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Abstract

A design flow for processor platforms with on-chip 
coarse-grain reconfigurable logic is presented. The 

reconfigurable logic is realized by a 2-Dimensional Array 

of Processing Elements. Performance is improved by 
accelerating critical software loops, called kernels, on the 

Reconfigurable Array. Basic steps of the design flow have 

been automated. A procedure for detecting critical loops 
in the input C code was developed, while a mapping 

technique for Coarse Grain Reconfigurable Arrays, based 

on software pipelining, was also devised. Analytical 
results derived from mapping five real-life DSP 

applications on eight different instances of a generic 

system architecture are presented. Large values of 
Instructions Per Cycle were achieved on two 

Reconfigurable Arrays that resulted in high-performance 

kernel mapping. Additionally, by mapping critical code 
on the reconfigurable logic, speedups ranging from 1.27 

to 3.18 relative to an all-processor execution were 

achieved.  

1. Introduction 

Reconfigurable architectures have received growing 

interest in the past few years. Reconfigurable systems 

represent an intermediate approach between Application 

Specific Integrated Circuits (ASICs) and general-purpose 

processors [1]. Such systems usually combine 

reconfigurable hardware with one or more software 

programmable processors. Reconfigurable processors 

have been widely associated with Field Programmable 

Gate Array (FPGA)-based systems. An FPGA consists of 

a matrix of programmable logic cells, executing bit-level 

operations, with a grid of interconnect lines running 

among them. However, FPGAs are not the only type of 

reconfigurable logic. Several coarse-grain reconfigurable 

architectures have been introduced and successfully built 

[2], [3], [4], [5], [6]. These architectures have been 

mainly proposed for speeding-up loops of multimedia and 

DSP applications in embedded systems. They consist of a 

large number of Processing Elements (PEs) with world-

level data bit-widths (like 16-bit ALUs) connected with a 

reconfigurable interconnect network. Their coarse 

granularity greatly reduces the delay, area, power 

consumption and reconfiguration time relative to an 

FPGA device at the expense of flexibility [1]. We 

consider a popular subclass of coarse-grain architectures 

where the PEs are organized in a 2-Dimensional (2D) 

array [2]-[6]. In this paper, these architectures are called 

Coarse-Grain Reconfigurable Arrays (CGRAs). A variety 

of CGRA architectures has been presented in both 

academia [1], [2], [3] and in industry [4], [5]. 

Although several coarse-grain reconfigurable 

architectures have been introduced, few automatic 

mapping flows have been proposed. In this paper, we 

present a design flow where most of its steps have been 

implemented as prototype tools. This flow interests in 

improving application’s performance in System-on-Chips 

(SoCs) composed by an instruction-set processor and a 

CGRA, like the ones in [2], [3], [4], [5], [6]. Speedups are 

achieved by partitioning the input C description and 

accelerating critical software loops, called kernels, on the 

CGRA. The processor executes the non-critical software 

parts. Recently, design flows for SoC platforms 

composed by a processor and FPGA [7], [8] illustrated 

that such type of partitioning is feasible in embedded 

systems and it leads in important speedups. Such a design 

choice stems from the observation that most embedded 

DSP and multimedia applications spend the majority of 

their execution time in few small code segments 

(typically loops), the kernels. This means that an 

extensive solution space search, as in past 

hardware/software partitioning works [9], [10] is not a 

requisite. 

The proposed design flow mainly consists of the 

following steps: (a) an analysis procedure for detecting 

kernels at the input source code, (b) Intermediate 

Representation (IR) creation, (c) mapping algorithm for 

the CGRA architecture, and (d) compilation to the 

microprocessor. We emphasize to the mapping for 

CGRAs, since it considerably affects the performance 
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improvements through the kernels’ acceleration. The 

proposed mapping procedure for CGRAs is based on a 

new modulo scheduling algorithm. Modulo scheduling is 

a software pipelining technique mainly used in Instruction 

Level Parallel (ILP) processors, like VLIWs, for 

improving operation parallelism by executing different 

loop iterations in parallel. Our modulo scheduler targets a 

generic CGRA template architecture which can model a 

variety of existing architectures [1], [2], [3], [4]. 

In this work, we present analytical results by mapping 

five real-world DSP applications on eight instances of a 

generic system architecture using the proposed design 

flow. The results from mapping applications’ kernels on 

two CGRAs, a 4x4 and 6x6 array of PEs, using our-

developed modulo scheduling algorithm show that high-

performance mapping was achieved. The average 

Instructions Per Cycles (IPC), when the kernels of the 

five applications are mapped on a 4x4 array, equals 13.0 

and it is considerably larger than the achieved IPC of 

previous modulo schedulers for CGRAs. The average 

kernels speedup over the execution on four 32-bit RISC 

processors is 60 for the 4x4 array, while for the 6x6 

CGRA is 105. Additionally, the overall application 

speedup for all the applications and all the platform 

instances ranges from 1.27 to 3.18 relative to an all-

microprocessor solution.  

The rest of the paper is organized as follows: section 2 

presents the related work, while section 3 describes the 

proposed design flow. Section 4 presents the analysis 

procedure. The CGRA architecture template and the 

developed modulo scheduling algorithm are given in 

section 5. Section 6 presents the experimental results and 

section 7 concludes this paper. 

