
Parallel Morphological Processing of Hyperspectral Image Data on Heterogeneous

Networks of Computers

Antonio J. Plaza

Computer Architecture and Technology Section
Computer Science Department, University of Extremadura

Avda. de la Universidad s/n, E-10071 Caceres, SPAIN
Phone: +34 (927) 257195; Fax: +34 (927) 257203

E-mail: aplaza@unex.es

Abstract

Recent advances in space and computer technologies
are revolutionizing the way remotely sensed data is
collected, managed and interpreted. The development of
efficient techniques for transforming the massive amount
of collected data into scientific understanding is critical
for space-based Earth science and planetary exploration.
Although most currently available parallel processing
strategies for hyperspectral image analysis assume
homogeneity in the computing platform, heterogeneous
networks of computers represent a very promising cost-
effective solution expected to play a major role in the
design of high-performance computing platforms for many
on-going and planned remote sensing missions. This paper
explores techniques for mapping morphological
hyperspectral analysis algorithms, characterized by their
scalability and sub-pixel accuracy, onto heterogeneous
parallel computers. Important aspects in algorithm design
are illustrated by using both homogeneous and
heterogeneous parallel computing facilities available at
NASA’s Goddard Space Flight Center and University of
Maryland. Experiments reveal that heterogeneous
networks of workstations represent a source of
computational power that is both accessible and
applicable in many remote sensing studies.

1. Introduction

The incorporation of last-generation sensors to airborne
and satellite platforms is currently producing a nearly
continual stream of high-dimensional data, and this
explosion in the amount of collected information has
rapidly introduced new processing challenges [1]. In
particular, NASA is continuously gathering imagery data

with Earth-observing sensors. Recent advances in sensor
technology have led to the development of so-called
hyperspectral instruments, capable of collecting hundreds
of images, corresponding to different wavelength channels
for the same area on the surface of the Earth. The concept
of hyperspectral imaging (see Fig. 1) was introduced when
NASA’s Jet Propulsion Laboratory Airborne Visible-
Infrared Imaging Spectrometer (AVIRIS) [2] was
developed. This imager currently covers the wavelength
region from 0.4 to 2.5 µm using 224 spectral channels, at a
nominal spectral resolution of 10 nm. On other hand, the
Hyperion hyperspectral imager aboard NASA’s Earth
Observing-1 (EO-1) spacecraft has been NASA’s first
hyperspectral imager to become operational on-orbit. It
routinely collects images hundreds of kilometers long with
220 spectral bands from 0.4 to 2.5 µm. In the near future,
the use of hyperspectral sensors on satellite platforms will
produce a nearly continual stream of multidimensional
data, and this expected high data volume would demand
fast and efficient means for storage, transmission and
analysis. The automation of techniques for transforming
collected data into scientific understanding is critical for
space-based Earth science and planetary exploration with
onboard scientific data analysis.

While integrated spatial/spectral developments hold
great promise for Earth science image analysis, they also
introduce new processing challenges [3]. In particular, the
price paid for the wealth of spatial and spectral
information available from hyperspectral sensors is the
enormous amounts of data that they generate [4]. Several
applications, however, require that a response is provided
quickly enough for practical use. Relevant examples
include environmental modeling and assessment, target
detection for military and defense/security purposes, urban
planning and management studies, risk/hazard prevention
and response including wild land fire tracking, biological
threat detection, monitoring of oil spills and other types of

1-4244-0054-6/06/$20.00 ©2006 IEEE

chemical contamination. To address the computational
need introduced by such relevant applications, several
efforts have been recently directed towards the
incorporation of high-performance computing models in
remote sensing missions [3], especially with the advent of
relatively cheap Beowulf clusters [5]. The new processing
power offered by such commodity systems can be
employed in data mining applications from massively
large data archives (it is estimated that NASA collects and
sends to Earth more than 850 GB of hyperspectral data
every day). Further, real-time systems for onboard data
analysis and compression still need to be fully
incorporated to remote sensing missions. Although most
parallel techniques and systems for image information
processing employed by NASA and other institutions
during the last decade have chiefly been homogeneous in
nature, a current trend in the design of systems for analysis
and interpretation of the massive volumes of data provided
by space-based Earth science and planetary exploration
missions is to utilize heterogeneous resources. This
heterogeneity is seldom planned, arising mainly as a result
of technology evolution over time and computer market
sales and trends. Commodity off-the-shelf heterogeneous
clusters of computers can realize a very high level of
aggregate performance [6], and it is expected that these
clusters will represent a tool of choice for the scientific
community devoted to high-dimensional image analysis in
remote sensing and other fields [7-9]. It is also worth
noting that significant opportunities to exploit
heterogeneous computing techniques are still available in
the analysis of high-dimensional image data sets [10].

