore becomes

Lij = �KpijL
excess
j �. (7)

In LBP-2, we choose the LB gain K that will mini-
mize the average overall completion time under the hy-
pothesis that the nodes will never fail. This optimiza-
tion problem has already been solved using the concept
of regeneration [10, 11] and it has been observed that
due to the presence of random delay the LB gain is not
unity.

Now suppose node j fails at time t > 0, which
means that in average node j will be out of work for
λ−1

rj
amount of time. Therefore, knowing that the dis-

tributed system has already been balanced to opti-
mize the average overall completion time, the failure
of node j results in an accumulation, on average, of
λdj /λrj of unattended tasks (which is the average re-
covery time multiplied by the processing speed) dur-
ing its recovery period. Hence, node j should be al-
lowed another balancing opportunity to transfer a load(

λdi� n
k=1 λdk

)(
λdj

λrj

)
tasks to node i. But, the steady-

state probability of any node i to be working is given

by
(

λri

λfi
+λri

)
. Therefore, at every failure instant of

node j, the node should send LF
ij number of tasks to

node i (i �= j), where

LF
ij = �

(
λri

λfi + λri

)(
λdi∑n

k=1 λdk

)(
λdj

λrj

)
�. (8)

3. Implementation of LB Policies

We have developed a distributed computing system
architecture to validate our stochastic model and to
determine the performance of the system in case of re-
coverable failures. The system is formed by a certain
number of CEs that are processing jobs in a coopera-
tive environment. Each CE contains a back-up system
that is saving the context of the application running on
the node; therefore, if a node randomly fails (or “goes
down”) and recovers (or “goes up”) after a certain ran-
dom time, then it can resume its work by simply re-
loading the data saved by the back-up process. The
software architecture of the distributed system is di-
vided in three layers: application, communication and
load-balancing/failure.

The application layer software developed consists of
the application that is being processed in parallel in
the nodes forming the system. The application used to
illustrate the load-balancing process is matrix multipli-
cation, where one task is defined as the multiplication
of one row by a static matrix duplicated on all nodes.
To produce a certain randomness in the processing time
of the tasks, we defined the arithmetic precision of each
element in a row to be picked randomly from an expo-
nential distribution. This also randomizes the sizes of
the tasks. In addition, the application layer manages
the shared data that is being transferred between the
nodes and produces the state information of each node,
which is transferred to the remaining nodes of the sys-
tem.

The communication layer handles all the data and
state information transfers made by the system. This
layer receives the shared data from the application
layer and transfers it to its peer layer on the receiv-
ing nodes. The UDP transport protocol is employed to
perform all the state information exchanges among the
nodes. The state information consists of the informa-
tion about the current queue size, the node computa-
tional power, and other local information that may be
relevant to the load-balancing policy in use. The sizes
of the information state packets are between 20 and 34
bytes, depending on the policy employed. On the other
hand, the TCP transport protocol is used to transfer
the application data between the CEs. In this case, the
size of the data packets depend on the number of tasks
to be transferred and on the particular realization of
each randomly generated task. In addition, the com-
munication layer receives the data from the application
layer and formats the data before transferring it to the
receiving nodes. Therefore, after receiving data from
the network, this layer performs inverse operation to
the received packets before delivering the data to the
application layer.

The load-balancing/failure layer implements the
load-balancing policies and the failure/recovery actions
presented in this paper. The load-balancing layer is im-
plemented in software using a multi-threaded process,
where the POSIX-threads programming standard was
used. One of the threads is in charge of the load-
balancing policy and it is initiated, using an sched-
uler, at a predefined or at a calculated amount of time
depending on the policy used. Therefore, the thread
determines the portion of the tasks to be transferred
to every node in the system, if applicable, and accesses
the shared data to define the tasks to be sent by the
communication layer. A different thread was coded for
the back-up node, in order to implement the failure
policy. This thread computes the amount of tasks to

be sent in case of a non-catastrophic failure, and also
accesses the shared data to define which tasks must be
transferred. The mentioned software is running identi-
cal copies on each node of the system; so, the system’s
load-balancing action (i.e., the instants of balance and
the number of tasks to transmit from one node to the
others) is distributed because of the local decision that
each local node takes, based on the state information
of the system that was exchanged during the synchro-
nization events.

