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Abstract 

Due to shared cache contentions and interconnect 
delays, data prefetching is more critical in alleviating 
penalties from increasing memory latencies and demands 
on Chip-Multiprocessors (CMPs). Through deep analysis 
of SPEC2000 applications, we find that a part of the 
nearby data memory references often exhibit highly-
repeated patterns with long, but equal block reuse 
distance. These references can form a coterminous group 
(CG). Coterminous locality is introduced as that when a 
member in a CG is referenced, the remaining members 
will likely be referenced in the near future. Based on the 
coterminous locality behavior, we implement a novel CG 
data prefetcher on CMPs. Performance evaluations show 
that the proposed prefetcher can accurately cover up to 
40-50% of the total misses, and result in 50-60% of 
potential performance improvement for several selected 
workload mixes. 

1. Introduction 

 As VLSI circuit integration continues to advance with 
deep submicron technology, billions of transistors will be 
available in a single processor die with a clock frequency 
exceeding 10 GHz. Because of limited Instruction-Level 
Parallelism (ILP), design complexities, as well as high 
energy/power consumptions, further expanding wide-
issued, out-of-order single-core processors with huge 
instruction windows and super-speculative execution 
techniques will suffer diminishing returns. It becomes a 
norm that processor dies will contain multiple cores with 

shared caches for a higher chip-level Instruction-Per-
Cycle (IPC) [25,27]. In a Chip-Multiprocessor (CMP), 
however, contentions of shared resources significantly 
hamper performance of individual threads and hinder 
exploiting parallelism from multiple threads [14]. 
 Speculative data prefetching techniques become more 
critical on CMPs for hiding the longer memory latency 
problem from heavier cache contentions and limited 
memory bandwidth. Traditional data prefetching based on 
cache miss correlations [6,11] faces serious obstacles. 
First, each cache miss often has several potential 
successive misses and prefetching multiple successors is 
inaccurate and expensive. Such incorrect speculations are 
more harmful on CMPs, wasting memory bandwidth and 
polluting critical shared caches. Second, consecutive 
cache misses can be separated by few instructions. It 
could be too late to initiate prefetches for successive 
misses. Third, reasonable miss coverage requires long 
history which translates to more power/area. 
    For the purpose of accuracy and timeliness, stream-
based approaches dynamically identify repeated streams 
of cache misses [8,9,31]. The hot-stream prefetcher [8,9] 
profiles and analyzes sampled memory traces on-line to 
identify frequently repeated sequence (hot streams). Hot 
streams are prefetched by prefetching instructions inserted 
into the binary. However, periodic profiling, analysis, and 
binary code insertions incur execution overheads, which 
may become excessive for streams with long reuse 
distances. The temporal-stream prefetcher [31] identifies 
recent streams that start with the current miss and 
prefetches the most probable stream with repeated miss 
sequences.  However, a large FIFO buffer is required to 
record the miss history for identifying streams. 
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 In this paper, we propose a Coterminous Group (CG)
based data prefetching technique on CMPs to improve the 
overall system performance. Our analysis of SPEC 
applications shows that adjacent traversals of various data 
structures, such as arrays, trees and graphs, often exhibit 
temporal repeated memory access patterns. A unique 
feature of these nearby accesses is that they exhibit a long 
but equal reuse distance. We define such a group of 
memory references as a Coterminous Group (CG) and the 
highly repeated access patterns among members in a CG 
as coterminous locality. The CG-prefetcher identifies and 
records highly repeated CGs in a small buffer for accurate 
and timely prefetches for members in a group.
 The paper makes three main contributions. First, we 
demonstrate the severe cache contention problem with 
various mixes of SPEC2000 applications, and describe the 
necessities and the challenges of data prefetching on 
CMPs. Second, we discover the existence of coterminous 
groups in these applications and quantify the highly 
repeated coterminous locality among members in a CG. 
Third, based on coterminous group, we develop a new 
prefetching scheme, CG-prefetcher, and present a realistic 
implementation by integrating the CG-prefetcher into the 
memory controller. Full system evaluations have shown 
that the proposed CG-prefetcher can accurately prefetch 
the needed data in a timely manner on CMPs. It generates 
about 10-40% extra traffic to achieve 20-50% of miss 
coverage in comparison with 2.5 times more extra traffic 
by a correlation-based prefetcher with a comparable miss 
coverage. The CG-prefetcher also shows better IPC 
improvement than the correlation-based or the stream-
based prefetchers. 
 The remainder of this paper is organized as follows. 
Section 2 describes the severe cache contention problems 
on CMPs. Section 3 shows the coterminous group and 
coterminous locality. Section 4 develops the basic design 
of the memory-side CG-prefetcher. Section 5 presents the 
simulation methodology. This is followed by performance 
evaluations in Section 6. Related work is given in Section 
7 followed by a brief conclusion in Section 8.  

