
Design flow for Optimizing Performance in Processor Systems with on-chip

Coarse-Grain Reconfigurable Logic

Michalis D. Galanis
1
, Gregory Dimitroulakos

2
, and Costas E. Goutis

3

VLSI Design Lab., Electrical and Computer Engineering Department, University of Patras, Rio 26500, Greece

e-mail: {1mgalanis, 2dhmhgre, 3goutis}@ee.upatras.gr

Abstract

A design flow for processor platforms with on-chip
coarse-grain reconfigurable logic is presented. The

reconfigurable logic is realized by a 2-Dimensional Array

of Processing Elements. Performance is improved by
accelerating critical software loops, called kernels, on the

Reconfigurable Array. Basic steps of the design flow have

been automated. A procedure for detecting critical loops
in the input C code was developed, while a mapping

technique for Coarse Grain Reconfigurable Arrays, based

on software pipelining, was also devised. Analytical
results derived from mapping five real-life DSP

applications on eight different instances of a generic

system architecture are presented. Large values of
Instructions Per Cycle were achieved on two

Reconfigurable Arrays that resulted in high-performance

kernel mapping. Additionally, by mapping critical code
on the reconfigurable logic, speedups ranging from 1.27

to 3.18 relative to an all-processor execution were

achieved.

1. Introduction

Reconfigurable architectures have received growing

interest in the past few years. Reconfigurable systems

represent an intermediate approach between Application

Specific Integrated Circuits (ASICs) and general-purpose

processors [1]. Such systems usually combine

reconfigurable hardware with one or more software

programmable processors. Reconfigurable processors

have been widely associated with Field Programmable

Gate Array (FPGA)-based systems. An FPGA consists of

a matrix of programmable logic cells, executing bit-level

operations, with a grid of interconnect lines running

among them. However, FPGAs are not the only type of

reconfigurable logic. Several coarse-grain reconfigurable

architectures have been introduced and successfully built

[2], [3], [4], [5], [6]. These architectures have been

mainly proposed for speeding-up loops of multimedia and

DSP applications in embedded systems. They consist of a

large number of Processing Elements (PEs) with world-

level data bit-widths (like 16-bit ALUs) connected with a

reconfigurable interconnect network. Their coarse

granularity greatly reduces the delay, area, power

consumption and reconfiguration time relative to an

FPGA device at the expense of flexibility [1]. We

consider a popular subclass of coarse-grain architectures

where the PEs are organized in a 2-Dimensional (2D)

array [2]-[6]. In this paper, these architectures are called

Coarse-Grain Reconfigurable Arrays (CGRAs). A variety

of CGRA architectures has been presented in both

academia [1], [2], [3] and in industry [4], [5].

Although several coarse-grain reconfigurable

architectures have been introduced, few automatic

mapping flows have been proposed. In this paper, we

present a design flow where most of its steps have been

implemented as prototype tools. This flow interests in

improving application’s performance in System-on-Chips

(SoCs) composed by an instruction-set processor and a

CGRA, like the ones in [2], [3], [4], [5], [6]. Speedups are

achieved by partitioning the input C description and

accelerating critical software loops, called kernels, on the

CGRA. The processor executes the non-critical software

parts. Recently, design flows for SoC platforms

composed by a processor and FPGA [7], [8] illustrated

that such type of partitioning is feasible in embedded

systems and it leads in important speedups. Such a design

choice stems from the observation that most embedded

DSP and multimedia applications spend the majority of

their execution time in few small code segments

(typically loops), the kernels. This means that an

extensive solution space search, as in past

hardware/software partitioning works [9], [10] is not a

requisite.

The proposed design flow mainly consists of the

following steps: (a) an analysis procedure for detecting

kernels at the input source code, (b) Intermediate

Representation (IR) creation, (c) mapping algorithm for

the CGRA architecture, and (d) compilation to the

microprocessor. We emphasize to the mapping for

CGRAs, since it considerably affects the performance

This work was partially funded by the Alexander S. Onassis Public

Benefit Foundation

1-4244-0054-6/06/$20.00 ©2006 IEEE

improvements through the kernels’ acceleration. The

proposed mapping procedure for CGRAs is based on a

new modulo scheduling algorithm. Modulo scheduling is

a software pipelining technique mainly used in Instruction

Level Parallel (ILP) processors, like VLIWs, for

improving operation parallelism by executing different

loop iterations in parallel. Our modulo scheduler targets a

generic CGRA template architecture which can model a

variety of existing architectures [1], [2], [3], [4].

In this work, we present analytical results by mapping

five real-world DSP applications on eight instances of a

generic system architecture using the proposed design

flow. The results from mapping applications’ kernels on

two CGRAs, a 4x4 and 6x6 array of PEs, using our-

developed modulo scheduling algorithm show that high-

performance mapping was achieved. The average

Instructions Per Cycles (IPC), when the kernels of the

five applications are mapped on a 4x4 array, equals 13.0

and it is considerably larger than the achieved IPC of

previous modulo schedulers for CGRAs. The average

kernels speedup over the execution on four 32-bit RISC

processors is 60 for the 4x4 array, while for the 6x6

CGRA is 105. Additionally, the overall application

speedup for all the applications and all the platform

instances ranges from 1.27 to 3.18 relative to an all-

microprocessor solution.

The rest of the paper is organized as follows: section 2

presents the related work, while section 3 describes the

proposed design flow. Section 4 presents the analysis

procedure. The CGRA architecture template and the

developed modulo scheduling algorithm are given in

section 5. Section 6 presents the experimental results and

section 7 concludes this paper.

2. Related work

In recent years, some design flows for CGRAs coupled

with a processor have been presented. The work of [5]

describes a design flow for an XPP-based system.

Performance results from mapping DSP algorithmic

kernels on the XPP array are given. In [11] the

instruction-set extension of a RISC processor coupled

with a 4x4 XPP coarse-grain reconfigurable array is

described. Performance improvements relative to the

stand-alone operation of the RISC processor are shown

for an 8x8 IDCT. However, in [5] and in [11] the

mapping of a complete DSP application is not performed.