2. Related work 

In recent years, some design flows for CGRAs coupled 

with a processor have been presented. The work of [5] 

describes a design flow for an XPP-based system. 

Performance results from mapping DSP algorithmic 

kernels on the XPP array are given. In [11] the 

instruction-set extension of a RISC processor coupled 

with a 4x4 XPP coarse-grain reconfigurable array is 

described. Performance improvements relative to the 

stand-alone operation of the RISC processor are shown 

for an 8x8 IDCT. However, in [5] and in [11] the 

mapping of a complete DSP application is not performed. 

In [12], it is shown that a hybrid architecture composed 

by an ARM926EJ-S and a CGRA similar to MorphoSys 

[3], executes 2.2 times faster a H.263 encoder than a 

single ARM926EJ-S processor. The design flow for the 

ADRES architecture was applied to an MPEG-2 decoder 

in [13]. The kernel and the overall application speedup 

over an 8-issue VLIW processor were 4.84 and 3.05, 

respectively. In our work, we apply the design flow in 

five realistic DSP applications and in eight different 

instances of a generic microprocessor-CGRA 

architecture, where useful conclusions can be drawn from 

this exploration.     

Modulo scheduling is a loop pipelining technique that 

exploits instruction (operation) level parallelism out of 

loops by overlapping successive iterations of the loop and 

executing them in parallel. The main idea is to construct 

the schedule of one loop iteration such that this same 

schedule is repeated at regular intervals while satisfying 

data dependencies and resource constraints. The number 

of cycles between the initiations of successive iterations 

in a software pipelined loop is defined as the Initiation 

Interval (II). Various modulo schedulers have been 

proposed for VLIW architectures [14], [15], [16]. The 

modulo scheduling algorithms for VLIWs cannot be 

directly applied to CGRAs, since the algorithm must 

combine the scheduling, placement and routing of data 

values. The routing problem does not exist or it is rather 

easy to be solved even for clustered VLIW architectures. 

Thus, the realization of modulo scheduling algorithm for 

CGRAs is a challenging issue as it was also stated in [17].   

3. Design flow   

3.1. Generic system architecture 
A generic embedded SoC architecture, shown in 

Figure 1, is considered by the design flow. The system 

includes: (a) Coarse-Grain Reconfigurable Array for 

executing kernels, (b) shared system data memory, (c) 

instruction and context (configuration) memories, and (d) 

an instruction-set processor. The processor is typically a 

RISC one, like an ARM9. Communication between the 

CGRA and the microprocessor takes place via the shared 

data RAM and several direct signals. Part of the direct 

signals is used by the microprocessor for controlling and 

communicating with the CGRA by writing values to 

memory-mapped registers located in the CGRA. Also, 

direct signals are used by the CGRA for informing the 

processor. For example, a done signal is typically present 

which notifies the microprocessor that the execution of a 

critical software part finished on the CGRA.  
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Figure 1. Target system architecture. 

The communication mechanism used by the processor 

and the CGRA preserves data coherency by requiring the 

execution of the processor and the CGRA to be mutually 

exclusive. When a call to CGRA is reached in the 

software, the processor activates the CGRA and the 



proper configuration is loaded on the CGRA for 

executing the kernel. When the CGRA executes a specific 

critical software part, the processor usually enters an idle 

state for reducing power consumption. After the 

completion of the kernel execution, the CGRA informs 

the processor and writes the data required for executing 

the remaining software. Then, the execution of the 

software is continued on the processor and the CGRA 

remains idle. The parallel execution on processor and on 

the CGRA is a topic of our future research activities.  

3.2. Flow description 
The proposed design flow for processor-CGRA SoCs 

interests in improving application’s performance by 

mapping critical software parts on the coarse-grain 

reconfigurable hardware. This flow takes advantage of the 

fact that few kernels of DSP and multimedia applications 

contribute the most to the execution time. The design 

flow is illustrated in Figure 2. The input is C source code 

implementing an application. Firstly, we identify the 

critical loops of the application using an our-developed 

analysis tool. The computational complexity of a loop is 

represented by the instruction count, which is the number 

of instructions executed in running the application on the 

microprocessor. The dynamic instruction count has been 

also used as a measure for identifying critical loop 

structures in previous works [7]. A threshold, set by the 

designer, is used to characterize specific loops as kernels. 

The non-critical source code is modified to include calls 

to CGRA and to handle the communication with the 

CGRA. Then, the source code is compiled using a 

compiler for the specific processor.

The Intermediate Representation (IR) of the kernel 

loops is created. We have selected the Data Dependence 

Graph (DDG) representation. An IR creation tool based 

on SUIF2 [18] and MachineSUIF [19] compilers has been 

developed. Optimizations are then applied to the kernel’s 

DDG for efficient mapping after taking into account the 

CGRA characteristics, like the number of PEs in the 

CGRA. Examples of optimizations are dead code 

elimination, common sub-expression elimination, 

constant propagation and loop transformations.  