2. Cache Contentions on CMPs 

 Figure 1 shows the IPCs of a set of SPEC2000 
workloads that are running independently, or in parallel 
on 2- or 4-core CMPs. The first three groups are 4-
workload mixes of Art/Mcf/Ammp/Twolf, Art/Mcf 
/Vortex/Bzip2, and Twolf/Parser/Vortex/Bzip2. The first 
group consists of workloads with heavier L2 misses; the 
second group mixes workloads with heavier and lighter 
L2 penalties; and the third group has workloads with 
lighter L2 misses. For each group, the workloads are 
ordered by high-to-low L2 miss penalties from left to 
right in their appearance. We also run nine 2-workload 
mixes, also ranging from high-to-low L2 miss penalties, 

including Art/Mcf, Mcf/Mcf, Mcf/Ammp, Art/Twolf, 
Mcf/Twolf, Mcf/Bzip2, Twolf/Bzip2, Parser/Bzip2, and 
Bzip2/Bzip2. Detailed descriptions of the simulation 
model and workload selection will be given in Section 5.
 Significant IPC reductions can be observed on 
individual workloads when they run in parallel, especially 
for the workload mixes with high contentions on shared 
caches. For example, when Art/Mcf/Ammp/Twolf are 
running on four cores, the individual IPCs drop from 
0.029, 0.050, 0.132, and 0.481 to 0.022, 0.026, 0.043, and 
0.181 respectively. Instead of accumulating the overall 
IPCs on four cores, the IPC is dropped to only 40% from 
0.69 to 0.27. Similar effects of various degrees can also 
be observed with two cores. These significant IPC 
degradations demand for accurate prefetchers to alleviate 
heavier cache contentions and misses on CMPs. 

3. Coterminous Group and Locality 

 A Coterminous Group (CG) consists of nearby data 
references with same block reuse distances. The block 
reuse distance is defined as the number of distinct data 
blocks that are referenced between two consecutive 
references to the same block. For instance, consider the 
following accessing sequence: a b c x d x y z a b c y d.
The reuse distances of a-a, b-b, c-c and d-d are all 6, 
whereas x-x is 1 and y-y is 4. In this case, a b c d can 
form a CG. References in a CG have three important 
properties. First, the order of references must be exactly 
the same at each repetition (e.g. d must follow c, c follows 
b and b follows a). Second, references in a CG can 
interleave with other references (e.g. x, y). These 
references, however, are difficult to predict accurately, 
and will be excluded by the criteria of same distance. 
Third, the same reference (i.e. to the same block) usually 
does not appear twice in one CG. 
 Figure 2 plots reuse distances of 3000 nearby 
references from three SPEC2000 applications. The 
existence of CGs is quite obvious from these snapshots. 
Mcf has a huge CG with a reuse distance of over 60,000. 
Ammp shows four large CGs along with a few small ones.
And Parser has many small CGs. Note that references 
with short reuse distances (e.g. < 512), which are usually 
covered by temporal and spatial localities, are filtered. 
Other applications also show the CG behavior. We only 
present three examples due to the space limit. 
 Based on these behaviors, we conclude that members 
in a CG exhibit a highly repeated access pattern, i.e. 
whenever a member in a CG is referenced, the remaining 
members will likely be referenced in the near future 
according to the previous accessing sequence. We call 
such highly repeated patterns coterminous locality. 