In [12], it is shown that a hybrid architecture composed

by an ARM926EJ-S and a CGRA similar to MorphoSys

[3], executes 2.2 times faster a H.263 encoder than a

single ARM926EJ-S processor. The design flow for the

ADRES architecture was applied to an MPEG-2 decoder

in [13]. The kernel and the overall application speedup

over an 8-issue VLIW processor were 4.84 and 3.05,

respectively. In our work, we apply the design flow in

five realistic DSP applications and in eight different

instances of a generic microprocessor-CGRA

architecture, where useful conclusions can be drawn from

this exploration.

Modulo scheduling is a loop pipelining technique that

exploits instruction (operation) level parallelism out of

loops by overlapping successive iterations of the loop and

executing them in parallel. The main idea is to construct

the schedule of one loop iteration such that this same

schedule is repeated at regular intervals while satisfying

data dependencies and resource constraints. The number

of cycles between the initiations of successive iterations

in a software pipelined loop is defined as the Initiation

Interval (II). Various modulo schedulers have been

proposed for VLIW architectures [14], [15], [16]. The

modulo scheduling algorithms for VLIWs cannot be

directly applied to CGRAs, since the algorithm must

combine the scheduling, placement and routing of data

values. The routing problem does not exist or it is rather

easy to be solved even for clustered VLIW architectures.

Thus, the realization of modulo scheduling algorithm for

CGRAs is a challenging issue as it was also stated in [17].

3. Design flow

3.1. Generic system architecture
A generic embedded SoC architecture, shown in

Figure 1, is considered by the design flow. The system

includes: (a) Coarse-Grain Reconfigurable Array for

executing kernels, (b) shared system data memory, (c)

instruction and context (configuration) memories, and (d)

an instruction-set processor. The processor is typically a

RISC one, like an ARM9. Communication between the

CGRA and the microprocessor takes place via the shared

data RAM and several direct signals. Part of the direct

signals is used by the microprocessor for controlling and

communicating with the CGRA by writing values to

memory-mapped registers located in the CGRA. Also,

direct signals are used by the CGRA for informing the

processor. For example, a done signal is typically present

which notifies the microprocessor that the execution of a

critical software part finished on the CGRA.

CGRA

Shared Data Memory

Micro-

Processor

Instruction

Memory

Context

Memory

Control
InstructionsContexts

Figure 1. Target system architecture.

The communication mechanism used by the processor

and the CGRA preserves data coherency by requiring the

execution of the processor and the CGRA to be mutually

exclusive. When a call to CGRA is reached in the

software, the processor activates the CGRA and the

proper configuration is loaded on the CGRA for

executing the kernel. When the CGRA executes a specific

critical software part, the processor usually enters an idle

state for reducing power consumption. After the

completion of the kernel execution, the CGRA informs

the processor and writes the data required for executing

the remaining software. Then, the execution of the

software is continued on the processor and the CGRA

remains idle. The parallel execution on processor and on

the CGRA is a topic of our future research activities.

3.2. Flow description
The proposed design flow for processor-CGRA SoCs

interests in improving application’s performance by

mapping critical software parts on the coarse-grain

reconfigurable hardware. This flow takes advantage of the

fact that few kernels of DSP and multimedia applications

contribute the most to the execution time. The design

flow is illustrated in Figure 2. The input is C source code

implementing an application. Firstly, we identify the

critical loops of the application using an our-developed

analysis tool. The computational complexity of a loop is

represented by the instruction count, which is the number

of instructions executed in running the application on the

microprocessor. The dynamic instruction count has been

also used as a measure for identifying critical loop

structures in previous works [7]. A threshold, set by the

designer, is used to characterize specific loops as kernels.

The non-critical source code is modified to include calls

to CGRA and to handle the communication with the

CGRA. Then, the source code is compiled using a

compiler for the specific processor.

The Intermediate Representation (IR) of the kernel

loops is created. We have selected the Data Dependence

Graph (DDG) representation. An IR creation tool based

on SUIF2 [18] and MachineSUIF [19] compilers has been

developed. Optimizations are then applied to the kernel’s

DDG for efficient mapping after taking into account the

CGRA characteristics, like the number of PEs in the

CGRA. Examples of optimizations are dead code

elimination, common sub-expression elimination,

constant propagation and loop transformations.

Transformations typically applied are loop unrolling and

loop normalization [20]. Operations inside the kernels

that cannot be directly executed on the CGRA PEs are

transformed into series of supported operations. The

divisions are transformed to shifts, while a square root

computation can be performed by the PEs of the CGRA

using a method, like the Friden algorithm [21] that has

been implemented in the proposed flow. MachineSUIF

[19] compiler passes have been developed for the

automatic application of the optimizations and

transformations on the kernel’s DDG.

The optimized DDG of each kernel is input to an our-

developed mapper tool for CGRAs based on a new

modulo scheduling algorithm, which is the core of the

design flow. The proposed modulo scheduler is explained

in section 5.2. The second input to the mapper is the

description of the CGRA architecture. The feedback

arrow refers to the exploration performed for achieving

the best performance for an input kernel. The

configuration of the CGRA and the execution cycles of

kernels are reported by the CGRA mapper. The dark grey

boxes in Figure 2 represent the procedures modified or

created by the authors for the specific flow, while the

light grey one the external tool used.

Analysis

Compilation

Non critical codeKernel code

CGRA mapper

CGRA configuration

Front-end

Optimizations

IR

Executable code

CGRA

description

Software in C

Code modification

Figure 2. Design flow for processor-CGRA systems.

The total execution cycles after partitioning the

application on the processor and the CGRA are:

Cyclessystem = Cyclesproc + CyclesCGRA (1)

where Cyclesproc represents the number of cycles needed

for executing the non-critical software parts on the

processor, and CyclesCGRA corresponds to the cycles that

are required for executing the software kernels on the

CGRA. The communication time between the processor

and the CGRA is included in the Cyclesproc and in the

CyclesCGRA since load and store operations that refer to

the shared data RAM are present in the non-critical parts

and in the kernels of each application. The CyclesCGRA

have been normalized to the clock frequency of the

microprocessor.

