
Dual-Layered File Cache On cc-NUMA System

ZHOU Yingchao1,2, MENG Dan1, MA Jie1

1National Research Center for Intelligent Computing Systems, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing 100080, P.R. China

2Graduate School of the Chinese Academy of Sciences
{yc_zhou, md, majie}@ncic.ac.cn

Abstract

CC-NUMA is a widely adopted and deployed
architecture of high performance computers. These
machines are attractive for their transparent access to
local and remote memory. However, the prohibitive
latency gap between local and remote access deteriorates
applications’ performance seriously due to memory
access stalls. File system cache, especially, being shared
by all processes, inevitably triggers many remote accesses.
To address this problem, we suggest and implement a
mechanism that uses local memory to cache remote file
cache, of which the main purpose is to improve data
locality. Using realistic workload on a two-node cc-
NUMA machine, we show that the cost of such a
mechanism is as low as 0.5%, the performance can be
increased 14.3% at most, and the local hit ratio can be
improved as much as 40%.

1. Introduction

Cache Coherent Non-Uniform Memory Access (cc-
NUMA) multiprocessors provide transparent access to
local and remote memory. However, the access latency
gap between them is very high. For example, benchmark
on AMD Opteron 246 model shows a local access latency
of 70ns and a one-hop remote access latency of 104ns, the
gap exceeds 48% [1].

The prohibitive remote access latency stalls execution
streams, and eventually deteriorates applications’
performance. Popularity of data-intensive applications,
including science computing applications, multimedia
applications and database applications, makes things even
worse. To counteract the negative effects, data locality is
definitely a very important issue on such architectures [4].

As a deep insight, remote accesses can be broadly
classified into two groups. The first group is anonymous
data. Heap and stack are candidates of this kind. The
second group is buffer cache of block device. To make

things easier, we consider memory mapped accesses of
files to be in the first group. The access of group one is
issued directly. Operating systems have no idea of access
frequency / recency and exact time of dirtiness of the data.
Early work on page migration and replication [2,3,4]
introduced new hardware components, including registers
and monitor circuits, to record page access patterns,
which in turn is used to help for determination of page
migration or replication. However, the cost of such a
design is too expensive, especially when taking into
account the uncertainty of performance advantage. On the
other hand, the access of group two is issued through file
system interface such as read / write / sendfile, and the
operating system can acquire full knowledge of access
patterns. It is suggested that a low-cost software
mechanism can be advanced to increase locality of this
kind of accesses.

In this paper, we pursue the idea of using dual-layered
file cache to improve locality of accesses to files. In the
work, normal cache is abbreviated as NC, and cache of
normal-cache, which cache remote NC on the local node,
is abbreviated as NCC. When an access to a file block is
issued by an application, the operating system firstly finds
the NC entry of the block. If the NC entry is found on a
remote node, it activates the NCC-generator, in which a
NCC entry will be generated on the local node
conditionally. Any later accesses to the block on the same
node can be satisfied by the generated NCC entry. In such
a way, the advantage of page replication and migration
can be obtained without any hardware modifications.
Furthermore, the dual-layered cache mechanism makes it
possible to implement independent replacement and
prefetching algorithms of the NCC and the NC. That is an
important property for releasing the indirect cost of
memory pressure resulted from page replication when
memory is tight.

The idea had been implemented on the linux kernel.
Using realistic workloads on the implementation, we
reveal that data locality can be improved substantially.
Experimental results on a two-node cc-NUMA machine
show that the local hit ratio can be improved as much as

1-4244-0054-6/06/$20.00 ©2006 IEEE

40%. For good candidates, the maximum speedup of
14.3% can be obtained over the default first-touch policy
of the untouched linux kernel, and for the worst
candidates, the slowdown is no more than 1%.

The rest of this paper is organized as follows. Section
2 presents the related work. Section 3 describes the detail
of the design and implementation, and analyzes the costs
and advantage introduced by the NCC. Section 4 shows
workloads and experimental environment. Section 5
illustrates results of experiments. And finally, section 6
concludes the paper and depicts our near future plan of
optimizations.