We can quantify the coterminous locality by measuring 
the pair-wise correlation A->B between adjacent 
references in a CG. (This is similar to the miss correlation  
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Figure 1.  IPCs of workload mixes on CMPs 

Figure 2.  Reuse distances of three SPEC 2000 applications 

in [6,11].) In measuring the locality, up to four successors 
of each reference are kept based on the LRU replacement. 
The accuracy of B being referenced immediately after the 
re-reference of A provides a good locality measurement. 
When a match to the successor in the MRU position 
indicates a repeated reference of A followed by B.
 We also relax the reuse distance requirement. CG-N
represents CGs, in which nearby references with reuse 
distances that are within ±N. CG-0 represents the original 
same-distance CG, while CG-  has a single CG that 
includes all references with long block reuse distances.  
 Figure 3 shows the accumulated percentages of repeats 
to the four successors, with two different scales of Y-axis 
to improve readability. In general, the results exhibit 
strong repeated reference behaviors among members in a 
CG. Due to array accesses, Ammp shows nearly perfect 
correlations regardless of the reuse distance requirement. 
Art exhibits high correlations, especially for CG-0. All 
others also demonstrate strong correlations. As expected, 
CG-0 shows stronger correlations than other weaker 
forms of CGs, while CG- , which is essentially the same 
as the adjacent cache-miss correlation, shows very poor 
correlations. The gap between CG-0 and CG-2/CG-4/CG-
8 is rather narrow in Mcf, Vortex, and Bzip2, suggesting a 
weaker form of CGs may be preferable for covering more 
references. A large gap is observed between CG-0 and 
other CGs in Twolf, Parser, and Gcc indicating CG-0 is 
more accurate for prefetching.  

4. Memory-side CG-prefetcher on CMPs 

 Based on existences of highly-repeated coterminous 
locality within members in CGs, we design and integrate 
a CG-prefetcher in CMP memory controllers. Although it 
is suitable on uni-processor systems too, the accurate CG-
prefetcher is more appealing on emerging CMPs due to 
extra resource contentions and constraints. 

4.1. Basic Design of CG-Prefetcher 

 The structure of a CG-prefetcher is illustrated in Figure 
4. A Request FIFO records the block addresses and their 
reuse distances of recent memory requests. A CG starts to 
form once the number of requests with the same reuse 
distance in the Request FIFO exceeds a certain threshold. 
The threshold controls the aggressiveness of forming a 
new CG, and the size of the FIFO determines the 
adjacency of members. A flag is associated with each 
request indicating whether the request is matched. The 
matched requests in the FIFO are copied into a CG Buffer
waiting for the CG to be formed. The size of the CG 
buffer determines the maximum number of members in a 
CG, which can control the timeliness of prefetches. A 
small number of CG Buffers allows multiple CGs to be 
formed concurrently. A CG is completed when either the 
CG Buffer is full or a new CG is identified from the 
Request FIFO. In  either case, the old CG is  moved to the  
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Figure 3.  Correlations of adjacent references within CGs 

Figure 4.  Structure of CG prefetcher

Coterminous Group History Table (CGHT), a set-
associative directory indexed by block addresses. A 
unidirectional pointer in each entry links the members in a 
CG. This link-based CGHT permits fast searching of a 
CG from any member in the group. When the CGHT 
becomes full, either the LRU entries are replaced and 
removed from the existing CGs, or the conflicting new 
CG members are dropped to avoid potential thrashing. 
 Once a L2 miss hits the CGHT, the entire CG can be 
identified and prefetched by following the circular links. 
In Figure 4, for instance, a miss to block F will trigger 
prefetches of A, B, C, D, and E in order. Note that a block 
can appear in more than one CG in the CGHT. This is 
because a block reference can leave a CG and become a 
member of a new CG, while the CGHT may still keep the 
old CG. On multiple hits, either the most recent CG or all 
the matched CGs may be prefetched. Any existing CGs 
can change dynamically over a period of time. Updating 
CGs dynamically is difficult without precise information 
on when a member leaves or joins a group. Another 
option is to simply flush the CGHT periodically based on 
the number of executed instructions, memory references, 

or cache misses. However, a penalty will be paid to 
reestablish the CGs after each flush. 