The proposed flow requires the execution times of

kernels on the coarse-grain reconfigurable logic. Since,

those times can be also given by other mapping algorithm

than the one proposed in this work, the design method can

be applied in conjunction with other mapping algorithms

[17], [22], [23]. Additionally, it is parametric to the type

of coarse-grain reconfigurable hardware, as the mapping

procedures abstract the hardware by typically considering

resource constraints, timing and area characteristics. Due

to the aforementioned factors, the design flow can be

considered retargetable to the type of coarse-grain

reconfigurable hardware. Thus, the proposed design flow

can also consider other types of coarse-grain

reconfigurable hardware like linear arrays [24].

4. Analysis procedure

The analysis step of the design method outputs the

kernels and non-critical parts of the input source code.

We have developed a new analysis method since tools,

like the gprof, Vtune, Quantify, provide profiling results

when the application runs on a host computer (PC) that its

characteristics can be fairly different from the embedded

processor used in the platform. The inherent

computational complexity of loops, represented by the

dynamic instruction count, is a rational measure to detect

kernels. The instruction count when an application runs

on the microprocessor is obtained by a combination of

dynamic and static analysis within loops. Figure 3 shows

the analysis flow. The analysis has been automated using

the SUIF2 [18] and MachineSUIF [19] compiler

infrastructures.

The DDG of the application’s source code is

constructed using our IR creation tool. For the DDG

description, we have chosen the SUIF Virtual Machine

(SUIFvm) representation for the instruction opcodes [19].

The SUIFvm instruction set assumes a generic RISC

machine, not biased to any existing architecture. Thus, the

information obtained by the analysis flow, could stand for

any RISC processor architecture. This means that the

detected critical loops are kernels for various types of

RISC processors. This was justified by using the profiling

utilities of the compilation tools of the processors

considered in the experiments. In fact, the order of the

instruction counts of the loops is retained in the RISC

processors used in our experiments.

Loop ordering

Non critical loops

Threshold

Loop detection

Dynamic Analysis

Execution frequencies

Static Analysis

Static size of loop

Instruction mix

Instruction count

Non-loop code

Loops

Software in C

DDG creation

DDG

Kernels

Figure 3. Analysis flow.

A MachineSUIF compiler pass was developed for

detecting loops in the input DDG. Then, static and

dynamic analysis is performed in the detected loops. We

have used the HALT library of the MachineSUIF

distribution [19] for performing dynamic analysis at the

loop level. The dynamic analysis step reports the

execution frequency of the loops. For the static analysis, a

MachineSUIF compiler pass has been developed that

identifies the type of instructions (operations) inside each

loop and calculates the static size of the loop using the

SUIFvm opcodes. The static size and the execution

frequency of the loops are inputs to a developed

instruction mix pass that outputs the dynamic instruction

count. After the instruction count calculation for each

loop, an ordering of the loops is performed. We consider

kernels, those loops which have an instruction count over

a user-defined threshold. This threshold represents the

percentage of the contribution of the loop’s instruction

count in the application’s overall dynamic instructions.

For example, a loop contributing 10% or more to the total

instruction count can be considered as kernel. The non-

loop code and the non-critical loops will be executed on

the instruction-set processor.

5. Mapping algorithm for CGRAs

5.1. CGRA template
The considered generic CGRA template is based on

characteristics found in existing 2D coarse-grain

reconfigurable architectures [1], [2], [3], [4] and it can be

used as a model for mapping applications to CGRAs. A

generic diagram of the proposed architecture template is

shown in Figure 4a. Each PE is connected to its nearest

neighbours, while there are cases [3], [4] where there are

also direct connections among all the PEs across a

column and a row. A PE typically contains one

Functional Unit (FU), which it can be configured to

perform a specific word-level operation each time.

Characteristic operations supported by the FU are ALU,

multiplication, and shifts. Figure 4b shows an example of

PE architecture. The specific FU supports predication;

thus through “if-conversion” [20], loops containing

conditional statements are supported by the CGRA.

Hence, the FU has three inputs and three outputs, where

there is an (1-bit wide) input for the predicate guard [20]

and two (1-bit) outputs for the predicate definitions. For

storing intermediate values between computations and

data fetched from memory, a small local data RAM exists

inside a PE. The multiplexers are used to select each input

operand that can come from different sources: (a) from

the same PE’s data RAM, (b) from the memory buses and

(c) from another PE. The output of each FU can be routed

to other PEs or to its local data RAM.

There is local context (configuration) RAM inside the

PE that stores a few contexts locally which can be loaded

on cycle-by-cycle basis. A context word controls the type

of operation implemented by the FU, the multiplexers and

the local data RAM behaving like an instruction in

microprocessors. The context RAMs of the PEs form a

distributed context memory which allows for the fast

reconfiguration of the CGRA. The configurations can

also be loaded from the main context memory at the cost

of extra delay, if the local PE context RAM is not large

enough. The main context memory of the CGRA (Figure

4a) stores the whole configuration for setting up the

CGRA for the execution of application’s kernels.

The main data RAM of the CGRA is a part of the

system’s shared data memory (Figure 1). The PEs

residing in a row or column share a common memory bus

connection to the scratch-pad memory, as in [2], [3], [4].

The scratch-pad serves as a local memory for quickly

loading data in the PEs of the CGRA.

Main data

RAM

(a)

Context

memory

Scratch-pad

memory

(b)

in1 in2

out

FU

out1 out2

RAM
in predicate

reg

pred.
out1

pred.
out2

reg reg

Context

RAM

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

From memory bus

and/or other PEs

Figure 4. (a) CGRA template, (b) Example of PE

architecture.

We note that the organization of the PEs and their

interface to the data memory largely resembles the

MorphoSys reconfigurable array [3]. However, with little

modifications it can model other CGRA architectures.