Transformations typically applied are loop unrolling and 

loop normalization [20]. Operations inside the kernels 

that cannot be directly executed on the CGRA PEs are 

transformed into series of supported operations. The 

divisions are transformed to shifts, while a square root 

computation can be performed by the PEs of the CGRA 

using a method, like the Friden algorithm [21] that has 

been implemented in the proposed flow. MachineSUIF 

[19] compiler passes have been developed for the 

automatic application of the optimizations and 

transformations on the kernel’s DDG.   

The optimized DDG of each kernel is input to an our-

developed mapper tool for CGRAs based on a new 

modulo scheduling algorithm, which is the core of the 

design flow. The proposed modulo scheduler is explained 

in section 5.2. The second input to the mapper is the 

description of the CGRA architecture. The feedback 

arrow refers to the exploration performed for achieving 

the best performance for an input kernel. The 

configuration of the CGRA and the execution cycles of 

kernels are reported by the CGRA mapper. The dark grey 

boxes in Figure 2 represent the procedures modified or 

created by the authors for the specific flow, while the 

light grey one the external tool used.   
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Figure 2. Design flow for processor-CGRA systems. 

The total execution cycles after partitioning the 

application on the processor and the CGRA are: 

Cyclessystem = Cyclesproc + CyclesCGRA                (1)

where Cyclesproc represents the number of cycles needed 

for executing the non-critical software parts on the 

processor, and CyclesCGRA corresponds to the cycles that 

are required for executing the software kernels on the 

CGRA. The communication time between the processor 

and the CGRA is included in the Cyclesproc and in the 

CyclesCGRA since load and store operations that refer to 

the shared data RAM are present in the non-critical parts 

and in the kernels of each application. The CyclesCGRA 

have been normalized to the clock frequency of the 

microprocessor. 

The proposed flow requires the execution times of 

kernels on the coarse-grain reconfigurable logic. Since, 

those times can be also given by other mapping algorithm 

than the one proposed in this work, the design method can 

be applied in conjunction with other mapping algorithms 

[17], [22], [23]. Additionally, it is parametric to the type 

of coarse-grain reconfigurable hardware, as the mapping 

procedures abstract the hardware by typically considering 

resource constraints, timing and area characteristics. Due 

to the aforementioned factors, the design flow can be 

considered retargetable to the type of coarse-grain 

reconfigurable hardware. Thus, the proposed design flow 

can also consider other types of coarse-grain 

reconfigurable hardware like linear arrays [24]. 

4. Analysis procedure 



The analysis step of the design method outputs the 

kernels and non-critical parts of the input source code. 

We have developed a new analysis method since tools, 

like the gprof, Vtune, Quantify, provide profiling results 

when the application runs on a host computer (PC) that its 

characteristics can be fairly different from the embedded 

processor used in the platform. The inherent 

computational complexity of loops, represented by the 

dynamic instruction count, is a rational measure to detect 

kernels. The instruction count when an application runs 

on the microprocessor is obtained by a combination of 

dynamic and static analysis within loops. Figure 3 shows 

the analysis flow. The analysis has been automated using 

the SUIF2 [18] and MachineSUIF [19] compiler 

infrastructures.  

The DDG of the application’s source code is 

constructed using our IR creation tool. For the DDG 

description, we have chosen the SUIF Virtual Machine 

(SUIFvm) representation for the instruction opcodes [19]. 

The SUIFvm instruction set assumes a generic RISC 

machine, not biased to any existing architecture. Thus, the 

information obtained by the analysis flow, could stand for 

any RISC processor architecture. This means that the 

detected critical loops are kernels for various types of 

RISC processors. This was justified by using the profiling 

utilities of the compilation tools of the processors 

considered in the experiments. In fact, the order of the 

instruction counts of the loops is retained in the RISC 

processors used in our experiments. 
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Figure 3. Analysis flow. 

A MachineSUIF compiler pass was developed for 

detecting loops in the input DDG. Then, static and 

dynamic analysis is performed in the detected loops. We 

have used the HALT library of the MachineSUIF 

distribution [19] for performing dynamic analysis at the 

loop level. The dynamic analysis step reports the 

execution frequency of the loops. For the static analysis, a 

MachineSUIF compiler pass has been developed that 

identifies the type of instructions (operations) inside each 

loop and calculates the static size of the loop using the 

SUIFvm opcodes. The static size and the execution 

frequency of the loops are inputs to a developed 

instruction mix pass that outputs the dynamic instruction 

count. After the instruction count calculation for each 

loop, an ordering of the loops is performed. We consider 

kernels, those loops which have an instruction count over 

a user-defined threshold. This threshold represents the 

percentage of the contribution of the loop’s instruction 

count in the application’s overall dynamic instructions. 

For example, a loop contributing 10% or more to the total 

instruction count can be considered as kernel. The non-

loop code and the non-critical loops will be executed on 

the instruction-set processor.   

5. Mapping algorithm for CGRAs 

5.1. CGRA template 
The considered generic CGRA template is based on 

characteristics found in existing 2D coarse-grain 

reconfigurable architectures [1], [2], [3], [4] and it can be 

used as a model for mapping applications to CGRAs. A 

generic diagram of the proposed architecture template is 

shown in Figure 4a. Each PE is connected to its nearest 

neighbours, while there are cases [3], [4] where there are 

also direct connections among all the PEs across a 

column and a row. A PE typically contains one 

Functional Unit (FU), which it can be configured to 

perform a specific word-level operation each time. 