4.2. Integrating CG-prefetcher on CMP 

Memory Systems 

 There are attractive features of a memory-side CG-
prefetcher [26]. First, it minimizes changes to the 
complex processor pipeline along with any associated 
performance and space overheads. Second, it may use the 
DRAM array to store necessary state information with 
minimum cost. A recent trend is to integrate the memory 
controller in the processor die to reduce interconnect 
latency. Nevertheless, such integration has minimal 
performance implication on implementing the CG-
prefetcher in the memory controller. 
 The first key issue for a memory-side CG-prefetcher is 
to determine the block reuse distance without seeing all 
processor requests at the memory controller. A global 
miss sequence number is used. The memory controller 
assigns and saves a new sequence number to each missed 
memory block in the DRAM array. The reuse distance 
can be approximated as the difference of the new and the 
old sequence numbers. For a 128-byte block with a 16-bit 
sequence number, a reuse distance of 64K blocks, or an 
8MB working set can be covered. The memory overhead 
is merely 1.5%. When the same distance requirement is 
relaxed, one sequence number can be for a small number 
of adjacent requests, which will expand the working set 
coverage and/or reduce the space requirement. 
 Figure 5 shows the CG-prefetcher in memory system. 
To avoid regular cache-miss requests from different cores 
disrupting one another for establishing the CGs [28], we 
construct a private CG-prefetcher for each core. Each CG-
prefetcher has a Prefetch Queue (PQ) to buffer the 
prefetch requests (addresses) from the associated 
prefetcher. A shared Miss Queue (MQ) stores regular miss 



requests from all cores for accessing the DRAM channels. 
A shared Miss Return Queue (MRQ) and a shared 
Prefetch Return Queue (PRQ) buffers the data from the 
miss requests and the prefetch requests for accessing the 
memory bus. We implement a private PQ to prevent 
prefetch requests of one core from blocking those from 
other cores. The PQs have lower priority than the MQ. 
Among the PQs, a round-robin fashion is used. Similarly, 
the PRQ has lower priority than the MRQ in arbitrating 
the system bus. Each CG-prefetcher maintains a separate 
sequence number for calculating the block reuse distance.  
 When a regular miss request arrives, all the PQs are 
searched. In case of a match, the request is removed from 
the PQ and is inserted into the MQ, gaining a higher 
priority to access the DRAM. In this case, there is no 
performance benefit since the prefetch of the requested 
block has not been initiated. If a matched prefetch request 
is in the middle of fetching the block from the DRAM, or 
is ready in the PRQ, waiting for the shared data bus, the 
request will be redirected to the MRQ for a higher priority 
to arbitrate the data bus. Variable delay cycles can be 
saved depending on the stage of the prefetch request. The 
miss request is inserted into the MQ normally when no 
match is found. 
 A miss request can trigger a sequence of prefetches if it 
hits the CGHT. The prefetch requests are inserted into the 
corresponding PQ. If the PQ or the PRQ is full, or if a 
prefetch request has been initiated, the prefetch request is 
simply dropped. In order to filter the prefetched blocks 
already located in processor’s cache, a topologically 
equivalent directory of the lowest level cache is 
maintained in the controller (not shown in Figure 5). The 
directory is updated based on misses, prefetches, and 
write-backs to keep it close to the cache directory. A 
prefetch is dropped in case of a match. Note that all other 
simulated prefetchers incorporate the directory too. 

5. Evaluation Methodology

5.1. Simulators and Parameters

 We use Virtutech Simics 2.0, a full-system execution-
driven simulator, to model an out-of-order Pentium 4 
Linux machine. Simics is configured to support chip 
multiprocessors, with each core having its own L1 cache 
and all cores sharing a unified L2 cache. We add a g-
share branch predictor and an independent stride 
prefetcher to each core.  
 We implement a cycle-by-cycle event-driven memory 
simulator to accurately model the memory system. Multi-
channel DDR SDRAM is simulated. The DRAM accesses 
are pipelined whenever possible. A cycle-accurate, split-
transaction processor-memory bus is also included. All 
timing delays of misses and prefetches are carefully 
simulated. Due to a slower clock of the memory controller,  

Figure 5.  Basic design of a memory-side CG

the memory-side prefetchers initiate one prefetch every 
10 processor cycles. Table 1 summarizes the important 
simulation parameters.  