2. Related Work

Most commercial operating systems nowadays have
integrated the static page placement mechanisms [5,6,7],
which attempt to initially locate each physical memory
page in the memory providing the highest percentage of
local memory accesses [8]. The static mechanisms consist
of first-touch and round-robin. They are the most basic
optimization for cc-NUMA architectures. However, the
complicated mixture of process movement, data sharing
between processes and application behaviors changing
over execution time makes static mechanisms hard to
work effectively. For example, Kenneth M. Wilson
reported in [9] that local hit ratio is only 34% with first-
touch when running TPC-C on a four-node cc-NUMA
multiprocessor machine, and in [8] they found it
decreased to 25% with round-robin.

Another work has focused on dynamic page placement
mechanisms [2,3,4,10,11,12]. With such mechanisms,
after the initial placement, pages are replicated or
migrated due to changes of the application’s behavior.
Page replication is the copying of physical pages on
multi-nodes so that two or more processors have a local
copy. Page migration is the moving of pages closer to the
processor accessing them. Dynamic mechanisms are more
complicated and effective than static ones. In [8], Kenneth
M. Wilson discovered that by using dynamic mechanism
provided in [4], local hit ratio can be increased to 73% for
TPC-C on the same configuration. Although being closely
related, our work differs from these studies in three
aspects: (i) the focus of our work is the file system cache
rather than whole physical pages, and we manage the
replicated pages independently in a cache way rather than
just treat them as a copy of other pages; (ii) our work is
purely based on software rather than any hardware
modification, while most of the studies above involve
hardware support; (iii) our work is carried out on real
platform rather than in simulation environment, which
makes our work more realistic and relevant to the truth.

The above studies of dynamic page placement
mechanisms use history access information as the
criterion of migration or replication. However, history

information cannot always imply future behaviors nicely.
For example, the past reference history of application’s
stack is obsolete because it is not correlated with the
actual status of the computation which is reflected by the
new mapping of threads to processors. To address this
problem, the work in [13,14,15] suggests to take into
account scheduling information when implementing page
migration and replication policy.

3. Policy Framework

This section firstly provides a detailed analysis of the
problem we are trying to resolve, in terms of benefits and
costs of the dual-layered file cache. And then, we describe
the detailed issues related to the implementation.

3.1 Problem Statement

File cache is accessed through filesystem interface
such as read / write / sendfile by applications. The idea of
dual-layered cache is that each node maintains an
independent NCC, which consists of copies of normal file
cache pages on remote nodes. Once an entry enters the
NCC, the following operations issued by filesystem
interface will select the local kernel page in the NCC. In
this way, the probability of remote accesses can be
decreased. Figure 1 shows the detailed information of
effects of NCC on read interface, which involves a

Figure 1 detailed information of NCC impaction
on read

memory copying from a kernel-space page to an user-
space page. In figure 1, the left side stands for four
distributions of pages without NCC, and the right side
stands for the correspond distributions of pages with NCC.
In each distribution, we suppose the process running on
the cpu of the left node. In the figure, each bigger
rectangle represents a node, each smaller rectangle
represents a page, K denotes a NC entry, U denotes an
user-space page, R denotes a NCC entry, the solid arrow
represents really accessing paths, the dashed arrow
represents desired accessing paths, and the dashed double-
arrow represents a NCC entry generator. From the figure,
it can be seen that with the NCC, the cost of reading on
the first distribution is the same with the fourth, and the
second is the same with the third. Each of the two
situations involves one less time remote access. The
reduction to remote memory access can eventually speed
up applications. However, the speedup will be eliminated
by the costs introduced.