In this paper, we explore techniques for mapping
hyperspectral image analysis algorithms onto
heterogeneous networks of computers. Section 2 describes
a hyperspectral analysis methodology that will serve as
our case study throughout the paper. Section 3 develops
parallel versions of the considered approach, specifically
designed for heterogeneous platforms. In Section 4, we
assess the parallel performance of the considered parallel
algorithms by drawing comparisons between their
efficiency on a heterogeneous cluster of workstations with
the efficiency evidenced by their homogeneous
counterparts on a homogeneous cluster with the same
aggregate performance as the heterogeneous one. This
evaluation strategy is adopted from recent studies by
Lastovetsky and Reddy. Performance data on
Thunderhead, a (homogeneous) massively parallel
Beowulf cluster at NASA’s Goddard Space Flight Center
are also given. Section 5 concludes with some remarks.

2. Hyperspectral Analysis Methodology

This section develops a sequential morphological
processing algorithm for analysis and classification of
hyperspectral image data [11]. The algorithm will be used

as a case study throughout the paper, as a representative
algorithm of integrated spatial/spectral approaches, i.e.,
algorithms that take into account both the spatial and
spectral information of the data in simultaneous fashion.
Such hybrid techniques represent the most advanced
generation of algorithms for analyzing hyperspectral
imagery [1]. Before describing our proposed approach, let
us denote by f a hyperspectral data set defined on an N-

dimensional (N-D) space, where N is the number of
channels or spectral bands. Using extended morphological
operations [12], we impose an ordering relation in terms of
spectral purity in the set of pixel vectors lying within a
spatial search window (structuring element), designed by
B , and defined in advance. In order to do so, we first
define a cumulative distance between one particular pixel

()yx,f , where ()yx,f denotes an N-D vector at discrete

spatial coordinates () 2, Zyx ∈ , and all the pixel vectors in

the spatial neighborhood given by B (B -neighborhood)
as:

[] []∑ ∑= i jB jiyxAMyxD),(),,(S),(fff ,

where),(ji refers to spatial coordinates in the B -

neighborhood and SAM is the spectral angle mapper [1],
defined by :

() ()),(),(),(),(cos),(),,(SAM 1 jiyxjiyxjiyx ffffff ⋅= −

As a result, []),(yxDB f is ultimately given by the sum

of SAM scores between ()yx,f and every other pixel

vector in the B -neighborhood. Based on the distance
above, we calculate the extended erosion of f by B [13]

for each pixel in the input data scene, i.e., for each
possible B -neighborhood in the input scene, we select the
pixel that produces the minimum value for BD :

()
() () () ()[]{ }{ }jyixDjijyix

yxB

Bji ++=++
=Θ

,minarg',',','

),(

, ff

f

where the arg min operator selects the pixel vector is most
highly similar, spectrally, to all the other pixels in the B -
neighborhood. Similarly, we apply an extended dilation of
f by B [13] to select (for each possible B -neighborhood

in the input scene) the pixel vector that produces the
maximum value for BD :

()
() () () ()[]{ }{ }jyixDjijyix

yxB

Bji ++=−−
=⊕

,maxarg',',','

),(

, ff

f

where the argmax operator selects the pixel vector that is

most spectrally distinct to all the other pixels in the B -
neighborhood. Finally, we calculate a morphological
eccentricity index (MEI) [11] at each pixel as follows:

()() ()()[]yxByxByx ,,,SAM),(MEI Θ⊕= ff

The resulting MEI scores (at a pixel level) can be then
used for a variety of applications in hyperspectral imaging
[12], most notably, to select the “purest” pixels in the

image data, which can then be used to express “mixed”
pixels in terms of linear/nonlinear combinations of pure
pixels. Mixed pixel characterization is crucial in
hyperspectral imaging, where the spatial resolution of the
sensor is often not fine enough to separate different pure
materials at a sub-pixel level and these can jointly occupy
a single pixel, with the resulting spectral measurement at
the pixel given by composite of the individual spectra.
Although spectral unmixing procedures based on pure
pixel identification have become quite popular in recent
years, their exploitation in real applications is often
limited by their high computational complexity.

3. Parallel Implementation

This section describes a heterogeneous parallel processing
framework for hyperspectral image analysis, which makes
use of the morphological algorithm outlined in section 2 as
a case study. Before providing an overview of the
proposed parallel processing approach, we fist discuss
volume partitioning and data communications.