Finally, the software platform was coded in ANSI-C
over UNIX-based systems, and it has been successfully
tested on SPARC processor-based machines running
Solaris operating system and on IA-32 processor-based
computers running both Linux and Microsoft Windows
operating systems.

4. Results

To test the performance of the proposed LB poli-
cies, a comparative set of experiments was performed
between these two policies, and the results were also
compared to the theoretical predictions and MC sim-
ulations. The experiments were conducted over the
EECE infrastructure-based IEEE 802.11b/g network
at the University of New Mexico in normal work-days
of operation. In our experiments we employed a 1 GHz
Transmeta Crusoe processor-based computer (node 1)
and a 2.66 GHz Intel P4 processor-based computer
(node 2).

Firstly, experiments were conducted to estimate the
processing speed of the nodes as well as to calculate the
average delay in the network in the context of our ap-
plication, i.e., to estimate processing time per task, and
the delay incurred in transferring tasks. To recall, one
task is an array of numbers and the processing time of
a task is the time to multiply it with a static matrix of
fixed size. As we indicated earlier in Section 3, the task
sizes are generated randomly and independently, ac-
cording to a common distribution, which will, in turn,
result in independent and identically-distributed exe-
cution times. The empirically calculated probability
density functions (pdf’s) of the processing time per task
of each node is shown in Fig. 1. Clearly, each empiri-
cal pdf can be approximated with an exponential pdf,
where the processing rates of node 1 and node 2 are
1.08 tasks per second and 1.86 tasks per second, respec-
tively. Also, from Fig. 2, we see that the average trans-
fer delay depends on the load size (in terms of number
of tasks), and grows linearly with the size. Further,
the transfer delay per task can be approximated by an
exponentially distributed random variable with mean
0.02s. Although there is a slight shift observed in the

pdf of the delay, in our approximation we maintained
the exponential form of the pdf and compensated for
the shift through the choice of the exponential para-
meter. This approximation simplifies the analysis (as
the analysis in Section 2 assumes an exponential pdf)
while capturing the random, load-dependent nature of
the delay.

In the experiments, the nodes are assumed to fail
and recover independently and randomly following an
exponential pdf. In order to achieve this in our ex-
periments, we have coded a process that dynamically
generates failure instants and sends signals, at all such
failure instants, to the application layer ordering it to
stop executing tasks. Also, at every failure instant, the
same process generates a recovery time and waits for
that amount of time before sending a new signal to the
application layer ordering it to resume the execution of
tasks. In this paper, the average failure time for both
nodes is 20s, while the average recovery times of nodes
1 and 2 are 10s and 20s, respectively. Clearly, node 1
is expected to be available for more time than node 2.

Initially, experiments were performed to assess the
performance of LBP-1. Node 1 was assigned 100 tasks,
while node 2 was assigned 60 tasks. The load-balancing
was performed at time t = 0 according to (1), and the
load transfer was made from node 1 to node 2 using
different values for K. The average overall completion
time was computed for each case and the theoretical,
MC-simulated, and experimental results are shown in
Fig. (3). For comparison, the results for the no-failure
case (when the failure rate is set to zero) are also shown.
From the theoretical curves, it can be seen that the
minimum average overall completion time occurs at
K = 0.35, while the minimum occurs at K = 0.45
for the no-failure case. Note that in the former case,
node 1 transfers 35 tasks to node 2, while in the lat-
ter case it transfers 45 tasks to node 2. In both cases,
the average overall completion time is minimized when
node 1 transfers tasks to node 2, which has a higher
processing speed. But, in presence of node failure, the
amount of transfer is reduced because node 2 is now
less reliable. Intuitively, we can state that the optimal
K in case of node failure will always be less than the
optimal K for the no failure case.