Characteristic operations supported by the FU are ALU, 

multiplication, and shifts. Figure 4b shows an example of 

PE architecture. The specific FU supports predication; 

thus through “if-conversion” [20], loops containing 

conditional statements are supported by the CGRA. 

Hence, the FU has three inputs and three outputs, where 

there is an (1-bit wide) input for the predicate guard [20] 

and two (1-bit) outputs for the predicate definitions. For 

storing intermediate values between computations and 

data fetched from memory, a small local data RAM exists 

inside a PE. The multiplexers are used to select each input 

operand that can come from different sources: (a) from 

the same PE’s data RAM, (b) from the memory buses and 

(c) from another PE. The output of each FU can be routed 

to other PEs or to its local data RAM.  

There is local context (configuration) RAM inside the 

PE that stores a few contexts locally which can be loaded 

on cycle-by-cycle basis. A context word controls the type 

of operation implemented by the FU, the multiplexers and 

the local data RAM behaving like an instruction in 

microprocessors. The context RAMs of the PEs form a 

distributed context memory which allows for the fast 

reconfiguration of the CGRA. The configurations can 

also be loaded from the main context memory at the cost 

of extra delay, if the local PE context RAM is not large 

enough. The main context memory of the CGRA (Figure 

4a) stores the whole configuration for setting up the 

CGRA for the execution of application’s kernels.  



The main data RAM of the CGRA is a part of the 

system’s shared data memory (Figure 1). The PEs 

residing in a row or column share a common memory bus 

connection to the scratch-pad memory, as in [2], [3], [4]. 

The scratch-pad serves as a local memory for quickly 

loading data in the PEs of the CGRA.  
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Figure 4. (a) CGRA template, (b) Example of PE 

architecture. 

We note that the organization of the PEs and their 

interface to the data memory largely resembles the 

MorphoSys reconfigurable array [3]. However, with little 

modifications it can model other CGRA architectures.  

For example, if we allow only the PEs of the first row of 

the CGRA to be connected to the scratch-pad memory 

through load/store units then, our template can model the 

data memory interface of the CGRA in [13].    

5.2. Modulo scheduler description  
The task of mapping applications to CGRAs is a 

combination of scheduling operations for execution, 

mapping these operations to particular PEs, and routing 

data through specific interconnects in the CGRA. Figure 

5a shows the flow of the proposed modulo scheduling 

algorithm for CGRAs that has been implemented in C++. 

The first input to the scheduler is the kernel’s DDG, while 

the second one is a description of the CGRA. The CGRA 

architecture is modelled by a undirected graph, called 

CGRA Graph, GA(Vp, EI). The Vp is the set of PEs of the 

CGRA and EI are the interconnections among them. The 

CGRA description includes parameters, like the size of 

the PE’s local data RAM, the memory buses to which 

each PE is connected, the memory bus bandwidth and the 

scratch-pad memory access times.  

The scheduler is based on the two-stage hierarchical 

reduction technique described in [14] where firstly the 

operations inside each Strongly Connected Component 

(SCC) of the DDG are scheduled. Secondly, the 

operations that belong to each SCC are condensed to a 

single operation. Then, the algorithm schedules the 

resulting condensed DDG of the input kernel which is 

acyclic. In [14], in both stages, the closure of dependence 

constraints is used to assure the satisfaction of 

dependence constraints where a fixed execution delay for 

each operation is assumed. However, for CGRAs, due to 

the non-deterministic delay of the data routing, the 

execution delay depends on the place where the 

operations are scheduled. For this reason, the proposed 

scheduling algorithm was adapted to take into account the 

non-deterministic nature of the operation scheduling in 

CGRAs. Firstly, the scheduler considers both the SCCs 

and the regular operations when they are ready to be 

executed. Secondly, instead of using the closure of 

dependence constraints which is calculated prior 

scheduling in [14], it checks during each operation’s 

scheduling if the operation’s execution time is compatible 

with execution times imposed by the data routing delays. 
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Figure 5. (a) Modulo scheduling flow,  

(b) Scheduling phases. 

After the creation of the condensed DDG, the 

scheduler calculates the priorities of the operations. The 

priority of an operation is set to its height which is 

defined as the maximum distance to an operation without 

successors. Afterwards, the initiation interval is 

calculated as: II = max(RecII, ResII)                    (2) 

where RecII is the initiation interval imposed by cycles 

created by loop-carried dependences and ResII is the 

initiation interval defined by the resource constraints of 

the architecture [20]. Then, the data mapping is 

performed which means that the place, where the 

variables are stored after consumption and production, is 

defined. Initially, we assume that all variables are stored 

in the PEs’ local data RAMs after production or 

consumption. 

After the initialization phase, the mapping algorithm 

iterates for scheduling all operations one by one, 

scheduling each time, from the ready to be executed 

operations the one which has the highest priority (height). 

An operation is considered ready to be executed when all 

its predecessors with zero dependence distance are 



scheduled. The SCCs have higher priority than the regular 

operations since they require more resources to be 

scheduled and the II is largely affected by them [14]. Two 

costs, which are described in section 5.2.1, are used for 

identifying an efficient place decision (PD) for executing 

an operation. In this step, the availability of resources 

together with the two costs are estimated for a possible 

execution of the operation in every PE in the CGRA.  