For example, if we allow only the PEs of the first row of

the CGRA to be connected to the scratch-pad memory

through load/store units then, our template can model the

data memory interface of the CGRA in [13].

5.2. Modulo scheduler description
The task of mapping applications to CGRAs is a

combination of scheduling operations for execution,

mapping these operations to particular PEs, and routing

data through specific interconnects in the CGRA. Figure

5a shows the flow of the proposed modulo scheduling

algorithm for CGRAs that has been implemented in C++.

The first input to the scheduler is the kernel’s DDG, while

the second one is a description of the CGRA. The CGRA

architecture is modelled by a undirected graph, called

CGRA Graph, GA(Vp, EI). The Vp is the set of PEs of the

CGRA and EI are the interconnections among them. The

CGRA description includes parameters, like the size of

the PE’s local data RAM, the memory buses to which

each PE is connected, the memory bus bandwidth and the

scratch-pad memory access times.

The scheduler is based on the two-stage hierarchical

reduction technique described in [14] where firstly the

operations inside each Strongly Connected Component

(SCC) of the DDG are scheduled. Secondly, the

operations that belong to each SCC are condensed to a

single operation. Then, the algorithm schedules the

resulting condensed DDG of the input kernel which is

acyclic. In [14], in both stages, the closure of dependence

constraints is used to assure the satisfaction of

dependence constraints where a fixed execution delay for

each operation is assumed. However, for CGRAs, due to

the non-deterministic delay of the data routing, the

execution delay depends on the place where the

operations are scheduled. For this reason, the proposed

scheduling algorithm was adapted to take into account the

non-deterministic nature of the operation scheduling in

CGRAs. Firstly, the scheduler considers both the SCCs

and the regular operations when they are ready to be

executed. Secondly, instead of using the closure of

dependence constraints which is calculated prior

scheduling in [14], it checks during each operation’s

scheduling if the operation’s execution time is compatible

with execution times imposed by the data routing delays.

Adequate

resources

found
Storage

Congestion

NO

YES

Resource

Congestion

Or

Dependence

Violation
YES

YES

YES

NO

NO

Resource

Congestion

NO

Storage

Congestion

NO

Resource

Congestion

Or

Dependence

Violation

YES

(a) (b)

DDG

Build

Condensed DDG

Assign Priorities

Estimate

Initiation Interval

CGRA configuration

Perform

Data Mapping

Find Ready To

Execute Operations

Calculate Costs

Identify efficient

Place Decision

Schedule operation

Are there any

variables to spill?

Are there any

operations

left unscheduled?

Increase

Initiation Interval

Restart

Scheduler

Spill Variable

Perform

Backtracking

Fetch

Variables &

Check PE

availability

Store Variables

Adequate

resources

found ?

Adequate

resources

found ?

Route Output

Variables

Adequate

resources

found ?

Return State &

Schedule Costs

CGRA

description

Initialization

phase

Figure 5. (a) Modulo scheduling flow,

(b) Scheduling phases.

After the creation of the condensed DDG, the

scheduler calculates the priorities of the operations. The

priority of an operation is set to its height which is

defined as the maximum distance to an operation without

successors. Afterwards, the initiation interval is

calculated as: II = max(RecII, ResII) (2)

where RecII is the initiation interval imposed by cycles

created by loop-carried dependences and ResII is the

initiation interval defined by the resource constraints of

the architecture [20]. Then, the data mapping is

performed which means that the place, where the

variables are stored after consumption and production, is

defined. Initially, we assume that all variables are stored

in the PEs’ local data RAMs after production or

consumption.

After the initialization phase, the mapping algorithm

iterates for scheduling all operations one by one,

scheduling each time, from the ready to be executed

operations the one which has the highest priority (height).

An operation is considered ready to be executed when all

its predecessors with zero dependence distance are

scheduled. The SCCs have higher priority than the regular

operations since they require more resources to be

scheduled and the II is largely affected by them [14]. Two

costs, which are described in section 5.2.1, are used for

identifying an efficient place decision (PD) for executing

an operation. In this step, the availability of resources

together with the two costs are estimated for a possible

execution of the operation in every PE in the CGRA.

Next, the actual scheduling of the operation takes

place. The scheduling of an operation finishes normally if

the required resources exist. Depending on the

availability of resources, different actions are performed

by the scheduler. In case where the PE’s local data RAM

size is not adequate for finding a possible PD for an

operation in the CGRA, the algorithm spills the

appropriate variables for scheduling the operation.

Among the set of candidate variables for spilling, the

modulo scheduling algorithm chooses the one that

belongs to the operation with the minimum priority.

Then, the algorithm backtracks to the operation to which

the variable belongs and continues the scheduling

process. If there are no variables left to be spilled, the

algorithm fails for the current II and the scheduling phase

restarts with an increased value of the II by one.

Additionally, in case where some other resource (PE,

interconnection, memory bus) is not adequate for finding

a feasible PD or in case where dependences are violated,

the mapping algorithm increases again the II by one and

restarts the scheduler.

As shown in Figure 5b, each operation’s scheduling is

performed through a series of phases. In the first phase,

the input variables are fetched to the PE where the

execution takes place. In case where the input variables

come from memory, the memory bus resources are

reserved for transferring the data values. On the contrary,

when the variables exist in a PE, the appropriate number

of interconnections and storage locations in the local data

RAMs are reserved for routing the data values to the

target PE. Additionally, in the first phase, the availability

of the PE where the execution takes place is checked. If

there are not sufficient resources for completing the first

phase, the scheduling stops and a resource congestion
status is returned. In the second phase, storage of the

variables occurs at the PE, where the execution takes

place, when the variables do not arrive simultaneously at

the target PE. Furthermore, local RAM is reserved at the

source PEs for storing the data values until they are

routed to the target PE. If the algorithm fails to find the

storage resources, then the scheduling phase fails and a

storage congestion status is returned. Finally, in the third

phase, for loop dependent dependencies, routing of the

output variables is required. The output variables should

reach the target PE before the operation that consumes

them takes place. If this time bound is violated, then

dependencies are also violated and a dependence

violation status is returned. Additionally, the availability

of appropriate resources for routing the output variables is

checked and a resource congestion status is returned if

there are no adequate resources.