3.1. Volume Partitioning

A major requirement for efficient parallel algorithms on
distributed memory systems is finding a decomposition
that minimizes the communication between the
processors. For that purpose, domain decomposition
techniques provide flexibility and scalability in parallel
image processing. Two types of partitioning can be
exploited in hyperspectral image analysis algorithms:
spectral-domain partitioning and spatial-domain
partitioning [5]. Spectral-domain partitioning subdivides
the volume into small cells or sub-volumes made up of
contiguous spectral bands, and assigns one or more sub-
volumes to each processor. With this model, each pixel
vector is split amongst several processors, which breaks
the spectral identity of the data because the calculations
for each pixel vector (e.g., for the SAM calculation) need
to originate from several different processing units [14].

On the other hand, spatial-partitioning preserves the
entire spectral signature of each hyperspectral image pixel
[5]. In this work, we adopt a spatial-domain partitioning
approach due to several reasons. First, the application of
spatial-domain partitioning is a natural approach for low-
level image processing [10], as many operations require
the same function to be applied to a small set of elements
around each data element present in the image data
structure. A second reason has to do with the cost of inter-
processor communication. In spectral-domain parallel, the
structuring element-based calculations made for each
hyperspectral pixel need to originate from several
processing elements, and thus require intensive inter-
processor communication.

Figure 1. 3x3-pixel structuring element computation
split between two processing nodes.

Finally, we believe that volume partitioning in the
spatial domain is easier to handle in systems for
hyperspectral imaging due to the fact that most available
algorithms rely on spatial domain decomposition, while
spectral domain-based partitioning would require careful
re-design and re-programming of standard techniques.

3.2. Handling Data Communications

Before describing our adopted parallel algorithm, we
should point out that an important issue in neighborhood-
based image processing applications such as mathematical
morphology is that additional inter-processor
communications are required when the structuring element
computation needs to be split amongst several different
processing nodes due to boundary effects, as illustrated in
Fig. 2 for a 3x3-pixel structuring element. In the example,
the computations for a certain pixel need to originate from
two heterogeneous processors, and a communication
overhead involving three high-dimensional pixel vectors is
introduced.

However, if redundant information such as an overlap
border is added to one of the adjacent partitions to avoid
accesses outside image domain, as illustrated in Fig. 3,
then boundary data to be exchanged between neighboring
processors can be greatly minimized [15]. It is clear at this
point that an overlapping scatter would introduce
redundant computations, since the intersection between
the two involved partitions would be non-empty. It is also
worth noting that the solution above may be prohibitive
for large structuring element sizes. Subsequently, there is
an application-dependent threshold to decide whether a
redundant information-based or data exchange-based
strategy should be adopted.

In order to explore the above relevant issue, in this
work we will compare three different overlap
communication strategies. It should be noted that the
strategies addressed below have never been tested in the
context of hyperspectral imaging applications:

Figure 2. Redundant computations to reduce inter-
processor communication.

a) Standard non-overlapping scatter, followed by
overlap communication in the structuring element-
based filtering operation for every pixel (as shown in
Fig. 2), thus sending very small sets of pixels very
often.

b) Standard non-overlapping scatter, followed by
overlap communication before the morphological
filtering, to have all data available in the overlap
border areas (thus sending all border data beforehand,
but only once). This is the strategy that is used in [16].

c) A special “overlapping scatter” operation, that also
sends out the overlap border data as part of the scatter
operation itself.

3.2. Implementation Details

The main purpose of the parallel algorithm in this
section is to provide a mechanism to slice the available
data into chunks (according to the spatial-domain volume
partitioning framework described in subsection 3.1) so that
the total execution time is minimized. For this purpose,
there is a need to load-balance the workloads of p

participating heterogeneous resources so that each
processor iP will accomplish a share iα of the total

workload W , where 0i ≥ for pi ≤≤1 and ∑ =
=

p

i
i

1
1α .

Therefore, a desired goal is to find a set of optimal values

for the set { }p
ii 1=α , taking into account the three data

communication strategies addressed in subsection 3.2. We
provide below a step-by-step description of the proposed
parallel algorithm, where the input parameters are a
hyperspectral image f with N spectral channels, and a

structuring element, B , that will be used for the
construction of morphological operations. Based on our
previous results with the proposed morphological
algorithm, we will assume that the structuring elements
used in this work are square-shaped, although structuring
elements with different shapes may also be considered.