The costs can be classified into five categories. The
first category is the costs of recording information to help
determining whether a NCC entry should be generated on
a certain node, which involves the costs of some counting
and comparing operations, so they should be very small.
The second category is the overhead of NCC entries
generation, which includes allocating of new pages and
additional memory copyingw. The third category is the
management overhead of the NCC, which includes the
replacement of entries and shrinking of the NCC. In the
future, it probably includes entries prefetching. The fourth
category is the cost of keeping consistency between the
NCC and the NC. It can be copying of dirty data to each
NCC or discarding entries in NCC depends on
implementation. The fifth category is the indirect memory
pressure resulted from NCC. The optimization we
considered is to shrink NCC much more rapidly than NC.
With such optimization, when memory is exhausted in the
worst situation, the NCC will be empty, and it seems there
is no NCC.

Considering the potential benefits and costs, we can
determine good candidates and bad candidates. There are
three kinds: (i) applications have little sense to the NCC;
(ii) applications will be harmed by the NCC; (iii)
applications will benefit from the NCC. We review them
in details.

Obviously, applications only accessing few quantities
of files will have little sense to the existence of NCC.
They are neither good nor bad candidates. Applications
accessing some files only once or very few times will be
harmed by the NCC. For this kind of applications, the
additional costs introduced by the NCC include the first
kind and perhaps the others due to miscarriage of justice
at the process of NCC entries generation. But compared to
the long elapse of accessing disk, the above costs are
relevant insignificant. Thereby we also consider this kind

of applications neither good nor bad candidates.
Applications accessing many files will exhaust the
memory. With optimization mentioned above, such
applications will also be not sensitive to the NCC.
Applications accessing some files repeatedly are the most
complicated category. The potential good candidates and
bad candidates are all belong to this category.

Single thread applications accessing some files
repeatedly on system with frequent thread migrations are
potential bad candidates. Consider the following situation:
thread migrating to the first node produces many NCC
entries on that node, and then the thread migrates to the
second node, NCC entries generation requesting on node
two probably results in memory tight and leads to recycle
of NCC entries on node one. While later, the thread will
probably migrate to the first node again. Such a process
ends with NCC thrashing. If the memory is abundant,
frequently migrations will make each NC entry produce
many NCC entries on other nodes other than the node
holding it, and which will probably speed up the
application.

Multi-threaded applications sharing some files are
potential good candidates. The system will satisfy
accessing of each thread by the local NCC entry or the
NC entry if thread is running on the node holding NC
entry.

Although potential benefits and costs varied with
applications’ behaviors, the throughput of the whole
system is not so uncertain. If the memory pressure is light,
files’ blocks accessed frequently tend to exist in many
nodes’ NCC, the throughput as a whole will be increased.
And when memory pressure becoming tighter and tighter,
more rapidly shrinking of the NCC will soon make it
empty, the system will work as the NCC does not exist at
all.

3.2 Implementation details

This sub-section provides implementation details for
our dual-layered file cache mechanism. As shown in
figure 2, the NC as a whole distributes on nodes of the

Figure 2 example of distributions of NC and
NCC

system. And each node owns an independent NCC. On a
n node cc-NUMA system, there exists at most one NC
entry, at most n – 1 NCC entries for each file block. A NC
entry may correspond to n -1 NCC entries on other nodes.
On a node, the NC entry and the NCC entry related to the
same block of the same file cannot co-exist.

We choose Linux as the platform due to its’ popular
deployment and open source. The implementa-tion
consists of four aspects: (i) the modification to the linux
kernel; (ii) the NCC generation; (iii) the manage-ment of
NCC entries; (iv) the coherence between NC entry and
NCC entries. The following describes them in details.

Modification to the kernel Our work is based on
Linux kernel 2.6.7. In this kernel, pages of file cache are
managed through two data structures. The first is the radix
tree, a search tree used to find a file block’s cache page
through offset quickly. The second is the doubly linked
lists. For cc-NUMA, each node covers some zones, and
each zone consists of two lists: one is the active page list
and the other is the inactive page list. The active list links
pages that are accessed recently, and the inactive list links
pages that are not accessed for a long time. When
memory is tight, the kernel transfers pages from active list
to inactive list and reclaims pages from inactive list in
LRU way. To make dual-layered cache mechanism
cooperate with the original file cache management system,
two changes has been made to the linux kernel:

A pointer has been added to the page structure. The
pointer is used to record corresponded NCC entries if the
page is an entry of the NC. When the kernel uses the radix
tree to find page cache for a file block, the NC entry will
be found firstly, and then it detects whether a local NCC
entry exist. If so, the local NCC entry will be returned as
the cached page.