5.2.1. Mapping Costs

For finding an effective place decision for an

operation, two costs are utilized. These costs are

calculated for a possible execution of the operation in

each PE of the CGRA. The first one, called delay cost,

refers to the operation’s Op earliest possible schedule

time if it is placed for execution in a specific PEx. As

shown in eq. (4), the delay is the sum of the RTime plus

the maximum of the times tf required to fetch the Op’s

input operands to PEx. The RTime (eq. (3)) equals to the

maximum of the times where each of the Op’s

predecessors with zero dependence distance P(Op)
finished executing tfin. P is the set having the predecessor

operations of Op.

1,..,
max ,0 where fin i ii P Op

RTime Op t Op Op P Op (3)

[]1,..,_cos , () max ,0 x P ii PDelay t PE Op RTime Op tf (4)

When an operand comes from the scratch-pad memory,

the tf equals the scratch-pad’s memory latency while

when it comes from a CGRA’s PE, equals the time for

routing the operand to PEx.

The second cost is the interconnection cost that refers

to the interconnections that need to be reserved for

scheduling an operation in a specific PE. As shown in eq.

(5), it is the sum of the CGRA interconnections which

were used to transfer the predecessor operands. Higher

interconnection overhead causes future scheduled

operations to have larger execution start time due to

conflicts.

_cos , x Op xi
i P Op

Interconnection t PE Op PathLength PE PE
 (5)

A greedy approach was adopted for calculating the

time for routing the operands and the number of

interconnections (eq.(5)) required for routing an operand.

For each operand the shortest paths, which connect the

source and destination PE, are identified. From this set of

paths, the one with the minimum routing delay is

selected. The delay and the length of the selected path

gives the delay and interconnection costs through eq.(4)

and eq.(5), respectively. The adopted PD for each

operation is the one with the minimum delay cost. If there

are multiple PDs with the same delay cost, the one that

minimizes the interconnection cost is adopted.

6. Results

6.1. Experimental set-up
Five real-life DSP applications, written in C language,

were mapped on eight different instances of the generic

processor-CGRA platform using the developed design

flow. These applications are: (a) a still-image JPEG

encoder, (b) an IEEE 802.11a OFDM transmitter, (c) a

wavelet-based image compressor [26], (d) a cavity

detector which is a medical image processing application

[26], and (e) a video compression technique, called

Quadtree Structured Difference Pulse Code Modulation

(QSDPCM) [28]. The experiments were performed using

the following applications’ inputs: (a) an image of size

256x256 bytes for the JPEG encoder, (b) 4 payload

symbols for the OFDM transmitter at the 54 Mbps rate,

(c) an image of size 512x512 bytes for the wavelet-based

image compressor, (d) an image of size 640x400 bytes for

the cavity detector, and (e) two video frames of size

176x144 bytes each for the QSDPCM.

We have used four different types of 32-bit embedded

RISC processors coupled each time with the CGRA: an

ARM9, an ARM10, and two SimpleScalar processors

[24]. The SimpleScalar processor is an extension of the

MIPS32 IV core. The first type of the MIPS processor

(MIPSa) uses one integer ALU unit, while the second one

(MIPSb) has two integer ALUs. We have used

instruction-set simulators for the considered embedded

processors for estimating the number of execution cycles

of the non-critical parts. More specifically, for the ARM

processors, the ARM RealView Developer Suite (version

2.2) was utilized, while the performance on the MIPS-

based processors was estimated using the SimpleScalar

simulator tool [24]. Typical clock frequencies are

considered for the four processors: the ARM9 runs at 250

MHz, the ARM10 at 325 MHz, and the MIPS processors

at 200 MHz. The five applications were compiled to

generate binary files for the processors using the highest

level of software optimizations (-O3).

Two different CGRA architectures were used each

time for accelerating critical kernels. The first architecture

is a 4x4 array of PEs, while the second one consists of 36

PEs connected in a 6x6 array. In the following, we list the

characteristics for both CGRAs. In both architectures, the

PEs are directly connected to all other PEs in the same

row and same column through vertical and horizontal

interconnections. There is one 16-bit FU in each PE that

can execute any operation (i.e. multiplication, ALU, shift)

in one CGRA’s clock cycle. Each PE has a local data

RAM of size 8 words, while the local configuration

RAM’s size is 32 contexts as in [2]. The direct connection

delay among the PEs is zero cycles. Two buses per row

are dedicated for transferring data to the PEs from the

scratch-pad memory. The delay of fetching one word

from the scratch-pad memory is one cycle. The CGRA

clock frequencies are 100 MHz, as in the case of an

implementation of the MorphoSys SoC [3].

6.2. Experimentation
The results using the developed analysis flow are

shown in Table 1. The static size of the kernels (in

instruction bytes) and their contributions of the kernels to

the total static size and to the total instructions are

reported. The threshold for the kernel detection was set to

the 10% of the total dynamic instructions of the

application. The theoretical speedup, according to

Amdahl’s Law, if the application’s kernels were ideally

executed on the CGRA in zero time is given by the

Speedup bound. The number of kernels detected in each

application is also given. For all applications the detected

loops consist of word-level operations (ALU,

multiplications, shifts) that match the granularity (data

bit-width) of the PEs in the CGRA. From the analysis

results, it is inferred that an average of 10.9% of the code

size, representing the kernels’ size, contributes 63.9% on

average to the total executed instructions. The speedup of

each application will come from accelerating few kernels.

The small number of the detected kernels in each

application means that the usage of exploration

algorithms, which typically examine thousands of

possible partitions and utilize complex algorithms [9],

[10] is not necessary in the case of partitioning the

considered applications on the processor-CGRA systems.