Heterogeneous Morphological Processing (HMP)

Inputs: N-dimensional image f , Structuring element B

Output: 2-dimensional image MEI
1. Obtain necessary information about the heterogeneous

system, including the number of available processors,

p , each processor’s identification number, { }p
iiP 1= ,

and processor cycle-times, { }p
iiw 1= .

2. Using B and the information obtained in step 1,
determine the total volume of information, R , that
needs to be replicated from the original data volume,
V according to the three data communication

strategies described in subsection 3.2.
3. Let the total workload W to be handled by the

algorithm be given by RVW += .

4. Set
()

()⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢

⎣

⎢

=

∑ =

p

i
i

i
i

w

wp

1
1

α for all { }pi ,,1 ⋅⋅⋅∈ .

5. For ∑ =
=

p

i
im

1
α to ()RV + , find { }pk ,,1 ⋅⋅⋅∈ so that

() (){ }p
iiikk ww 11min1 =+⋅=+⋅ αα and set 1+= kk αα .

6. Use the resulting { }p
ii 1=α to obtain a set of p spatial-

domain heterogeneous partitions of ()RV + , and send

its corresponding partition to each processor iP along

with B following the data communication strategies
described in subsection 3.2.

7. Execute the sequential algorithm in section 2 in
parallel at each heterogeneous processor.

8. Collect all the individual results { }p
ii 1MEI = provided

by each processor iP , and merge them together to

form a final image { }i

p

i
MEIMEI

1=
∪= .

In order to perform spatial-domain data partitioning in
step 6, we adopt a hybrid methodology with two steps:
a) Partition the hyperspectral data set so that the number

of rows in each partition is proportional to the values

of { }P
ii 1= assuming that no upper bound exists on the

number of pixels that can be stored by the processor.
b) For each processor, check if the number of pixel

vectors assigned to it is greater than the upper bound.
For all the processors whose upper bounds are
exceeded, assign them a number of pixels equal to
their upper bounds. Now, we solve the partitioning
problem of a set with remaining pixel vectors over the
remaining processors. We recursively apply this
procedure until all the elements have been assigned.

It should be noted that a homogeneous version of the
algorithm above can be obtained by replacing step 4, so
that iwpi =α for all { }pi ,,1 ⋅⋅⋅∈ , where iw is a constant

communication speed between each processor pair.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

0.0072 0.0102 0.0206 0.0072 0.0102 0.0058 0.0072 0.0102 0.0072 0.0451 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131

Table 1. Processor cycle-times (in seconds per megaflop) for the heterogeneous cluster.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

P1
 19.26 19.26 19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

P2
19.26 19.26 19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

P3
19.26 19.26 19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

P4
19.26 19.26 19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

P5
48.31 48.31 48.31 48.31 17.65 17.65 17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

P6
48.31 48.31 48.31 48.31 17.65 17.65 17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

P7
48.31 48.31 48.31 48.31 17.65 17.65 17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

P8
48.31 48.31 48.31 48.31 17.65 17.65 17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

P9
96.62 96.62 96.62 96.62 48.31 48.31 48.31 48.31 16.38 58.14 58.14 58.14 58.14 58.14 58.14

P10
96.62 96.62 96.62 96.62 48.31 48.31 48.31 48.31 16.38 58.14 58.14 58.14 58.14 58.14 58.14

P11
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05

P12
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05

P13
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05

P14
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05

P15
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05

P16
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05

Table 2. Capacity of links (measured in terms of the time in miliseconds to transfer a one-megabit message) for the
heterogeneous cluster.

4. Experimental Results

This section provides an assessment of the
effectiveness of the proposed parallel algorithm using
different data communication and redundant computation
handling strategies, as described in subsection 3.2. In
order to assess the algorithm’s performance, we resort to a
framework for assessment of heterogeneous algorithms
recently proposed by Lastovetsky and Reddy [17], who
stated that a heterogeneous algorithm cannot be executed
on a heterogeneous environment faster than its
homogeneous prototype on the equivalent homogeneous
environment. In [17], a homogeneous computing
environment was considered equivalent to the
heterogeneous one if: 1) both environments have the same
number of processors; 2) the speed of each processor in
the homogeneous environment is equal to the average
speed of processors in the heterogeneous environment;
and 3) the aggregate communication characteristics of the
homogeneous environment are the same as those of the
heterogeneous environment. As a result, the heterogeneous
algorithm may be considered optimal if its efficiency is
the same as that of the homogeneous prototype. This
strategy is appropriate in morphological hyperspectral
imaging, where the proposed heterogeneous algorithm is a
modification of some homogeneous one.