Next, the actual scheduling of the operation takes 

place. The scheduling of an operation finishes normally if 

the required resources exist. Depending on the 

availability of resources, different actions are performed 

by the scheduler. In case where the PE’s local data RAM 

size is not adequate for finding a possible PD for an 

operation in the CGRA, the algorithm spills the 

appropriate variables for scheduling the operation. 

Among the set of candidate variables for spilling, the 

modulo scheduling algorithm chooses the one that 

belongs to the operation with the minimum priority. 

Then, the algorithm backtracks to the operation to which 

the variable belongs and continues the scheduling 

process. If there are no variables left to be spilled, the 

algorithm fails for the current II and the scheduling phase 

restarts with an increased value of the II by one. 

Additionally, in case where some other resource (PE, 

interconnection, memory bus) is not adequate for finding 

a feasible PD or in case where dependences are violated, 

the mapping algorithm increases again the II by one and 

restarts the scheduler. 

As shown in Figure 5b, each operation’s scheduling is 

performed through a series of phases. In the first phase,

the input variables are fetched to the PE where the 

execution takes place. In case where the input variables 

come from memory, the memory bus resources are 

reserved for transferring the data values. On the contrary, 

when the variables exist in a PE, the appropriate number 

of interconnections and storage locations in the local data 

RAMs are reserved for routing the data values to the 

target PE. Additionally, in the first phase, the availability 

of the PE where the execution takes place is checked. If 

there are not sufficient resources for completing the first 

phase, the scheduling stops and a resource congestion
status is returned. In the second phase, storage of the 

variables occurs at the PE, where the execution takes 

place, when the variables do not arrive simultaneously at 

the target PE. Furthermore, local RAM is reserved at the 

source PEs for storing the data values until they are 

routed to the target PE. If the algorithm fails to find the 

storage resources, then the scheduling phase fails and a 

storage congestion status is returned. Finally, in the third 

phase, for loop dependent dependencies, routing of the 

output variables is required. The output variables should 

reach the target PE before the operation that consumes 

them takes place. If this time bound is violated, then 

dependencies are also violated and a dependence 

violation status is returned. Additionally, the availability 

of appropriate resources for routing the output variables is 

checked and a resource congestion status is returned if 

there are no adequate resources.  

5.2.1. Mapping Costs   

For finding an effective place decision for an 

operation, two costs are utilized. These costs are 

calculated for a possible execution of the operation in 

each PE of the CGRA. The first one, called delay cost,

refers to the operation’s Op earliest possible schedule 

time if it is placed for execution in a specific PEx. As 

shown in eq. (4), the delay is the sum of the RTime plus 

the maximum of the times tf required to fetch the Op’s

input operands to PEx. The RTime (eq. (3)) equals to the 

maximum of the times where each of the Op’s 

predecessors with zero dependence distance P(Op)
finished executing tfin. P is the set having the predecessor 

operations of Op.

1,..,
max ,0  where    fin i ii P Op

RTime Op t Op Op P Op    (3) 

[ ]1,..,_cos , ( ) max ,0  x P ii PDelay t PE Op RTime Op tf         (4) 

When an operand comes from the scratch-pad memory, 

the tf equals the scratch-pad’s memory latency while 

when it comes from a CGRA’s PE, equals the time for 

routing the operand to PEx.

The second cost is the interconnection cost that refers 

to the interconnections that need to be reserved for 

scheduling an operation in a specific PE. As shown in eq. 

(5), it is the sum of the CGRA interconnections which 

were used to transfer the predecessor operands. Higher 

interconnection overhead causes future scheduled 

operations to have larger execution start time due to 

conflicts. 

_cos ,  x Op xi
i P Op

Interconnection t PE Op PathLength PE PE
   (5) 

A greedy approach was adopted for calculating the 

time for routing the operands and the number of 

interconnections (eq.(5)) required for routing an operand. 

For each operand the shortest paths, which connect the 

source and destination PE, are identified. From this set of 

paths, the one with the minimum routing delay is 

selected. The delay and the length of the selected path 

gives the delay and interconnection costs through eq.(4) 

and eq.(5), respectively. The adopted PD for each 

operation is the one with the minimum delay cost. If there 

are multiple PDs with the same delay cost, the one that 

minimizes the interconnection cost is adopted. 

6. Results 

6.1. Experimental set-up
Five real-life DSP applications, written in C language, 

were mapped on eight different instances of the generic 

processor-CGRA platform using the developed design 



flow. These applications are: (a) a still-image JPEG 

encoder, (b) an IEEE 802.11a OFDM transmitter, (c) a 

wavelet-based image compressor [26], (d) a cavity 

detector which is a medical image processing application 

[26], and (e) a video compression technique, called 

Quadtree Structured Difference Pulse Code Modulation 

(QSDPCM) [28]. The experiments were performed using 

the following applications’ inputs: (a) an image of size 

256x256 bytes for the JPEG encoder, (b) 4 payload 

symbols for the OFDM transmitter at the 54 Mbps rate, 

(c) an image of size 512x512 bytes for the wavelet-based 

image compressor, (d) an image of size 640x400 bytes for 

the cavity detector, and (e) two video frames of size 

176x144 bytes each for the QSDPCM.  