5.2. Workload Selection

 We use several mixtures of SPEC2000 benchmark 
workloads based on the classification of memory-bound 
and CPU-bound workloads [32]. The memory-bound 
workloads are Art, Mcf, and Ammp, while the CPU-bound 
workloads are Twolf, Parser, Vortex, and Bzip2. The first 
category of workload mixes, MEM, includes memory-
bound workloads; the second category of workload mixes, 
MIX, consists of both memory-bound and CPU-bound 
workloads; and the third category of workloads, CPU, 
contains only CPU-bound workloads. We choose the ref
input set for all the SPEC2000 workloads. Table 2 
summarizes the selected workload mixes. 
 We skip certain instructions for each individual 
application in a mix based on studies done in [22], and 
run the workload mix for another 100 million instructions 
for warming up the caches. A Simics checkpoint for each 
mix is generated afterwards. We run our base simulator, 
without any memory-side prefetcher, until any application 
in a mix has executed at least 100 million instructions for 
collecting instruction distributions [24]. Such instruction 
distributions are then applied to all prefetchers to collect 
statistics. 

5.3. Prefetcher Configurations

 The performance results of the proposed CG-prefetcher 
are presented and compared against a pair-wise miss-
correlation prefetcher (MC-prefetcher), a prefetcher based 
on the last miss stream (LS-prefetcher), and a hot-stream 
prefetcher (HS-prefetcher). A processor-side stride 
prefetcher is included in all simulated prefetchers. 

Processor-side Stride Prefetcher: It has 4k-entry PCs 
with each entry  maintaining four  previous  references of  



CMP: 2 or 4 cores, 3.2GHz 
ROB size: 128 
Fetch/Exec/Retire/Commit width: 4 / 7 / 5 / 3 
Branch predictor: G-share, 64KB, 4K BTB 
Branch misprediction penalty: 10 cycles 
Processor side prefetcher: Stride 

L1-I: 64KB, 4-way, 64B Line, MESI 
L1-D: 64KB, 4-way, 64B Line, MESI 
L2: 1MB, 8-way, 64B Line 
L1-I/L1-D/L2 latency: 0/2/15 cycles 
L1/L2 MSHR size: 16/16 
Memory latency: 432 cycles 
DRAM channels: 2/4/8/16 
Queue size (MQ, PQn, PRQ, MRQ) : 16 
Memory side prefetcher: None/CG/MC/HS/LS 
DRAM access latency: 180 cycles 
Interconnection latency: 220 cycles 
History table search latency: 10 cycles/entry 
Memory bus: 8-byte, 800MHz, 6.4GB/s 

Table 1. Simulation parameters 

 MEM MIX CPU 

Four Art/Mcf/ 
Ammp/Twolf 

Art/Mcf/ 
Vortex/Bzip2 

Twolf/Parser/ 
Vortex/Bzip2 

Art/Mcf Art/Twolf Twolf/Bzip2 

Mcf/Mcf Mcf/Twolf Parser/Bzip2 Two 

Mcf/Ammp Mcf/Bzip2 Bzip2/Bzip2 

Table 2. Selected workload mixes 

that PC. Four successive prefetches are issued, whenever 
four stride distances of a specific PC are matched [15].  

Memory-side MC-prefetcher: Each core has a MC-
prefetcher with a 128k-entry 8 set-associative history 
table. Each miss address (each entry) records 2 successive 
misses. Upon a miss, the MC-prefetcher prefetches two 
levels in depth, resulting in a total of up to 6 prefetches. 