4.1. Parallel Computing Architectures

This subsection provides an overview of the
heterogeneous and homogeneous parallel computing
architectures used for evaluation purposes in this work.
For the design of experiments, we have considered three
clusters of workstations. The first one is a small-scale
heterogeneous network of 16 different SGI, Solaris and
Linux workstations, and four communication segments at
University of Maryland. Table 1 shows the cycle-times of

the heterogeneous processors, where processors { }4
1ii =P are

attached to communication segment 1s , processors { }8
5ii =P

communicate through 2s , processors { }10
9ii =P are

interconnected via 3s , and processors { }16
11ii =P share

communication segment 4s . The communication links

between the different segments { }4

1jj =
s only support serial

communication. For illustrative purposes, Table 2 shows
the capacity of all point-to-point communications,
expressed as the time in milliseconds to transfer a one-
megabit message between each processor pair ()ji PP , in

the heterogeneous system. As it can be deduced from
Table 2, the communication network of the heterogeneous

platform consists of four relatively fast homogeneous
communication segments interconnected by three slower

communication links with capacities () 05.291,2 =c ,
() 31.482,3 =c , () 14.583,4 =c in milliseconds, respectively.

Although this is a simple architecture, it is also a quite
typical and realistic one as well.

The second parallel computing architecture used in
experiments is a homogeneous cluster of 16 identical
Linux workstations which is considered to be equivalent to
the heterogeneous one. The processor cycle-time of the 16
processors in this architecture is 0131.0=w seconds per

megaflop, and they are interconnected via a homogeneous
network with capacity 64.26=c milliseconds. It should

also be noted that the same processors { }16
11ii =P in the

heterogeneous cluster were also used to construct the
homogeneous cluster, which allowed us to better control
the accuracy of experiments by ensuring that these
processors have the same speed in the homogeneous
cluster running an homogeneous prototype and in the
heterogeneous cluster running its corresponding
heterogeneous algorithm. It is also important to emphasize
that the configuration of the two platforms above was
custom-designed to make sure that the two architectures
are approximately equivalent in the context of our specific
heterogeneous application, as detailed in [17].

Finally, In order to test the heterogeneous algorithm on
a larger-scale parallel platform, we have also
experimented with Thunderhead, a Beowulf cluster
located at NASA’s Goddard Space Flight Center (GSFC).
Beginning in the early nineties, the overwhelming
computational needs of Earth and space scientists have
driven GSFC to be one of the leaders in the application of
low cost high-performance computing to remote sensing
problems. In 1997, the HIVE (Highly Parallel Virtual
Environment) project was started to build a homogeneous
commodity cluster intended to be exploited by different
users in a wide range of scientific applications. The
Thunderhead system can be seen as an evolution of the
HIVE project. It is currently composed of 256 dual 2.4
GHz Intel Xeon nodes, each with 1 GB of memory and 80
GB of main memory. The total peak performance of the
system is 2457.6 GFlops. Despite the computational
power offered by Thunderhead, a current trend at GSFC
and other NASA centers is to exploit highly
heterogeneous, massively parallel computing platforms
able to operate in large-scale distributed environments.

4.2. Performance Analysis

The parallel algorithm in section 3 was applied to a
hyperspectral scene collected by the AVIRIS
hyperspectral imager, using seven different square-shaped
structuring elements, i.e., 3x3B , 5x5B , 7x7B , 9x9B , 11x11B ,

13x13B and 15x15B . The full data set, with dimensions of

1024 samples by 614 lines and 224 spectral bands (around
280 MB) was acquired over the well-known Indian Pines
region, a mixed forest/agricultural test site, and represents
a very challenging classification problem due to the fact
that most of the classes are dominated by mixed pixels.
Extensive ground-truth information is available for the
area along with ground-truth information, as shown by
Fig. 4. This map was preliminary used to validate the
accuracy of our proposed morphological algorithm
combined with a spectral mixture analysis approach, in
which the procedure described in section 2 was first used
to identify the most spectrally pure pixels in the data set
according to the resulting MEI scores. As a result, a set of
30 representative pure pixels (one per ground-truth class)
was identified, and each pixel was labeled as belonging to
the class given by the most abundant sub-pixel component
(this strategy is known as winner-take-all in the literature
[1]). For illustrative purposes, Table 3 shows the
classification accuracy scores (in terms of the percentage
of correctly classified pixels) obtained using the procedure
above with the seven considered structuring elements,
where the most appropriate structuring element seemed to
be 13x13B .