Hooks for reclaiming NCC entries have been added to
the kernel path for trying to free pages. In order to make
the system works the same as the original one when
memory is tight, the NCC shrinks much more rapidly than
the NC. In our implementation, we reclaimed twice from
the NCC than from the NC. For instance, when three
pages are asked to free, we will try to free two from the
NCC and one from the inactive list (the NC).

Generation of NCC entries When pages in the NC
are accessed by a remote node, the counter of access by
that node is increased. If the counter reaches a pre-defined
threshold, a NCC entry on that node will be generated. In
our implementation, the threshold is set to two. In order to
avoid potential thrash of NCC generation, a timer for
memory tight checking has been added. The timer checks
usage condition of the memory every second, and enable
or disable genera-tion of NCC entries for the following
access due to the proportion of free memory.

Management of NCC entries There are three kinds
of cache management algorithms. The first kind is
frequency / recency based algorithms, including LRU [16],
LRU-2 [17, 18], 2Q [19], LIRS [20, 21], LRFU [22], MQ
[23], ARC [24], and so on. The second kind is pattern
based algorithms, including SEQ [25], EELRU [26],
DEAR [27], UBM [28], PPC[29], and so on. The third
kind is hint-based algorithms, including application-
controlled cache management [30, 31] and compiler
hinted cache management [32]. For the NCC, the
algorithm is expected to make frequently accessed pages
except those burst accessed ones existing as long as
possible, and it should be easy to implement. Therefore, a
variation of MQ seems to be a good choice. The
algorithm uses eight LRU queues, Q0, Q1, … , Q7 , where
Qi contains pages that have been accessed at least 2i times
but no more that 2i+1 – 1 times recently. Within a given
queue, pages are ranked by recency of access according to
LRU. On a NCC entry hit, the page frequency is increased
and the page is placed at the MRU position of the
appropriate queue. Each time the kernel refills inactive
list from active list, the NCC queues are also scanned, and
each page’s frequency is decreased until the frequency
reaches one. At the same time, the queues are adjusted
according to the new values.

When pages are asked to free from the NCC, pages
selected from Q0 to Q7 orderly. In order to shorten lives of
burst accessed pages, all NCC entries are discarded when
the corresponded NC entry is selected to be reclaimed.

Cache Coherence To make the system work correctly,
the coherence between the NC and the NCC must be
maintained. Operations that break coherence include write
and memory mapped write. Two obvious methods can be
used to keep the coherence. The first is to invalidate
related NCC entries when a NC entry is written. The
second is to write each related NCC entries along with
writing to the NC entry. In our implementation, a page in
NC is forbidden to generate NCC entries when it is to be
memory mapped, and the existing related NCC entries are
to be discarded. In this way, the memory mapped write
cannot break coherence any more. For write operation to a
NC entry, the existing related NCC entries are discarded,
and count of access time for each node to the NC entry is
reset to zero. The method adopted here is paranoia
somewhat. For future optimizations, the restriction of
memory mapped read / write operations can be released.
Another potential optimization is to switch role of the
NCC and the NC when NC entries are to be discarded, i.e.
change a NCC entry to be a NC entry and change the
original NC entry to be a NCC entry.

4. Experimental environment

This section describes the experimental environm-ent
and workloads.

4.1 Platform

We have implemented our design in the linux kernel
2.6.7. The implementation consists of around 2000 lines
of C code.

We used a small NUMA server with the following
configuration:

Two AMD 242 processors of 1.6 GHZ;

2G total RAM, each node owns 1G;

NetXtreme BCM5704 Gigabit Ethernet;

Fedora Core 3 for x86-64 is installed, and the kernel
is compiled by hand.