Next, we conducted experiments for LBP-2. The
initial workload distribution was 100 and 60 tasks at
nodes 1 and 2, respectively. Note that from (8) the
amount of load to be transferred at every failure in-
stant happens to be a constant, depending on parame-
ters that are fixed in this paper. The optimal gain K
for the initial LB (which does not account for node fail-
ure) was found to be 1 [11]. Using this optimal gain,
the average overall completion time was calculated us-

ing 60 realizations of the experiments and was found
to be 109.17s. We also performed the MC simulation
under the same initial set-up for the LBP-2, and the av-
erage overall completion time turned out to be 112.43s
using 500 realizations. Note that in the case of LBP-1
(see Fig. (3)), the minimum average overall completion
time is 117s, which is greater than the value obtained
for the LBP-2. This is expected since LBP-1 takes a
preemptive action in the beginning by predicting the
failure instants, while LBP-2 avoids the prediction by
taking an action of transferring tasks only when failures
occur. In order to compare the dynamics of each pol-
icy, we show in Fig. 4 the actual queues of each node,
under one realization of the experiments performed for
LBP-1 and LBP-2. We can observe that the longer
flat portions of the queues corresponds to the recovery
times of the nodes. Note also the downward (upward)
jumps in the queues under LBP-2, which correspond to
the action of transferring (receiving) tasks after every
failure instant.

In order to compare the performance of the two poli-
cies in a small delay environment, we conducted exper-
iments with different initial workloads under similar
channel conditions. To achieve this, we first estimated
the average delay per task using channel probing exper-
iments, and the estimate was found to be 0.02s. The
theoretical model was then used to calculate the opti-
mal gains as well as the sender/receiver pairs for LBP-1
for each initial workload listed in Table 1. It was found
that if the initial load of node 1 is smaller than the ini-
tial load of node 2, then the load transfer has to be
made from node 2 to node 1; otherwise, node 1 has
to be the sender node. Using the respective optimal
gains and the sender/receiver pairs, the actual experi-
ments were conducted and the average overall comple-
tion time was estimated using 20 realizations for each
initial workload. In Table 1 we also list the theoreti-
cally calculated average overall completion time under
the no-failure case. To conduct the experiments under
LBP-2, we first calculated the optimal gains K using
our previously reported theoretical model [11] (which
does not consider node failure and recovery). In Ta-
ble 2 we have listed the results obtained from our MC
simulations and the real-time experiments. We can see
from both Tables that LBP-2 outperforms LBP-1 in all
cases.

We also studied the performance of LBP-1 and LBP-
2 under different amount of delays in the channel. The
results are shown in Table 3, and it can be seen that
when the average delay per task is bigger than 1s, LBP-
1 results in a smaller average overall completion time
than LBP-2. This is attributable to the amount of
time needed in making load transfers at every failure

0 2 4 6 8 10 12
0

0.5

1

1.5

w
1
, s

f W
1

(w
1
)

0 1 2 3 4 5
0

0.5

1

1.5

2

w
2
, s

f W
2

(w
2
)

Figure 1. Empirically estimated pdfs of the
processing time per task for node 1 (top)
and node 2 (bottom) as well as their expo-
nential approximations (solid curves).

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

50

100

150

f Z
(z

)

z, s

0 20 40 60 80 100
0

1

2

3

of Tasks, L

M
e
a
n
 D

e
la

y
,
s

Figure 2. Top: Empirical pdf, calculated
from 30 realizations of the transfer delay
per task. Their exponential approxima-
tions (solid curves) are also shown. Bot-
tom: A linear approximation of the em-
pirically calculated mean delay as a func-
tion of the number of tasks transferred be-
tween nodes, calculated from 30 realiza-
tions per task. The dots represent the ac-
tual delays found in the 30 realizations for
each number of tasks.

0 0.2 0.4 0.6 0.8 1
40

60

80

100

120

140

160

180

K

A
ve

ra
g

e
 O

ve
ra

ll
C

o
m

p
le

tio
n

 T
im

e
,

s

Theoretical
Experimental
No Failure Case
MC Simulation

Figure 3. The average overall completion
time as a function of the LB gain K for the
LBP-1.

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

Time, s

Q
u

e
u

e
 S

iz
e

LBP2
LBP1

P4

Crusoe

Figure 4. A realization of the queues ob-
tained from the experiments conducted for
LBP-1 and LBP-2.

Table 1. Experimental results for LBP-1 using
the theoretically determined optimal gain.