3x3B 5x5B 7x7B 9x9B 11x11B 13x13B 15x15B

65.34 73.48 80.29 84.05 90.13 90.55 90.96

Table 3. Percentages of correctly classified pixels in
the AVIRIS scene by a winner-take-all strategy based
on the proposed morphological processing using
different structuring elements.

Fig. 5(a) plots the speedup of the heterogeneous
algorithms over their corresponding homogeneous
prototypes on the heterogeneous platform as a function of

WR
, where the three considered data communication

strategies are respectively labelled as HMP-A, i.e., overlap
communication for every single pixel; HMP-B, i.e.,
overlap communication to have all data available before
the morphological filtering; and HMP-C, i.e., sending the
overlap border data as part of the scatter operation itself.
Results in Fig. 5(a) show that heterogeneous algorithms
were several times faster than their homogeneous versions,
in particular, those labelled as HMP-B and HMP-C. The
speedup was simply calculated as the execution time of
the homogeneous algorithm divided by the execution time

of the heterogeneous algorithm for the same
WR

 ratio.
The main reason why the HMP-A algorithm performed
less effectively is due to its very expensive communication
strategy, while HMP-B implemented a better
communication strategy, and HMP-C was usually about as
good as strategy B.

Figure 4. (Left) Spectral band at 587 nm wavelength of an AVIRIS scene comprising agricultural and forest features at
Indian Pines, Indiana. (Right) Ground-truth map with 30 mutually exclusive land-cover classes.

5

6

7

8

9

10

11

0 0,05 0,1 0,15 0,2 0,25

R/W

S
p

e
e
d

u
p

HMP-A HMP-B HMP-C

3x3B
5x5B

7x7B 9x9B 11x11B 13x13B
15x15B

Figure 5. Speedup achieved by the heterogeneous
algorithms over their corresponding homogeneous
counterparts on a heterogeneous cluster at University
of Maryland.

Fig. 5 plots the speedup of the heterogeneous
algorithms over their corresponding homogeneous
prototypes on the heterogeneous platform as a function of

WR , where the three considered data communication

strategies are respectively labeled as HMP-A, i.e., overlap
communication for every single pixel; HMP-B, i.e.,

overlap communication to have all data available before
the morphological filtering; and HMP-C, i.e., sending the
overlap border data as part of the scatter operation itself.
Results in Fig. 5 show that heterogeneous algorithms were
several times faster than their homogeneous versions, in
particular, those labeled as HMP-B and HMP-C. The
speedup was simply calculated as the execution time of
the homogeneous algorithm divided by the execution time
of the heterogeneous algorithm for the same WR ratio.

The reason why the HMP-A algorithm performed less
effectively is due to its expensive communication strategy,
while HMP-B implemented a better communication
strategy, and HMP-C implemented a strategy that was
usually about as good as strategy B. Similarly, Fig. 6
shows the speedup of the homogeneous algorithms over
the heterogeneous ones on the homogeneous platform as a
function of WR . Results in Fig. 6 demonstrate that the

homogeneous algorithms only slightly outperformed the
heterogeneous ones for small structuring elements when
the computing platform was also homogeneous. However,
as the volume of computation increased (which is often a
requirement in light of results in Table 3), heterogeneous
algorithms achieved very similar performance to their
respective homogeneous counterparts.

1

1,1

1,2

1,3

0 0,05 0,1 0,15 0,2 0,25

R/W

S
p

e
e
d

u
p

HMP-A HMP-B HMP-C

3x3B

5x5B

7x7B

9x9B

11x11B
13x13B

15x15B

Figure 6. Speedup achieved by the homogeneous
algorithms over their corresponding heterogeneous
algorithms on a homogeneous cluster which is
considered equivalent to the heterogeneous one.

This result demonstrates the flexibility of the proposed
heterogeneous algorithms, which were able to adapt much
better to homogeneous computing environments, in
particular, when the volume of computations involved is
very large. Quite opposite, homogeneous algorithms could
not effectively adapt to a heterogeneous computing
scenario, as demonstrated by results in Fig. 5. This is
mainly due to a less efficient workload distribution among
the heterogeneous workers. To analyze this relevant issue
in more detail, a study of load balance is highly required to
fully substantiate the parallel properties of the considered
algorithms.