4.2 Workloads

We used the following applications and benchmar-ks
to evaluate the system:

Grep Grep is a frequently-used tool in shells and
configurations. It is a single thread application, and uses
read interface to copy the whole file to its’ own buffer in
user-space. Here, to simulate a configuration procedure,
we ran grep to find a string in the /etc directory 120 times
in several parallel shells.

Tar + Gcc + Cscope The combination consists of a
previous execution of tar and following concurrent
executions of gcc and cscope. It represents the typical
workload in a code development environment. The input
files of these three applications are linux kernel source
code of 2.6.12. We used tar to make a zipped tar package
of the source codes; used gcc to compile a kernel image
for our platform, and used cscope to build indexed files
for fast search of symbols. All these applications access
files through read interface.

Iozone Iozone is a file-system benchmark. It
generates and measures a variety of file operations,
include write, read, re-read, re-write, backward read,
stride read, fread, fwrite, random read / write and so on.
We carried out the evaluation in posix multi-thread mode.

Web The Apache httpd is a widely deployed web
server. In the experiment, we used the apache benchmark
released with the package to evaluate the impact of the
NCC to the httpd server.

5. Evaluation of results

 In this section, we examine how the NCC affects each
of the applications and benchmarks.

 Grep

 We ran grep totally 120 times to find strings in /etc
directory in parallel shells. The concurrent number of

shells consists of 2, 4, 6, 8 and 10. The size of the /etc
directory is 40M. In the test, we recorded three kinds of
results: (i) average run-time of each grep; (ii) average run-
time of the first grep in each shell; (iii) totally local page
hit number.
 Table 1 gives the results of the average run time and
the average run time of first grep in each shell. The
degree of slowdown of the average run time of the first
grep in shells means that the cost of our system is less
than 0.6%. And when more greps ran in parallel, the more
speedup could be obtained. The reason for such
phenomena probably resides in the processors’ cache.
When more greps run in parallel, the disorder access
pattern should invalidate the processors’ cache frequently,
which in turn will reduce the hit ratio. When hit misses in
the processors’ cache, data will be accessed from the
memory, and the existing of the NCC can reduce time
spent in the memory access.

 Original NCC Speedup t

First Avg First Avg First Avg

2 11.89 3.36 11.92 3.36 -0.2% 0%

4 13.84 6.98 13.92 6.90 -0.6% 1.1%

6 15.95 10.38 15.99 9.98 -0.3% 3.9%

8 18.53 13.78 18.64 12.93 -0.6% 6.2%

10 20.79 17.12 20.92 15.75 -0.6% 8.0%

Table 1 results of grep (unit: s)

Figure 3 local hit number of grep

Figure 3 gives the totally local hit number. It shows that
local page hit ratio is about 50% for the original system,
and about 98.8% for the NCC. In our option, on an
untouched kernel, the local hit ratio is 1/n for a n-node
system. It is clear the more the number of nodes, the
greater the gap between the local hit ratios.

Tar + Gcc + Cscope

We ran the three applications separately firstly, and
then we ran them in combination mode. In the
combination mode, a previous execution of tar is
followed by concurrent executions of gcc and cscope. In

all tests, the execution time and local page hit number is
recorded.

Table 2 gives the results of execution time and local
page hit number. From the table, we can see that the
slowdowns for separately execution are 0.48%, 0.16%
and 0.59%. The gcc shows a particular small slowdown.
The possible reason is that gcc access C header files many
times, and the NCC can counteract costs of theses
accesses. It can be verified from the increment of local
page hit number. The slowdowns of separate execution
are due to the costs introduced by the NCC. However,
when the applications were executed in combination
mode, the advantage of the NCC could overwhelm the
costs. As a result, the speedup of the execution time is
6.7% and the local page hit number is improved 49.6%.