We have used four different types of 32-bit embedded 

RISC processors coupled each time with the CGRA: an 

ARM9, an ARM10, and two SimpleScalar processors 

[24]. The SimpleScalar processor is an extension of the 

MIPS32 IV core. The first type of the MIPS processor 

(MIPSa) uses one integer ALU unit, while the second one 

(MIPSb) has two integer ALUs. We have used 

instruction-set simulators for the considered embedded 

processors for estimating the number of execution cycles 

of the non-critical parts. More specifically, for the ARM 

processors, the ARM RealView Developer Suite (version 

2.2) was utilized, while the performance on the MIPS-

based processors was estimated using the SimpleScalar 

simulator tool [24]. Typical clock frequencies are 

considered for the four processors: the ARM9 runs at 250 

MHz, the ARM10 at 325 MHz, and the MIPS processors 

at 200 MHz. The five applications were compiled to 

generate binary files for the processors using the highest 

level of software optimizations (-O3). 

Two different CGRA architectures were used each 

time for accelerating critical kernels. The first architecture 

is a 4x4 array of PEs, while the second one consists of 36 

PEs connected in a 6x6 array. In the following, we list the 

characteristics for both CGRAs. In both architectures, the 

PEs are directly connected to all other PEs in the same 

row and same column through vertical and horizontal 

interconnections. There is one 16-bit FU in each PE that 

can execute any operation (i.e. multiplication, ALU, shift) 

in one CGRA’s clock cycle. Each PE has a local data 

RAM of size 8 words, while the local configuration 

RAM’s size is 32 contexts as in [2]. The direct connection 

delay among the PEs is zero cycles. Two buses per row 

are dedicated for transferring data to the PEs from the 

scratch-pad memory. The delay of fetching one word 

from the scratch-pad memory is one cycle. The CGRA 

clock frequencies are 100 MHz, as in the case of an 

implementation of the MorphoSys SoC [3].  

6.2. Experimentation 
The results using the developed analysis flow are 

shown in Table 1. The static size of the kernels (in 

instruction bytes) and their contributions of the kernels to 

the total static size and to the total instructions are 

reported. The threshold for the kernel detection was set to 

the 10% of the total dynamic instructions of the 

application. The theoretical speedup, according to 

Amdahl’s Law, if the application’s kernels were ideally 

executed on the CGRA in zero time is given by the 

Speedup bound. The number of kernels detected in each 

application is also given. For all applications the detected 

loops consist of word-level operations (ALU, 

multiplications, shifts) that match the granularity (data 

bit-width) of the PEs in the CGRA. From the analysis 

results, it is inferred that an average of 10.9% of the code 

size, representing the kernels’ size, contributes 63.9% on 

average to the total executed instructions. The speedup of 

each application will come from accelerating few kernels. 

The small number of the detected kernels in each 

application means that the usage of exploration 

algorithms, which typically examine thousands of 

possible partitions and utilize complex algorithms [9], 

[10] is not necessary in the case of partitioning the 

considered applications on the processor-CGRA systems.  

Table 1. Results from the analysis procedure 

App. Kernels’ 

size 

%

size 

% total  

instructions 

Sp. 

bound 

# of 

kernels 

JPEG  2,534 23.0 75.6 4.10 4 

OFDM   1,440 9.2 72.4 3.62 4 

Compress 602 4.7 61.2 2.58 4 

Cavity 910 7.6 59.5 2.47 4 

QSDPCM 2,477 10.0 51.0 2.04 3 

Average: 10.9 63.9 

The results from mapping the critical loops of the 

applications on the 4x4 CGRA are given in Table 2. The 

first column refers to the kernel kn of an application, 

while the second one to the number of operations 

composing each loop after the unrolling performed for 

achieving better CGRA utilization and consequently 

better performance. The MII is the computed minimal 

initiation interval, while II is the interval actually 

achieved during modulo scheduling. The obtained 

Instructions Per Cycle (IPC) is given in the fifth column. 

The IPC indicates the average number of operations 

executed per clock cycle in the scheduled loop. The IPC 

is a measure of the operation parallelism exploited and 

dictates the performance in modulo schedulers. Finally, 

the sixth column gives the execution cycles of each kernel 

on the 4x4 CGRA, while the speedup relative to the 

execution of each kernel on the ARM9 is shown in the 

seventh column.  

From Table 2, it is inferred that the achieved II is equal 

to the MII in 17 out the 19 kernels something that reflects 

the quality of the CGRA mapping. Additionally, the 4x4 

CGRA is efficiently utilized since the average IPC is 

13.0. The average IPC in Table 2 is considerably larger 



than the corresponding IPC values achieved when various 

DSP kernels were mapped on 4x4 CGRAs in [21], [29]. 