Table 1. Results from the analysis procedure

App. Kernels’

size

%

size

% total

instructions

Sp.

bound

of

kernels

JPEG 2,534 23.0 75.6 4.10 4

OFDM 1,440 9.2 72.4 3.62 4

Compress 602 4.7 61.2 2.58 4

Cavity 910 7.6 59.5 2.47 4

QSDPCM 2,477 10.0 51.0 2.04 3

Average: 10.9 63.9

The results from mapping the critical loops of the

applications on the 4x4 CGRA are given in Table 2. The

first column refers to the kernel kn of an application,

while the second one to the number of operations

composing each loop after the unrolling performed for

achieving better CGRA utilization and consequently

better performance. The MII is the computed minimal

initiation interval, while II is the interval actually

achieved during modulo scheduling. The obtained

Instructions Per Cycle (IPC) is given in the fifth column.

The IPC indicates the average number of operations

executed per clock cycle in the scheduled loop. The IPC

is a measure of the operation parallelism exploited and

dictates the performance in modulo schedulers. Finally,

the sixth column gives the execution cycles of each kernel

on the 4x4 CGRA, while the speedup relative to the

execution of each kernel on the ARM9 is shown in the

seventh column.

From Table 2, it is inferred that the achieved II is equal

to the MII in 17 out the 19 kernels something that reflects

the quality of the CGRA mapping. Additionally, the 4x4

CGRA is efficiently utilized since the average IPC is

13.0. The average IPC in Table 2 is considerably larger

than the corresponding IPC values achieved when various

DSP kernels were mapped on 4x4 CGRAs in [21], [29].

Actually, in [29] the average IPC resulted from mapping

20 DSP kernels on a 4x4 CGRA (Table 15 of [29]) using

the modulo scheduler introduced in [17], is 1.36 times

smaller than the one achieved in our work. The large

values of IPC in Table 2 reveal the high-performance

mapping of the kernels on the 4x4 array. Furthermore,

large values of speedup relative to the execution on the

ARM9 are achieved, with an average speedup equal to

94. The maximum combined II (sum of the II values for

an application’s loops) among the applications equals 16

and refers to the JPEG encoder. Since, the II defines the

number of configuration contexts needed to execute the

loop and a PE’s local context RAM stores 32 contexts,

there will be no time overhead for loading the context

RAMs during the execution of each application.

Table 2. Results from mapping kernels on the 4x4

CGRA and speedup relative to ARM9

Kernel # ops MII II IPC Cycles Sp..

Jpeg_enc.k1 100 7 7 14.3 28,674 71

Jpeg_enc.k2 104 7 7 14.1 28,692 73

Jpeg_enc.k3 12 1 1 12.0 15,887 541

Jpeg_enc.k4 16 1 1 16.0 44,378 16

Ofdm_trans.k1 16 1 2 8.0 1,058 30

Ofdm_trans.k2 30 2 2 15.0 1,161 138

Ofdm_trans.k3 43 3 4 10.8 965 53

Ofdm_trans.k4 4 1 1 4.0 433 20

Compressor.k1 32 2 2 16.0 85,135 36

Compressor.k2 16 1 1 16.0 21,505 112

Compressor.k3 32 2 2 16.0 85,135 38

Compressor.k4 16 1 1 16.0 43,010 56

Cavity_det.k1 24 2 2 12.0 507,850 88

Cavity_det.k2 8 1 1 8.0 55,385 100

Cavity_det.k3 24 2 2 12.0 190,443 80

Cavity_det.k4 24 2 2 12.0 190,443 68

Qsdpcm.k1 27 2 2 13.5 633,609 33

Qsdpcm.k2 29 2 2 14.5 912,398 38

Qsdpcm.k3 16 1 1 16.0 4,318,851 190

Average: 13.0 94

When the kernels were mapped on the 6x6 CGRA, the

average speedup relative to the ARM9 execution was

181. The achieved average IPC for the 6x6 array was

25.2. Additionally, the maximum combined II equals 7

and corresponds to the loops of the OFDM transmitter.

Thus, for the 6x6 array there is also no overhead for

loading the PEs’ context RAMs.

Figure 6a shows the speedups for executing all the

kernels of each application on the 4x4 CGRA relative to

the execution of the kernels on the processor. Figure 6b

shows the respective speedups when the 6x6 array is used

in the processor platforms. For every application, the

speedup is relative to each one of the four RISC

processors used. For example, the left most bar in each

application corresponds to the speedup obtained when the

execution cycles of the kernels are compared to the ones

for the execution of the kernels on the ARM9. The kernel

speedup is defined as:

Spkernel = Cycleskernels_sw / Cycleskernels_CGRA_norm (6)

where Cycleskernels_sw represents the number of cycles

required for executing the kernels on the processor and

the Cycleskernels_CGRA_norm represents the number of cycles

for executing the kernels on the CGRA. We note that the

cycles reported from the CGRA mapping algorithm

described in section 5.2, are normalized to the clock

frequency of the processor in the system platform, using

the following relation:

ker _ _ ker _

proc

nels CGRA norm nels CGRA

CGRA

Clock
Cycles Cycles

Clock
 (7)

where the Cycleskernels_CGRA are the clock cycles reported

from the developed CGRA mapper tool, Clockproc is the

clock frequency of the processor and ClockCGRA is the

clock frequency of the CGRA.

45
28

19
33

60

29
19 11

23
42

99

44

75

122

199

56
33

46

78

129

0

40

80

120

160

200

240

280

320

JPEG enc. OFDM trans. Compressor Cavity det. QSDPCM

86

44 38
62

96

54
30 23

44
67

185

69

150

230

320

105

52

92

146

207

0

40

80

120

160

200

240

280

320

JPEG enc. OFDM trans. Compressor Cavity det. QSDPCM

S
p

ee
d

u
p

(a)

(b)

S
p

ee
d

u
p

ARM9 ARM10 MIPSa MIPSb

Figure 6. Kernel speedups (a) on the 4x4 CGRA and

(b) on the 6x6 CGRA, for various processor systems.