Original NCC improved App

time local time local time local

tar 103.1 76602 103.6 76657 -0.5 0

gcc 429.6 386070 430.3 421631 -0.2 9.2

csope 67.5 88025 67.9 88031 -0.6 0

multi 526.5 439517 491.2 657510 6.7 49.6

Table 2 results of tar+gcc+cscope (unit: s and
percentage)

 Iozone

In our experiments, the file size for iozone is 128
megabytes, the record size is 4 kilobytes, and number of
threads includes 2, 4, 6, 8 and 10. The threads of iozone
ran independently. In each thread, it initially creates and
writes a file, and then uses other interfaces to access the
file. In our configuration, the tested interfaces included
re-write, read, re-read, backward read and stride read. In
the tests, the size of memory is larger than total size of
files, so the results are mainly determined by the
performance of page cache. Table 3 gives the results of
the untouched kernel, table 4 gives the results of the NCC,
and table 5 gives the percentage of speedups.

For iozone, the remote page access is produced by
thread migration among processors. The tables show that
cost of NCC depressed performance of write, re-write and
read, but the extent is very feeble. For re-read, the cost
and advantage of the NCC counteracted, and finally
resulted in a bit performance improvement. For backward
read and stride read, the advantage overwhelms the cost,
and obvious performance increasing can be obtained.
When number of threads increased, the memory became
tight, which resulted in rapidly shrinking of the NCC, and
finally ended with less performance improvement. The
results are consistent with our deduction.

Figure 4 gives the comparison of totally local hit
number. Again we can see much higher local hit ratio for
all tests.

t write re-
Write

read re-
Read

back
read

stride
read

2 328 731 2087 2155 1618 1542

4 306 868 1903 2093 2179 1555

6 304 818 1938 1912 2136 1672

8 249 937 1932 2153 2077 1663

10 235 870 2191 2198 2153 1953

Table 3 results of untouched kernel (unit MB/s)

t write re-
Write

read re-
Read

back
read

stride
read

2 328 731 2071 2146 1675 1764

4 305 866 1895 2143 2324 1752

6 304 818 1921 1915 2205 1751

8 248 934 1917 2168 2325 1807

10 235 871 2195 2204 2168 1996

Table 4 results of NCC kernel (unit MB/s)

T write re-
write

read re-
Read

back
read

stride
read

2 0 0 -0.8 -0.4 3.5 14.3

4 -0.3 -0.2 -0.4 2.4 6.7 12.7

6 0 0 -0.9 0.2 3.2 4.7

8 -0.4 -0.4 -0.8 0.7 11.9 8.7

10 0 0.1 0.2 0.3 0.7 2.2

Table 5 results of percentage of improvement

Figure 4 local hit number of iozone

Web

We ran httpd server of APACHE as the web server, and
ran apache benchmark released with the APACHE
package on the client. In our configuration, the apache
benchmark generated 100 requests of 100 concurrent
accesses to the server for a 40 megabytes file.

The httpd server uses sendfile interface to send files to
the client. In the linux kernel, the sendfile interface firstly
reads pages of the file and then writes them to the
network socket, no data be copied to user-space. The
httpd server ran a several pre-forked processes to deal
with clients’ requests. In such a way, when there are

concurrent requests to the same file, the NCC can be used
to reduce inter-node memory accesses. In our test, the
results of network bandwidth and local hit number are
recorded. Table 6 shows them.

Original NCC Improved

band localhit band localhit band localhit

104.8 1041 112.6 1354 7.4% 30.1%

Table 6 results of web (unit: band MB/s localhit
1000)

From the table we can see that the bandwidth is
improved 7.4% and the local hit numbers are improved
30.1%.

6. Conclusions

This paper provides a dual-layered file cache solution
for cc-NUMA architecture. The dual-layered file cache
mechanism can reduce remote memory access times and
in turn improve performance of applications. We
evaluated the system on a range of real workloads and
benchmarks, observed performance benefits of 2.2% to
14.3% in several cases, and showed that the cost was low,
as much as 0.5%.