 Memory-side HS-prefetcher:  The HS-prefetcher is 
simulated based on a Global History Buffer [20,31] with 
128k-entry FIFO and 64k-entry 16 set-associative miss 
index table for each core. Each FIFO entry consists of a 
26-bit block address and a 17-bit pointer that sequentially 
links the entries with the same miss address. On every 
miss, the index and the FIFO are searched sequentially to 
find all recent streams that begin with the current miss. If 
the first 3 misses of any two streams match, the matched 
stream is prefetched. The length of each stream is 8. 

 Memory-side LS-prefetcher:  The LS-prefetcher is a 
special case of the HS-prefetcher, where the last miss 
stream is prefetched without any further qualification.  

 Memory-side CG-Prefetcher: We use CG-2 to get 
both high accuracy and decent coverage of misses. The 
CGHT is 16k entries per core, with 30 bits (16-way set-
associative) per entry.   We use a 16-entry Request FIFO  

 Memory Controller (SRAM) per core DRAM 

CG 60KB(16K*30bit/8) 3% 

MC 2MB(128K*2*64bit/8) 0 

HS 920KB(128K*43bit/8+64K*29bit/8) 0 

LS 920KB(128K*43bit/8+64K*29bit/8) 0 

Table 3. Space overhead for various prefetchers 

and four 8-entry CG-Buffers. A CG can be formed once 
three memory requests in the Request FIFO satisfy the 
reuse distance requirement. Each CG contains up to 8 
members. The CGHT is flushed periodically every 2 
million misses from the corresponding core. 
 Table 3 summarizes the extra space overhead to 
implement various prefetchers. 

6. Performance Evaluation 

6.1. IPC Improvement and Miss Reductions 

 In Figure 6, the IPC speedups of Stride-only, MC, HS, 
LS, and CG prefetchers with respect to the baseline model 
are presented. (IPCs for the baseline model were given in 
Figure 1.) Each IPC-speedup bar is broken into the 
contributions made by individual workloads in the mix. 
The total height represents the overall IPC speedup. 
 Several observations can be made. First, most 
workload mixes show performance improvement for all 
five prefetching techniques. In general, the CG has the 
highest overall improvement, followed by the LS, the HS, 
and the MC prefetchers. Two workload mixes Art/Twolf
and Mcf/Twolf show a performance loss for most 
prefetchers. Our studies indicate that Twolf has irregular 
patterns, and hardly benefits from any of the prefetching 
schemes. Although Art and Mcf are well performed, the 
higher IPC of Twolf dominates the overall IPC speedup. 
Second, the CG-prefetcher is a big winner for the MEM 
workloads with speedup of 40% in average, followed by 
the LS with 30%, the HS with 24% and the MC with 18%. 
The MEM workloads exhibit heavier cache contentions 
and misses. Therefore, the accurate CG-prefetcher 
benefits the most for this category. Third, the CG-
prefetcher generally performs better in the MIX and the 
CPU categories. However, the LS-prefetcher slightly 
outperforms the CG-prefetcher in a few cases. With 
lighter memory demands in these workload mixes, the 
LS-prefetcher can deliver more prefetched blocks with a 
smaller impact on cache pollutions and memory traffic.  
 It is important to note that the measured IPC speedup 
creates an unfair view when comparing mixed workloads 
on multi-cores. For example, in Art/Mcf/Vortex/Bzip2, the 
IPC speedups of individual workloads are measured at 
3.16, 1.41, 0.82, and 1.42 for the CG-prefetcher, and 2.39, 
1.22, 0.86, and 1.49 for the MC-prefetcher. Therefore, the  



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

Art / Mcf /

Ammp / Twolf

 Art / Mcf /

Vortex / Bzip2

 Twolf / Parser

/ Vortex /

Bzip2

Art / Mcf Mcf / Mcf Mcf / Ammp Art / Twolf Mcf / Twolf Mcf / Bzip2 Twolf / Bzip2 Parser / Bzip2 Bzip2 / Bzip2

Workload1 Workload2 Workload3 Workload4
IP

C
 S

p
e
ed

u
p

Figure 6. IPC speedups of Stride, MC, HS, LS, CG prefetchers (Normalized to baseline IPC) 

average speedups of the four workloads are 1.70 and 1.49 
for the two prefetchers. However, their measured IPC 
speedups are only 1.20 and 1.22. Given the fact that 
Vortex and Bzip2 have considerably higher IPC than those 
of Art and Mcf, the overall IPC improvement is dominated 
by the last two workloads. This is true for other workload 
mixes. In Figure 7, the average speedup of two MEM and 
two MIX workload mixes are shown. Comparing with the 
measured speedups, significantly higher average speedups 
are achieved by all prefetchers. For Art/Twolf, the average 
IPC speedups are 48%, 44%, 52% and 51% for the 
respective MC, HS, LS and CG prefetchers, instead of -
14%, -15%, -9%,  and -10% as shown in Figure 6. 