Average Overall
Initial Optimal Completion Time (s)

Workload Gain Node Failure Without
(m1,m2) Kopt Theo. Exp. Node

Pred. Result Failure
(200,200) 0.15 274.95 264.72 141.94
(200,100) 0.35 210.13 207.32 106.93
(100,200) 0.15 210.13 229.19 106.93
(200,50) 0.5 177.09 172.56 89.32
(50,200) 0.25 177.09 215.66 89.32

Table 2. Experimental and simulation results
for the LBP-2.

Initial Initial Average Overall
Workload LB Gain Completion Time (s)
(m1,m2) K MC Exp.

Simulation Result
(200,200) 1.00 277.9 263.4
(200,100) 1.00 202.4 188.8
(100,200) 0.80 203.07 212.9
(200,50) 1.00 170.81 171.42
(50,200) 0.95 189.72 177.6

instant in case of the LBP-2, which may result in idle
times at the receiving node while it waits for the load
to arrive. On the other hand, the LBP-1 only makes
a one-time transfer at the beginning of workload exe-
cution. Therefore, when the time needed to transfer
the tasks from one node to the other is in the order of
the mean recovery time of the sender node, the LBP-1
performs better than the LBP-2.

Table 3. Performance of the LBP-1 and the
LBP-2 under different network delays.

Average Delay Calculated Average Overall
Per Task Completion Time (s)

(s) LBP-1 LBP-2
.01 116.82 112.43
0.5 117.76 115.94
1 120.99 122.25
2 127.62 133.02
3 131.64 142.86

Finally, we used (5) to compute p1,1
M1,M2

(t) under
LBP-1 by using K that minimizes the average over-

all completion time. The average transfer delay per
task was assumed to be 0.02s. As an example, in
Fig. 5 we present the cumulative distribution function
for the overall completion time for the initial workloads:
(50, 0) and (25, 50).

0 50 100 150 200 250
0

0.5

1

t (s)

p
1

,1
2

5
,5

0
(t

)
0 50 100 150 200 250

0

0.5

1

t (s)
p

1
,1

5
0

,0
(t

)

No Failure
Failure

Failure
No Failure

Figure 5. The cumulative distribution func-
tion of the overall completion time in LBP-1.
The upper figure shows the case of an initial
workload of (50, 0), while the lower figure is
for an initial workload of (25, 50).

5. Conclusion

We have presented two load-balancing policies for a
distributed computing system in presence of node fail-
ure and recovery. The first policy, LBP-1, preemptively
utilizes the statistical information about the failure and
recovery processes to adjust the load-balancing gain K
to an optimal value, thereby minimizing the mean of
the overall completion time of the total workload. The
probabilistic analysis of this policy was carried out us-
ing a regeneration-theory-based analytical approach.
The performance metrics considered through out the
study included the mean overall completion time and
to a lesser extent its probability distribution function.
We have observed that under LBP-1, as the failure
rates of nodes increase (while holding other parameters
fixed), the minimum achievable average overall com-
pletion time is obtained by reducing the strength of
balancing. We also observed that the presence of node
failure and recovery warrants the use of a reduced load-

balancing gain K compared to the case of no-failure
case. This conclusion is not dissimilar to our earlier
results for the optimal gain in presence of stochastic
delay in load transfer [9–11]. In both the case, the
presence of uncertainty (viz., node faulre/recovery or
random delay) calls for an attenuation in the level of
load-balancing action.

On the other hand, the second policy, LBP-2, does
not predict the node failure but instead it takes due
action at every failure instant in order to distribute its
uncompleted workload during its recovery time. Com-
parative study of the two policies for different initial
workloads and different average delays indicated that
when the network delays are small compared to the
average recovery times, LBP-2 outperforms LBP-1. In
contrast, when the network delays are large compared
to the average recovery times, the time wasted in trans-
ferring tasks at every failure instant adversely affects
the average overall completion time. Therefore, it is
advantageous to use the LBP-1 instead of the LBP-2
in such situations.