There are potential optimizations to the solution. Our
near plan of optimizations involves three aspects: (i)
Delayed generation of NCC entries. In current
implementation, the NCC entries are generated
immediately after it is verified to do so. The immediate
generation could fully warm-up the processor cache, but
the cost of an abundant copying probably impact
performance of the running application. An alternative is
to delay the generation of NCC entries until the system is
idle. Using such mechanism, the cost of additional
copying probably can be released. (ii) Conversion of NC
entries and NCC entries. In current implementation, when
a NC entry is selected to be reclaimed, all related NCC
entries are also reclaimed. And the NC entry is fixed. If
we can convert the actor of the NC entry and the NCC
entry due to access pattern changes, potential advantage
of more flexible cache management policy for the NC and
the NCC can be obtained. (iii) Making memory mapped
accesses of files to use NCC entries. In current
implementation, when memory mapped accesses to file
pages are issued, the NCC is disabled on such pages. This
restriction makes file accesses through memory map
unable to use NCC entries. However, such accesses are
very popular on real systems, especially for executable
files. So, it is necessary to release the restriction.

References

[1] AMD 64 Technology, AMD OpteronTM

ProcessorBenchmarking for Clustered Systems.
http://www.amd.com/usen/assets/content_type/Dow
nloadableAssets/dwamd_39497A_HPC_WhitePape
r_FINAL.pdf

[2] D.Black, A. Gupta, and W.D. Weber. Competit-ive
management of distributed shared memory. In
Proceedings of COMPCON, pages 184-190, March
1989.

[3] R. Chandra, S Devine, B Verghese, A Gupta, and
Mendel Rosenblum. Scheduling and Page
Migration for Multiprocessor Compute Servers. In
Proceedings of conference on Architectural
Support for Programming Languages and
Operating Systems, 12-24, October 1994.

[4] Ben Verghese, Scott Devine, Anoop Gupta, and
Mendel Rosenblum. Operating system support for
improving data locality on CC-NUMA compute
servers. In Proceedings of the seventh international
conference on Architectural support for
programming languages and operating systems,
pages 279-289. ACM Press, 1996.

[5] L. N. Bhuyan, R. Iyer, H. Wang, and A. Kumar.
Impact of CC-NUMA Memory Management
Policies on the Application Performance of
Multistage Network. IEEE Transactions on
Parallel and Distributed Systems, 11(3):230-251,
March 2000.

[6] M. Marchetti, L.Kontothanassis, R.Bianchini and
M.Scott. Using Simple Page Placement Policies to
Reduce the Cost of Cache Fills in Coherent Shared-
Memory Systems. Proceedings of the 9th

International Parallel Processing Symposium,
pp.480-485. Santa Barbara, CA, April 1995.

[7] C.Holt, J.Pal Singh and J.Henessy. Application and
Architectural Bottlenecks in Large Scale Shared
Memory Machines. Proc. of the 23rd Annual
International Symposium on Computer Architecture,
pp.134-145. Philadelphia, PA, June 1996.

[8] Kenneth M. Wilson, Bob B. Aglietti: Dynamic page
placement to improve locality in CC-NUMA
multiprocessors for TPC-C. SC 2001

[9] Kenneth M. Wilson. Static and Dynamic Page
Placement to Improve Locality in CC-NUMA
Multiprocessors. HP Labs Tech Rept. HPL-98-150,
1998.

[10] Silicon Graphics. Cellular IRIX 6.4 for Origin-2000
Technical Report. http://www.sgi.com/Technology-
/Irix6.4/cellular-irix6.4tr.html

[11] William Bolosky, Michael Scott, Robert Fitzger-ald,
Robert Fowler, and Alan Cox. NUMA Poli-ces and
Thiner Relation to Memory Architectur-e. ASPLOS
IV, Santa Clara, CA, pp 212-221, April 1991.

[12] Richard LaRowe Jr., Carla Ellis, and Laurence Kap-
lan. The Robustness of NUMA Memory Managem-

ent. Thirteenth ACM Symposium on Ope-rating Sy-
stem Principles, pp 137-151, October 1991.