From Figure 6, it is deduced that important speedups

are achieved when critical kernels are executed on the

CGRA. For the systems composed by 4x4 CGRA, the

speedups range from 11 to 199, with an average value of

60 for all the applications and all the cases of

microprocessors. When the 6x6 array is used, the kernel

speedup ranges from 23 to 320, with an average value of

105. Thus, the average kernel speedup for the 6x6 array is

1.76 times larger than the one obtained with the 4x4

CGRA. The ratio of the number of PEs in the 6x6 array to

the PEs in the 4x4 is 36/16=2.25. We can infer that the

additional PEs of the 6x6 array were efficiently exploited

by the modulo scheduling algorithm since the ratio of the

average kernel speedups is fairly close to the 2.25.

The achieved speedups are due to the fact that the

inherent operation parallelism of the kernels is better

exploited by the available Processing Elements of the

CGRA than the functional units of the RISC processors.

Even in the case where the processors are clocked in a

significantly higher clock frequency than the CGRAs (as

in the ARM10 systems) the speedups are important.

These results prove that the CGRA architectures are

efficient in accelerating critical loops of DSP and

multimedia applications which leads in improving the

overall performance of an application executed on a

microprocessor-CGRA system as it will be shown in

Table 3. The kernel speedup is smaller in the ARM10-

based systems than the ARM9-based ones since the

ARM10 is a more contemporary microprocessor

generation and it is clocked at a higher frequency.

Furthermore, the effect of accelerating kernels on the

CGRA is smaller when the MIPSb is employed in the

platform since it has one more ALU unit than the MIPSa.

Table 3. Execution cycles and speedups

4x4 CGRA 6x6 CGRA

Application
Proc.

Arch.
Cyclessw

Ideal

Sp. Cyclessystem
Est.

Sp.
Cyclessystem

Est.

Sp.

ARM9 19,951,193 3.24 6,799,939 2.93 6,663,142 2.99

ARM10 16,930,629 3.16 6,273,578 2.70 6,095,741 2.78

MIPSa 34,451,609 3.32 11,353,377 3.03 11,243,939 3.06
JPEG enc.

MIPSb 19,637,417 3.24 6,694,006 2.93 6,584,568 2.98

ARM9 362,990 3.43 120,465 3.01 117,182 3.10

ARM10 334,375 3.23 122,402 2.73 118,135 2.83

MIPSa 459,594 3.43 147,125 3.12 144,499 3.18
OFDM trans.

MIPSb 352,788 3.29 120,942 2.92 118,316 2.98

ARM9 20,574,658 2.32 10,045,845 2.05 9,752,357 2.11

ARM10 17,854,928 2.21 9,896,315 1.80 9,514,782 1.88

MIPSa 62,468,206 2.49 27,777,661 2.25 27,542,871 2.27
Compressor

MIPSb 40,541,866 2.34 19,484,158 2.08 19,249,368 2.11

ARM9 161,441,889 2.29 85,387,604 1.89 84,283,439 1.92

ARM10 155,356,758 2.17 87,023,271 1.79 85,587,857 1.82

MIPSa 470,433,835 2.34 241,717,256 1.95 240,833,924 1.95
Cavity det.

MIPSb 310,248,110 2.23 165,099,333 1.88 164,216,001 1.89

ARM9 3,895,248,922 1.54 3,033,750,555 1.28 3,028,219,028 1.29

ARM10 3,608,029,180 1.48 2,833,095,857 1.27 2,825,904,871 1.28

MIPSa 7,006,016,541 1.73 4,682,812,043 1.50 4,678,386,821 1.50
QSDPCM

MIPSb 4,910,759,258 1.68 3,407,830,222 1.44 3,403,405,000 1.44

 Average: 2.23 2.27

The execution cycles and overall application speedups

from applying the proposed design flow in the five

applications are presented in Table 3. The results are

given for accelerating the kernels on the 4x4 and the 6x6

CGRAs. For each application, the four considered

processor architectures (Proc. Arch.) are used for

estimating the clock cycles (Cyclessw) required for

executing the whole application on the processor. The

ideal speedup (Ideal Sp.) reports the maximum

performance improvement, according to Amdahl’s Law,

if application’s kernels were ideally executed on the

CGRA in zero time. The estimated speedup (Est. Sp.) is

the measured performance improvement after utilizing the

developed design flow. The estimated speedup is

calculated as:

Est_Sp=Cyclessw/Cyclessystem (8)

where Cyclessystem represents the execution cycles after the

partitioning to the processor and to the CGRA takes

place.

From the results given in Table 3, it is evident that

significant overall performance improvements are

achieved when critical software parts are mapped on a

CGRA. It is noticed that better performance gains are

accomplished for the ARM9 system than the ARM10-

based one. This occurs since the speedup of kernels on

the CGRA has greater effect when the CGRA is coupled

with a lower-performance processor, as it is the ARM9

relative to the ARM10. This is clearly shown in the kernel

speedup results in Figure 6. Furthermore, the speedup is

almost always greater for the MIPSa system than the

MIPSb case, since the latter processor employs one more

integer ALU unit.

For the case of mapping the kernels on the 6x6 CGRA,

the speedups are somewhat larger than the 4x4 CGRA

case. The larger application speedups are due to the better

kernel speedups (as shown in Figure 6) that obtained with

the 6x6 array relative to the 4x4 CGRA. However, even

though the kernel speedup is significantly improved for

the 6x6 CGRA, the overall application speedup slightly

increases due to the fact that the non-critical code

segments are executed on the microprocessor. The

average estimated application speedup is 2.23 for the 4x4

architecture, while for the 6x6 CGRA is equal to 2.27.

We also notice that the reported estimated speedups for

each application and for each processor type are

somewhat close to the ideal speedups determined by the

Amdahl’s Law, especially for the case of the 6x6 CGRA.