In order to explore load balance, Table 4 shows the
imbalance scores achieved by the different algorithms
(implemented with maxI set to 5 iterations). The

imbalance is defined as minmax RRD /= , where maxR and

minR are the maxima and minima processor run times,

respectively. Therefore, perfect balance is achieved when
1=D . In the table, we report the imbalance considering

all processors, AllD , and also considering all processors

but the root, MinusD . In all cases, load balance was similar

when the root processor was not included, which means
that the master node does not have high computation load.
It is also clear from Table 4 that the homogeneous
algorithms executed on the heterogeneous network
provided the highest values of AllD and MinusD (and

hence the highest imbalance), while the heterogeneous
algorithms always resulted in values of AllD and MinusD

which were closer to 1, regardless of the platform where
they were run. More specifically, it can be seen from
Table 4 that the HMP-B implementation was the only
heterogeneous algorithm which was able to provide values
of AllD and MinusD which were always very similar, while

HMP-C provided slightly less similar scores.

0

25

50

75

100

125

150

175

200

225

16 64 112 160 208 256

Number of processors

S
p

e
e
d

u
p

HMP-A (homogeneous)
HMP-A (heterogeneous)
HMP-B (homogeneous)
HMP-B (heterogeneous)
HMP-C (homogeneous)
HMP-C (heterogeneous)

Figure 7. Scalability of the heterogeneous and
homogeneous algorithms on Thunderhead, using a
square-shaped structuring element of 13x13 pixels as
a case study for demonstration.

Taking in mind the results described above, and with
the ultimate goal of exploring issues of scalability and
portability of the proposed heterogeneous algorithms to
existing massively parallel computing platforms at NASA
(which are mainly homogeneous in nature), we have also
compared the performance of the proposed heterogeneous
algorithms (and their homogeneous counterparts) on
Thunderhead. Fig. 7 shows the speedups achieved by the
heterogeneous algorithms and their homogeneous versions
over a single-processor run of the sequential
morphological algorithm on Thunderhead, as a function of
the number of processors, using a structuring element size
of 13x13 pixels (measured processing times are also
reported on Table 5). As Fig. 7 shows, the scalability of
the heterogeneous algorithms was similar to that achieved
by their homogeneous prototypes, in particular, for both
HMP-B and HMP-C algorithms. It should also be noted
that a processing time of 40 seconds was measured for
HMP-B when all available processors on Thunderhead
were used. This is a relevant achievement given the
extremely high dimensionality of the considered scene, in
particular, if we take into account that more than two
hours of computation (7267 seconds) were required to
process the full hyperspectral data set using a single
Thunderhead processor. Overall, experimental results in
this section revealed that parallel algorithms based on
heterogeneous computing paradigms offer a simple,
relatively platform-independent and scalable solution in
the context of high-dimensional imaging applications.

5. Conclusions and Future Research

This paper provided an investigation of parallel
techniques to extract relevant information from
hyperspectral image data sets in highly heterogeneous
computing environments.

 HMP-A HMP-B HMP-C

Algorithm AllD MinusD
AllD MinusD AllD MinusD

Homogeneous versions 1.31 1.15 1.07 1.03 1.12 1.04

Heterogeneous algorithms 1.28 1.13 1.06 1.02 1.10 1.03

Table 4. Load-balancing rates for heterogeneous algorithms (and homogeneous versions) in the heterogeneous cluster.

 HMP-A HMP-B HMP-C

Number of processors Execution time Speedup Execution time Speedup Execution time Speedup

4 3460 2.01 1990 3.65 2344 3.12

16 741 9.18 490 14.81 549 13.23

36 357 20.03 219 33.12 256 28.34

64 224 32.24 128 56.67 141 51.23

100 151 48.35 85 85.23 102 71.23

144 117 62.34 62 116.23 83 87.34

196 98 74.23 48 149.56 73 99.86

256 90 80.32 40 180.28 69 105.23

Table 5. Execution time in seconds and speedup factors for heterogeneous algorithms on Thunderhead.

Experimental results demonstrated that heterogeneous
networks of workstations represent a cost-effective way of
exploiting parallelism in spatial/spectral algorithms such
as those based on mathematical morphology, which
represent a most advanced generation of algorithms in
hyperspectral imaging. It has been shown that parallel
computing at the massively parallelism level provides a
unique framework to extract information in near real-time
and with adequate reliability in an environment dominated
by heterogeneous processing components. The proposed
parallel framework is particularly suitable for data mining
applications that previously looked to be too
computationally intensive in practice, due to immense files
and data archives common to remote sensing problems.
Combining this readily available computational power
with the new sensor instruments may introduce major
changes in the systems used by NASA and other agencies
for exploiting Earth and planetary remotely sensed data.
We feel that the applicability of the techniques described
in this paper extend beyond the domain of high-
dimensional image processing. This is particularly true for
the domains of signal processing and linear algebra
applications, which include similar patterns of
communication and calculation.