Actually, in [29] the average IPC resulted from mapping 

20 DSP kernels on a 4x4 CGRA (Table 15 of [29]) using 

the modulo scheduler introduced in [17], is 1.36 times 

smaller than the one achieved in our work. The large 

values of IPC in Table 2 reveal the high-performance 

mapping of the kernels on the 4x4 array. Furthermore, 

large values of speedup relative to the execution on the 

ARM9 are achieved, with an average speedup equal to 

94. The maximum combined II (sum of the II values for 

an application’s loops) among the applications equals 16 

and refers to the JPEG encoder. Since, the II defines the 

number of configuration contexts needed to execute the 

loop and a PE’s local context RAM stores 32 contexts, 

there will be no time overhead for loading the context 

RAMs during the execution of each application.  

Table 2. Results from mapping kernels on the 4x4 

CGRA and speedup relative to ARM9 

Kernel # ops MII II IPC Cycles Sp..

Jpeg_enc.k1 100 7 7 14.3 28,674 71 

Jpeg_enc.k2 104 7 7 14.1 28,692 73 

Jpeg_enc.k3 12 1 1 12.0 15,887 541 

Jpeg_enc.k4 16 1 1 16.0 44,378 16 

Ofdm_trans.k1 16 1 2 8.0 1,058 30 

Ofdm_trans.k2 30 2 2 15.0 1,161 138 

Ofdm_trans.k3 43 3 4 10.8 965 53 

Ofdm_trans.k4 4 1 1 4.0 433 20 

Compressor.k1 32 2 2 16.0 85,135 36 

Compressor.k2 16 1 1 16.0 21,505 112 

Compressor.k3 32 2 2 16.0 85,135 38 

Compressor.k4 16 1 1 16.0 43,010 56 

Cavity_det.k1 24 2 2 12.0 507,850 88 

Cavity_det.k2 8 1 1 8.0 55,385 100 

Cavity_det.k3 24 2 2 12.0 190,443 80 

Cavity_det.k4 24 2 2 12.0 190,443 68 

Qsdpcm.k1 27 2 2 13.5 633,609 33 

Qsdpcm.k2 29 2 2 14.5 912,398 38 

Qsdpcm.k3 16 1 1 16.0 4,318,851 190 

Average:    13.0 94

When the kernels were mapped on the 6x6 CGRA, the 

average speedup relative to the ARM9 execution was 

181. The achieved average IPC for the 6x6 array was 

25.2. Additionally, the maximum combined II equals 7 

and corresponds to the loops of the OFDM transmitter. 

Thus, for the 6x6 array there is also no overhead for 

loading the PEs’ context RAMs.  

Figure 6a shows the speedups for executing all the 

kernels of each application on the 4x4 CGRA relative to 

the execution of the kernels on the processor. Figure 6b 

shows the respective speedups when the 6x6 array is used 

in the processor platforms. For every application, the 

speedup is relative to each one of the four RISC 

processors used. For example, the left most bar in each 

application corresponds to the speedup obtained when the 

execution cycles of the kernels are compared to the ones 

for the execution of the kernels on the ARM9. The kernel 

speedup is defined as:   

Spkernel = Cycleskernels_sw / Cycleskernels_CGRA_norm     (6) 

where Cycleskernels_sw represents the number of cycles 

required for executing the kernels on the processor and 

the Cycleskernels_CGRA_norm represents the number of cycles 

for executing the kernels on the CGRA. We note that the 

cycles reported from the CGRA mapping algorithm 

described in section 5.2, are normalized to the clock 

frequency of the processor in the system platform, using 

the following relation: 

ker _ _ ker _

proc

nels CGRA norm nels CGRA

CGRA

Clock
Cycles Cycles

Clock
   (7) 

where the Cycleskernels_CGRA are the clock cycles reported 

from the developed CGRA mapper tool, Clockproc is the 

clock frequency of the processor and ClockCGRA is the 

clock frequency of the CGRA.   
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Figure 6. Kernel speedups (a) on the 4x4 CGRA and 

(b) on the 6x6 CGRA, for various processor systems. 

From Figure 6, it is deduced that important speedups 

are achieved when critical kernels are executed on the 

CGRA. For the systems composed by 4x4 CGRA, the 

speedups range from 11 to 199, with an average value of 

60 for all the applications and all the cases of 

microprocessors. When the 6x6 array is used, the kernel 

speedup ranges from 23 to 320, with an average value of 

105. Thus, the average kernel speedup for the 6x6 array is 

1.76 times larger than the one obtained with the 4x4 

CGRA. The ratio of the number of PEs in the 6x6 array to 

the PEs in the 4x4 is 36/16=2.25. We can infer that the 



additional PEs of the 6x6 array were efficiently exploited 

by the modulo scheduling algorithm since the ratio of the 

average kernel speedups is fairly close to the 2.25.   

The achieved speedups are due to the fact that the 

inherent operation parallelism of the kernels is better 

exploited by the available Processing Elements of the 

CGRA than the functional units of the RISC processors. 

Even in the case where the processors are clocked in a 

significantly higher clock frequency than the CGRAs (as 

in the ARM10 systems) the speedups are important. 

These results prove that the CGRA architectures are 

efficient in accelerating critical loops of DSP and 

multimedia applications which leads in improving the 

overall performance of an application executed on a 

microprocessor-CGRA system as it will be shown in 

Table 3. The kernel speedup is smaller in the ARM10-

based systems than the ARM9-based ones since the 

ARM10 is a more contemporary microprocessor 

generation and it is clocked at a higher frequency. 