[13] Dimitrios S. Nikolopoulos, Theodore S. Papatheod-
orou Constantine D. Polychronopoulos, Jesus Laba-
rta, and Eduard Ayguadé. User-Level Dynamic Pa-
ge Migration for Multiprogrammed Shared Memo-
ry Multiprocessors. International Co-nference on
Parallel Processing.

[14] D.Nikolopoulos et.al. A Case for User-Level Dyn-
amic Page Migration. Proc. Of the 14th ACM Inte-
rnational Conference on Supercomputing, pp. 119-
130, Santa Fe, NM, May 2000.

[15] D.Nikolopoulos et.al. UPMlib: A Runtime System
for Tuning the Memory Performance of OpenMP
Programs on Cache-Coherent NUMA Multiproce-
ssors. Proc. of the 5th ACM Workshop on Langua-
ges, Compilers and Runtime Systems for Scalable
Computers, Rochester, NY, May 2000.

 [16] R.W.Carr and J.L.Hennessy. WSCLOCK – a simp-
le and effective algorithm for virtual memory man-
agement. In Proc. ACM SOSP-08, Dec 1981.

[17] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The L-
RU-K page replacement algorithm for database disk
buffering. In Proc. ACM SIGMOD Conference, M-
ay 1993.

[18] E. J. O’Neil, P. E. O’Neil, and G.Weikum. An opt-
imality proof of the LRU-K page replacement alg-
orithm. J. ACM, 46(1):92-112, 1999.

[19] T. Johnson and D. Shasha. 2Q: a low overhead high
performance buffer management replacement algor-
ithm. In Proc. 20th VLDB, Jan 1994.

[20] S. Jiang, F. Chen, and X. Zhang. CLOCK-Pro: An
effective improvement of the CLOCK replacement.
In Proc. USENIX ATC, Apr. 2005.

[21] S. Jiang and X. Zhang. LIRS: an efficient low inter-
reference set replacement policy to improve buffer
cache performance. In Proc. ACM SIG-METRICS,
June 2002.

[22] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y.
Cho, and C. S. Kim. LRFU: A spectrum of policies
that subsumes the least recently used and least freq-
uently used policies. IEEE transactions on Compu-
ters, 50(12):1352-1360, 2001.

[23] Y. Zhou, P. M .Chen, and K. Li. The MultiQueue
Replacement Algorithm for Second-Level Buffer-
Caches. In Proc. USENIX ATC, June 2001.

[24] N. Megiddo and D. S. Modha. ARC: A Self-tuning,
Low Overhead Replacement Cache. In Proc. 2nd U-
SENIX FAST, Mar 2003.

[25] G. Glass and P. Cao. Adaptive page replacement b-
ased on memory reference behavior. In Proc. ACM
SIGMETRICS, June 1997.

[26] Y. Smaragdakis, S. Kaplan, and P. Wilson. EELRU:
simple and effective adaptive page replacement. In
Proc. ACM SIGMETRICS, May 1999.

[27] J. Choi, S. H. Noh, S. L. Min, and Y. Cho. Towards
application/file-level characterization of block ref-
erences: a case for fine-grained buffer management.
In Proc. ACM SIGMETRICS, June 2000.

[28] J. M. Kim, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y.
Cho, and C. S. Kim. A Low-Overhead, High Perf-
ormance Unified Buffer Management Sche-me that
Exploits Sequential and Looping Refere-nces. In
Proc. 4th USENIX OSDI, Oct 2000.

[29] C. Gniady, A. R. Butt, and Y. C. Hu. Program cou-
nter based pattern classification in buffer caching.
In Proc. 6th USENIX OSDI, Dec.2004.

[30] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. Impl-
ementation and performance of integrated applicat-
ion controlled file caching, prefetching, a-nd disk
scheduling. ACM TOCS, 14(4):311-343, 1996.

[31] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stod-
olsky, and J. Zelenka. Informed prefetching and ca-
ching. In Proc. ACM SOSP-15, Dec. 1995.

[32] A. D. Brown, T. C. Mowry, and O. Krieger. Compi-
ler based I/O prefetching for out-of-core applicati-
ons. ACM TOCS, 19(2):111-170, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