Acknowledgement

This research was supported by the Spanish Ministry of
Education and Science through Fellowship PR2003-0360,
which allowed the author to conduct research on parallel
computing as postdoctoral research associate at NASA’s

Goddard Space Flight Center and University of Maryland.
Funding from the European Commission through the
project “Performance analysis of hyperspectral analysis
algorithms” (contract no. HPRI–1999–00057) and
additional funding from Junta de Extremadura (local
government) through project 2PR03A026 are also
acknowledged. The author would like to thank Drs. J. E.
Dorband, J. C. Tilton and J. A. Gualtieri for their
collaboration in experiments on the Thunderhead cluster,
and Profs. M. Valero and F. Tirado for their support.

References

[1] C.-I Chang, Hyperspectral imaging: Techniques for
spectral detection and classification. Kluwer
Academic Publishers, 2003.

[2] R.O. Green et al., “Imaging spectroscopy and the
airborne visible/infrared imaging spectrometer
(AVIRIS),” Remote Sensing of Environment, vol. 65,
pp. 227–248, 1998.

[3] A. Plaza and C.-I Chang, High-Performance
Computing in Remote Sensing, Chapman & Hall/CRC
Press, to appear in 2006.

[4] J. A. Gualtieri and J. C. Tilton, “Hierarchical
segmentation of hyperspectral data,” XI NASA/Jet
Propulsion Laboratory Airborne Earth Science
Workshop, Pasadena, CA, USA, 2002.

[5] A. Plaza, D. Valencia, J. Plaza and P. Martínez,
“Commodity cluster-based parallel processing of
hyperspectral imagery,” Journal of Parallel and
Distributed Computing, in press, to appear in 2006.

[6] A. Lastovetsky, Parallel computing on heterogeneous
networks. Wiley-Interscience: Hoboken, NJ, 2003.

[7] V. E. Bazterra, M. Cuma, M. B. Ferraro, J. C. Facelli,
“A general framework to understand parallel
performance in heterogeneous clusters: analysis of a
new adaptive parallel genetic algorithm,” Journal of
Parallel and Distributed Computing, vol. 65, pp. 48-
57, 2005.

[8] O. Beaumont, V. Boudet, F. Rastello and Y. Robert,
“Matrix multiplication on heterogeneous platforms,”
IEEE Transactions on Parallel and Distributed
Systems, vol. 12, pp. 1033-1051, 2001.

[9] P. Boulet, J. Dongarra, F. Rastello, Y. Robert and F.
Vivien, “Algorithmic issues on heterogeneous
computing platforms,” Parallel Processing Letters,
vol. 9, pp. 197-213, 1999.

[10] F. J. Seinstra, D. Koelma and J. M. Geusebroek, “A
software architecture for user transparent parallel
image processing,” Parallel Computing, vol. 28, pp.
967-993, 2002.

[11] A. Plaza, P. Martinez, R.M. Perez, J. Plaza,
“Spatial/spectral endmember extraction by
multidimensional morphological operations,” IEEE
Transactions on Geoscience and Remote Sensing, vol.
40, no. 9, pp. 2025-2041, 2002.

[12] A. Plaza, P. Martinez, R.M. Perez, J. Plaza, “A new
approach to mixed pixel classification of
hyperspectral imagery based on extended
morphological profiles,” Pattern Recognition, vol. 37,
pp. 1097-1116, 2004.

[13] P. Soille, Morphological Image Analysis: Principles
and Applications, 2nd ed. Springer: Berlin, 2003.

[14] D. Valencia, A. Plaza, P. Martinez and J. Plaza, “On
the use of cluster computing architectures for
implementation of hyperspectral analysis algorithms,”
Proceedings of the 10th IEEE Symposium on
Computers and Communications, pp. 995-1000, 2005.

[15] M. Prieto, I. M. Llorente and F. Tirado, “Data locality
exploitation in the decomposition of regular domain
problems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 11, pp. 1141-1149, 2000.

[16] F. J. Seinstra and D. Koelma, “P-3PC: A point-to-
point communication model for automatic and
optimal decomposition of regular domain problems,”
IEEE Transactions on Parallel and Distributed
Systems, vol. 13, pp. 758-768, 2002.

[17] A. Lastovetsky and R. Reddy, “On performance
analysis of heterogeneous algorithms,” Parallel
Computing, vol. 30, pp. 1195-1216, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