In contrast to the MC- and the LS-prefetcher, the HS- 
and the CG-prefetcher carefully qualify members in a 
group that show highly repeated patterns for prefetching. 
The benefit of this accuracy is evident in Figure 8. The 
total memory accesses are classified into 5 categories for 
each prefetcher: misses, partial hits, miss reductions (i.e. 
successful prefetches), extra prefetches, and wasted 
prefetches. The sum of the misses, partial hits, and miss 
reductions is equal to the baseline misses without 
prefetching, which is normalized to 1 in the figure. The 
partial hits mean latency reductions to misses due to 
earlier but incomplete prefetches. The extra prefetches 
represent the prefetched blocks that are replaced before 
any usage. The wasted prefetches refer to the prefetched 
blocks that are presented in cache already. Overall, all 
prefetchers show a significant reduction of cache misses 
ranging from a few percent to as high as 50%. 
 The MC- and the LS-prefetcher generate significantly 
higher memory traffic than the HS- and the CG-
prefetcher. On the average, the HS-, the CG-, the LS- and 
the MC-prefetcher produce about 4%, 21%, 35%, and 
52% extra traffic respectively. The excessive memory 
traffic by the LS- and the MC-prefetcher does not turn 
proportionally into a positive reduction of the cache miss. 
In some cases, the impact is negative mainly due to the 
cache pollution  problem on CMPs. Between  the two, the  
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Figure 7.  Average speedup of 4 workload mixes 

LS-prefetcher is more effective than the MC-prefetcher 
indicating prefetching multiple successor misses may not 
be a good idea. The HS-prefetcher has the highest 
accuracy. However, the low miss coverage limits its 
overall IPC improvement. 

6.2. Sensitivity Studies 

 The distance constraint of forming a CG is simulated 
and the performance results of CG-0, CG-2 and CG-8 are 
plotted in Figure 9. With respect to the measured IPC 
speedups, the results are mixed. We selected CG-2 to 
represent the CG-prefetcher due to its slightly better IPCs
than that of CG-0 with considerably less traffic than that 
of CG-8. Note that we omit CG-4, which has similar IPC 
speedup in comparison with CG-2, but generates more 
memory traffic.
 The impact of group size is evaluated as shown in 
Figure 10. Two workload mixes in the MEM category, 
Art/Mcf/Ammp/Twolf and Mcf/Ammp, and two in the MIX 
category, Art/Mcf/Vortex/Bzip2 and Art/Twolf are chosen 
due to their high memory demand. The measured IPCs 
decrease slightly or remain unchanged for the two 4-
workload mixes, while they increase slightly with the two  
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Figure 9.  Effect of distance constrains:  (Left) Measured IPC speedup; (Right) Accuracy and traffic 

2-workload mixes. Due to cache contentions, larger 
groups generate more useless prefetches. The group size 
of 8 shows a balance of high IPCs with low overall 
memory traffic. 
 Figure 11 plots the average speedup of CG with respect 
to Stride-only for different L2 cache sizes from 512KB to 
4MB. As observed, the four workload mixes behave very 
differently with respect to different L2 sizes. For 
Art/Mcf/Vortex/Bzip2 and Art/Twolf, the average IPC 
speedups are peak at 1MB and 2MB respectively, and 
then drop sharply afterwards because of a sharp reduction 
of cache misses with larger caches. However, for the 
memory-bound workload mixes, Art/Mcf/Ammp/Twolf
and Mcf/Ammp, the average speedups of median-size L2 
are slightly less than those of smaller and larger L2. With 
smaller caches, the cache contention problem is so severe 
that a small percentage of successful prefetches can lead 
to significant IPC speedups. For median size caches, the 
impact of delaying normal miss due to conflicts with 
prefetches begins to compensate the benefit of 
prefetching. When the L2 size continues to increase, the 