We make the final remark that if new external work-
loads arrive regularly to the distributed system at ran-
dom instants, one can continue to utilize the rationale
of analogues to LBP-1 and LBP-2 to develop dynamic
versions of them. One simplified approach is to exe-
cute load-balancing episodes (either LBP-1 or LBP-2)
at every external arrival of new workloads.

Acknowledgment

This work is supported by the National Science
Foundation under Information Technology Research
(ITR) grants No. ANI-0312611 and ANI-0312182.

References

[1] http://setiathome.ss.berkeley.edu/
[2] H. M. Lee, S. H. Chin, J. H. Lee, D. W. Lee, K. S.

Chung, S. Y. Jung and H. C. Yu, “A Resource Man-
ager for Optimal Resource Selection and Fault Toler-
ance Service in Grids,” in the Proc. 4th IEEE Interna-
tional Symposium on Cluster Computing and the Grid,
Chicago, Illinois, USA 2004.

[3] M. Litzkow, M. Livny and M. Mutka, “Condor - A
hunter of idle Workstations,” in the Proc. 8th Inter-
national Conference of Distributed Computing Systems,
pp. 104–111, June 1988.

[4] V. Subramani, R. Kettimuthu, S. Srinivasan and P.
Sadayappan, “Distributed Job Schedulingon Computa-
tional Grids Using Multiple simultaneous Requests,”
Proc. 11th IEEE International Sumposium on High
Performance Distributed Computing HPDC-11, 2002
(HPDC’02), Edinburgh, Scotland, July 24–26, pp. 359–
368, 2002.

[5] S. Choi, M. Balik, and C. S. Hwang “Volunteer Avail-
ability based Fault Tolerant Scheduling Mechanism
in Desktop Grid Computing Environment,” Proc. 3rd
IEEE International Symposium on Network Computing
and Applications, Boston, Massachusetts, August 30th
- September 1st, pp. 366–371, 2004.

[6] E. Gelenbe, D. Finkel, and S. K. Tripathi, “On the
availability of a distributed computer system with fail-
ing components,” ACM SIGMETRICS Performance
Evaluation Review, vol. 13, Issue 2, pp. 6–13, 1985.

[7] R. Sheahan, L. Lipsky, and P. Fiorini, “The Effect of
Different Failure Recovery Procedures on the Distri-
bution of Task Completion Times,” IEEE DPDNS05,
Denver CO, April 2005.

[8] M. M. Hayat, S. Dhakal, C. T. Abdallah, J. Chias-
son, and J. D. Birdwell, Dynamic time delay models
for load balancing. Part II: Stochastic analysis of the
effect of delay uncertainty. In Advances in Time De-
lay Systems, Springer Series on Lecture Notes in Com-
putational Science and Engineering, (Keqin Gu and
Silviu-Iulian Niculescu, Editors), vol. 38, pp. 371–385,
Springer: Berlin, 2004.

[9] S. Dhakal, B. S. Paskaleva, M. M. Hayat, E.
Schamiloglu, and C. T. Abdallah, “Dynamical discrete-
time load balancing in distributed systems in the
presence of time delays,” Proc. IEEE Conference on
Decision and Controls (CDC 2003), Maui, Hawaii,
pp. 5128–5134, Dec 2003.

[10] S. Dhakal, M. M. Hayat, J. Ghanem, C. T. Abdallah,
H. Jerez, J. Chiasson, and J. D. Birdwell, On the opti-
mization of load balancing in distributed networks in the
presence of delay. In Advances in Communication Con-
trol Networks, Springer series Lecture Notes in Control
an Information Sciences (LCNCIS), (S. Tarbouriech, C.
T. Abdallah, and J. Chiasson, Editors) LNCSE vol. 308,
pp. 223–244, Springer-Verlag, 2004.

[11] S. Dhakal, M. M. Hayat, J. Ghanem, and C. T. Ab-
dallah “Load Balancing in Distributed Computing Over
Wireless LAN: Effects of Network Delay,” Proceedings
of the IEEE Wireless Communication & Networking
Conference (WCNC-2005), New Orleans, LA, vol. 3,
pp. 1755–1760, March 13–17, 2005.

[12] D. J. Daley and D. Vere-Jones, An introduction to the
theory of point processes. Springer-Verlag, 1988.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