Furthermore, the effect of accelerating kernels on the 

CGRA is smaller when the MIPSb is employed in the 

platform since it has one more ALU unit than the MIPSa. 

Table 3. Execution cycles and speedups 

4x4 CGRA 6x6 CGRA 

Application
Proc. 

Arch. 
Cyclessw

Ideal 

Sp. Cyclessystem 
Est.

Sp. 
Cyclessystem

Est.

Sp. 

ARM9 19,951,193 3.24 6,799,939 2.93 6,663,142 2.99 

ARM10 16,930,629 3.16 6,273,578 2.70 6,095,741 2.78 

MIPSa 34,451,609 3.32 11,353,377 3.03 11,243,939 3.06 
JPEG enc. 

MIPSb 19,637,417 3.24 6,694,006 2.93 6,584,568 2.98 

ARM9 362,990 3.43 120,465 3.01 117,182 3.10 

ARM10 334,375 3.23 122,402 2.73 118,135 2.83 

MIPSa 459,594 3.43 147,125 3.12 144,499 3.18 
OFDM trans. 

MIPSb 352,788 3.29 120,942 2.92 118,316 2.98 

ARM9 20,574,658 2.32 10,045,845 2.05 9,752,357 2.11 

ARM10 17,854,928 2.21 9,896,315 1.80 9,514,782 1.88 

MIPSa 62,468,206 2.49 27,777,661 2.25 27,542,871 2.27 
Compressor

MIPSb 40,541,866 2.34 19,484,158 2.08 19,249,368 2.11 

ARM9 161,441,889 2.29 85,387,604 1.89 84,283,439 1.92 

ARM10 155,356,758 2.17 87,023,271 1.79 85,587,857 1.82 

MIPSa 470,433,835 2.34 241,717,256 1.95 240,833,924 1.95 
Cavity det. 

MIPSb 310,248,110 2.23 165,099,333 1.88 164,216,001 1.89 

ARM9 3,895,248,922 1.54 3,033,750,555 1.28 3,028,219,028 1.29 

ARM10 3,608,029,180 1.48 2,833,095,857 1.27 2,825,904,871 1.28 

MIPSa 7,006,016,541 1.73 4,682,812,043 1.50 4,678,386,821 1.50 
QSDPCM 

MIPSb 4,910,759,258 1.68 3,407,830,222 1.44 3,403,405,000 1.44 

 Average: 2.23 2.27

The execution cycles and overall application speedups 

from applying the proposed design flow in the five 

applications are presented in Table 3. The results are 

given for accelerating the kernels on the 4x4 and the 6x6 

CGRAs. For each application, the four considered 

processor architectures (Proc. Arch.) are used for 

estimating the clock cycles (Cyclessw) required for 

executing the whole application on the processor. The 

ideal speedup (Ideal Sp.) reports the maximum 

performance improvement, according to Amdahl’s Law, 

if application’s kernels were ideally executed on the 

CGRA in zero time. The estimated speedup (Est. Sp.) is 

the measured performance improvement after utilizing the 

developed design flow. The estimated speedup is 

calculated as:

Est_Sp=Cyclessw/Cyclessystem                  (8)

where Cyclessystem represents the execution cycles after the 

partitioning to the processor and to the CGRA takes 

place.

From the results given in Table 3, it is evident that 

significant overall performance improvements are 

achieved when critical software parts are mapped on a 

CGRA. It is noticed that better performance gains are 

accomplished for the ARM9 system than the ARM10-

based one. This occurs since the speedup of kernels on 

the CGRA has greater effect when the CGRA is coupled 

with a lower-performance processor, as it is the ARM9 

relative to the ARM10. This is clearly shown in the kernel 

speedup results in Figure 6. Furthermore, the speedup is 

almost always greater for the MIPSa system than the 

MIPSb case, since the latter processor employs one more 

integer ALU unit.  



For the case of mapping the kernels on the 6x6 CGRA, 

the speedups are somewhat larger than the 4x4 CGRA 

case. The larger application speedups are due to the better 

kernel speedups (as shown in Figure 6) that obtained with 

the 6x6 array relative to the 4x4 CGRA. However, even 

though the kernel speedup is significantly improved for 

the 6x6 CGRA, the overall application speedup slightly 

increases due to the fact that the non-critical code 

segments are executed on the microprocessor. The 

average estimated application speedup is 2.23 for the 4x4 

architecture, while for the 6x6 CGRA is equal to 2.27. 

We also notice that the reported estimated speedups for 

each application and for each processor type are 

somewhat close to the ideal speedups determined by the 

Amdahl’s Law, especially for the case of the 6x6 CGRA. 

7. Conclusions - Future work 

A flow for improving the performance in processor-

CGRA single-chip systems was presented. An efficient 

modulo scheduling algorithm is used to accelerate kernel 

code where high IPC values are achieved using this 

scheduler. Extensive experiments show that the 

application speedup ranges from 1.27 to 3.12 when a 4x4 

CGRA is employed for kernels’ acceleration. The kernel 

speedup is 1.76 times larger when a 6x6 CGRA is used in 

the platform, while the overall application speedup 

slightly increases with an average value of 2.27. Future 

work focuses on the parallel execution of the processor 

and the CGRA for achieving even greater performance 

improvements. 
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