number of misses decreases and it diminishes the effect of 
accessing conflicts. As a result, the average speedup 
increases again. 
 Given a higher demand for accessing the DRAM for 
the prefetching methods, we perform a sensitivity study 
on the DRAM channels as shown in Figure 12. The 
results indicate that the number of DRAM channels does 
show impacts on the IPCs and more so to the memory-
bound workload mixes. All four workload mixes perform 
poorly with 2 channels. However, the improvements are 
saturated about 4 to 8 channels. 

7.  Related Work

 The single-chip multiprocessor was first presented in 
[21]. Since then, many companies have announced their
multi-core products [2,13,18,1,19]. Trends, opportunities, 
and challenges for future chip multiprocessors have 
appeared in keynote speeches, as well as in special 
columns of recent conferences and professional journals 
[3,25,27,4], which have inspired the studies in this paper.  
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Many uni-processor data prefetching schemes have 
been proposed in the last decade [29,6,20,30]. Traditional 
sequential or stride prefetchers work well for workloads 
with regular spatial access patterns [7,12,15]. Prior 
correlation-based predictors (e.g. Markov predictor [11, 6] 
and Global History Buffer [20]) record and use past miss 
correlations to predict future cache misses. However, a 
huge history table or FIFO is usually needed to provide 
decent coverage. Hu et al. [10] uses tag-correlation, a 
much bigger block correlation, to reduce the history size. 
To avoid cache pollution and provide timely prefetches, 
the dead-block prefetcher issues a prefetch once a cache 
block is predicted to be dead [16]. 

Chilimbi [8,9] introduced a hot-stream prefetcher. It 
profiles and analyzes sampled memory traces on-line to 
identify frequently repeated sequences (hot streams) and 
inserts prefetching instructions to the binary code for 
these streams. The profiling, analysis, and binary code 
insertions / modifications incur execution overheads, and 
may become excessive to cover hot streams with long 
reuse distances. Wenisch et al. [31] proposed temporal 
streams by extending hot streams and global history 
buffer to deal with coherence misses on SMPs. It requires 

a huge FIFO and multiple searches/comparisons on every 
miss to capture repeated streams. The proposed CG 
prefetcher uses approximated reuse distances to capture 
repeated coterminous groups with minimum overhead.  
 Saulsbury et al. [23] proposed a recency-based TLB 
preloading. It maintains the TLB information in a Mattson 
stack, and preloads adjacent entries in the stack upon a 
TLB miss. The recency-based technique can be applied 
for data prefetching. Compared with the CG-prefetcher, it 
prefetches adjacent entries in the stack without the prior 
knowledge of whether the adjacent requests have showed 
any repeated patterns or how the two requests arrive at the 
adjacent stack positions. In contrast, the CG approach 
carefully qualifies members in a group based on the same 
reuse-distance (i.e. have shown repeated patterns) and 
physical adjacency (i.e. within a short window) of the 
requests to achieve higher accuracy. 

8.  Conclusion 

 This paper has introduced an accurate CG-based data 
prefetching scheme on Chip Multiprocessors (CMPs). We 
showed the existence of coterminous groups (CGs) and a 



third kind of locality, coterminous locality. In particular, 
the order of nearby references in a CG follows exactly the 
same order that these references appeared last time, even 
though they may be irregular. The proposed prefetcher 
uses CG history to trigger prefetches when a member in a 
group is re-referenced. It overcomes challenges of the 
existing correlation-based or stream-based prefetchers, 
including low prefetch accuracy, lack of timeliness, and 
large history. The accurate CG-prefetcher is especially 
appealing for CMPs, where cache contentions and 
memory access demands are escalated. Evaluations based 
on various workload mixes have demonstrated significant 
advantages of the CG-prefetcher over other existing 
prefetching schemes on CMPs. 
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