7. Conclusions - Future work

A flow for improving the performance in processor-

CGRA single-chip systems was presented. An efficient

modulo scheduling algorithm is used to accelerate kernel

code where high IPC values are achieved using this

scheduler. Extensive experiments show that the

application speedup ranges from 1.27 to 3.12 when a 4x4

CGRA is employed for kernels’ acceleration. The kernel

speedup is 1.76 times larger when a 6x6 CGRA is used in

the platform, while the overall application speedup

slightly increases with an average value of 2.27. Future

work focuses on the parallel execution of the processor

and the CGRA for achieving even greater performance

improvements.

References

[1] R. Hartenstein, “A Decade of Reconfigurable Computing:

A Visionary Retrospective”, in Proc. of ACM/IEEE DATE ’01,

pp. 642-649, 2001.

[2] T. Miyamori and K. Olukutun, “REMARC:

Reconfigurable Multimedia Array Coprocessor”, in IEICE

Trans. on Information and Systems, pp. 389-397, 1999.

[3] H. Singh et al., “MorphoSys: An Integrated Reconfigurable

System for Data-Parallel and Communication-Intensive

Applications”, in IEEE Trans. on Computers, vol. 49, no. 5, pp.

465-481, May 2000.

[4] Morpho Technologies, www.morphotech.com, 2005.

[5] V. Baumgarte et al., “PACT XPP - A Self-Reconfigurable

Data Processing Architecture”, in the Journal of

Supercomputing, Springer, vol. 26, no. 2, pp. 167-184,

September 2003.

[6] J. Becker et al., “Datapath and Compiler Integration of

Coarse-grain Reconfigurable XPP-Arrays into Pipelined RISC

Processor”, in Proc. of IFIP VLSI SoC, pp. 288-293, 2003.

[7] J. Villareal et al., “Improving Software Performance with

Configurable Logic”, in Design Automation for Embedded

Systems, Springer, vol. 7, pp. 325-339, 2002.

[8] G. Stitt et al., “Energy Savings and Speedups from

Partitioning Critical Software Loops to Hardware in Embedded

Systems”, in ACM TECS, vol.3, no.1, pp. 218-232, Feb. 2004.

[9] D. D. Gajski et al., “SpecSyn: An environment supporting

the specify-explore-refine paradigm for hardware/software

system design”, in IEEE Trans. on VLSI Syst., vol. 6, no. 1, pp.

84–100, 1998.

[10] J. Henkel, “A low power hardware/software partitioning

approach for core-based embedded systems”, in Proc. of the

36th ACM/IEEE DAC, pp. 122–127, 1999.

[11] J. Becker and A. Thomas, “Scalable Processor Instruction

Set Extension”, in IEEE Design & Test of Computers, vol. 22,

no. 2, pp. 136-148, 2005.

[12] Y. Kim et al., “Design and Evaluation of a Coarse-Grained

Reconfigurable Architecture”, in Proc. of ISOCC ’04, pp. 227-

230, 2004.

[13] B. Mei et al., “Design Methodology for a Tightly Coupled

VLIW/Reconfigurable Matrix Architecture, A Case Study”, in

Proc. of ACM/IEEE DATE ’04, pp. 1224-1229, 2004.

[14] M. S. Lam, “Software pipelining: An effective scheduling

technique for VLIW machines”, in Proc. of SIGPLAN ’88, pp.

318-328, 1988.

[15] S. Pillai and M. F. Jacome, “Compiler-Directed ILP

Extraction for Clustered VLIW/EPIC machines: Predication,

Speculation and Modulo Scheduling”, in Proc. of ACM/IEEE

DATE ’03, pp. 422-427, 2003.

[16] J. Zalamea et al., “Register Constrained Modulo

Scheduling”, in IEEE Trans. on Parallel and Distributed

Systems, vol. 15, no. 5, pp. 417-430, May 2004.

[17] B. Mei et al., “Exploiting Loop-Level Parallelism on

Coarse-grained Reconfigurable Architectures Using Modulo

Scheduling”, in Proc. of ACM/IEEE DATE ’03, pp. 255-261,

2003.

[18] SUIF2, http://suif.stanford.edu/suif/suif2/index.html, 2005.

[19] M. D. Smith and G. Holloway, “An Introduction to

Machine SUIF and its Portable Libraries for Analysis and

Optimization”, Technical Report, Harvard University, 2002.

[20] K. Kennedy and R. Allen, “Optimizing Compilers for

modern architectures”, Morgan Kauffman Publishers, 2002.

[21] J. W. Crenshaw, “MATH Toolkit for Real-Time

Programming”, CMP Books, 2000.

[22] N. Bansal et al., “Network Topology Exploration of Mesh-

Based Coarse-Grain Reconfigurable Architectures”, in Proc. of

ACM/IEEE DATE ’04, pp. 474-479, 2004.

[23] J. Lee et al., “Compilation Approach for Coarse-grained

Reconfigurable Architectures”, in IEEE Design & Test of

Computers, vol. 20, no. 1, pp. 26-33, Jan.-Feb., 2003.

[24] D. C. Cronquist et al., “Specifying and Compiling

Applications for RaPiD,” in Proc. of FCCM, pp. 116-125, 1998.

[25] SimpleScalar LLC, http://www.simplescalar.com, 2005.

[26] S. Kumar et al., “A Benchmark Suite for Evaluating

Configurable Computing Systems - Status, Reflections, and

Future directions”, in Proc. of FPGA, pp. 126-134, 2000.

[27] M. Bister et al., “Automatic Segmentation of Cardiac MR

Images”, in Proc. of Computers in Cardiology, IEEE Computer

Society Press, pp.215-218, 1989.

[28] P. Strobach, “Qsdpcm - A New Technique in Scene

Adaptive Coding”, in Proc. of 4th European Signal Processing,

Grenoble, France, pp. 1141-1144, Sep. 1988.

[29] Z. Kwok and S. J. E. Wilton, “Register File Architecture

Optimization in a Coarse-Grained Reconfigurable

Architecture”, in Proc. of IEEE FCCM ’05, pp. 35-44, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

